1f7l Citations

Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites.

Structure 8 883-95 (2000)
Related entries: 1f7t, 1f80

Cited: 105 times
EuropePMC logo PMID: 10997907

Abstract

Background

Holo-(acyl carrier protein) synthase (AcpS), a member of the phosphopantetheinyl transferase superfamily, plays a crucial role in the functional activation of acyl carrier protein (ACP) in the fatty acid biosynthesis pathway. AcpS catalyzes the attachment of the 4'-phosphopantetheinyl moiety of coenzyme A (CoA) to the sidechain of a conserved serine residue on apo-ACP.

Results

We describe here the first crystal structure of a type II ACP from Bacillus subtilis in complex with its activator AcpS at 2.3 A. We also have determined the structures of AcpS alone (at 1.8 A) and AcpS in complex with CoA (at 1.5 A). These structures reveal that AcpS exists as a trimer. A catalytic center is located at each of the solvent-exposed interfaces between AcpS molecules. Site-directed mutagenesis studies confirm the importance of trimer formation in AcpS activity.

Conclusion

The active site in AcpS is only formed when two AcpS molecules dimerize. The addition of a third molecule allows for the formation of two additional active sites and also permits a large hydrophobic surface from each molecule of AcpS to be buried in the trimer. The mutations Ile5-->Arg, Gln113-->Glu and Gln113-->Arg show that AcpS is inactive when unable to form a trimer. The co-crystal structures of AcpS-CoA and AcpS-ACP allow us to propose a catalytic mechanism for this class of 4'-phosphopantetheinyl transferases.

Articles - 1f7l mentioned but not cited (1)

  1. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. Halavaty AS, Kim Y, Minasov G, Shuvalova L, Dubrovska I, Winsor J, Zhou M, Onopriyenko O, Skarina T, Papazisi L, Kwon K, Peterson SN, Joachimiak A, Savchenko A, Anderson WF. Acta Crystallogr. D Biol. Crystallogr. 68 1359-1370 (2012)


Reviews citing this publication (19)

  1. Using modern tools to probe the structure-function relationship of fatty acid synthases. Finzel K, Lee DJ, Burkart MD. Chembiochem 16 528-547 (2015)
  2. Advances in chemical labeling of proteins in living cells. Yan Q, Bruchez MP. Cell Tissue Res. 360 179-194 (2015)
  3. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. Nat Prod Rep 31 61-108 (2014)
  4. The chain-flipping mechanism of ACP (acyl carrier protein)-dependent enzymes appears universal. Cronan JE. Biochem. J. 460 157-163 (2014)
  5. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Hur GH, Vickery CR, Burkart MD. Nat Prod Rep 29 1074-1098 (2012)
  6. The structural role of the carrier protein--active controller or passive carrier. Crosby J, Crump MP. Nat Prod Rep 29 1111-1137 (2012)
  7. Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Li Z, Nair SK. Protein Sci. 21 1403-1417 (2012)
  8. Current understanding of fatty acid biosynthesis and the acyl carrier protein. Chan DI, Vogel HJ. Biochem. J. 430 1-19 (2010)
  9. Structure and function of eukaryotic fatty acid synthases. Maier T, Leibundgut M, Boehringer D, Ban N. Q. Rev. Biophys. 43 373-422 (2010)
  10. Structural insights into nonribosomal peptide enzymatic assembly lines. Koglin A, Walsh CT. Nat Prod Rep 26 987-1000 (2009)
  11. Site specific protein labeling by enzymatic posttranslational modification. Sunbul M, Yin J. Org. Biomol. Chem. 7 3361-3371 (2009)
  12. The multienzyme architecture of eukaryotic fatty acid synthases. Leibundgut M, Maier T, Jenni S, Ban N. Curr. Opin. Struct. Biol. 18 714-725 (2008)
  13. Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Byers DM, Gong H. Biochem. Cell Biol. 85 649-662 (2007)
  14. Protein chemistry on the surface of living cells. Johnsson N, George N, Johnsson K. Chembiochem 6 47-52 (2005)
  15. The structural biology of type II fatty acid biosynthesis. White SW, Zheng J, Zhang YM, Rock. Annu. Rev. Biochem. 74 791-831 (2005)
  16. Biosynthesis of nonribosomal peptides1. Finking R, Marahiel MA. Annu. Rev. Microbiol. 58 453-488 (2004)
  17. Forty years of bacterial fatty acid synthesis. Rock CO, Jackowski S. Biochem. Biophys. Res. Commun. 292 1155-1166 (2002)
  18. Exploring the domain structure of modular nonribosomal peptide synthetases. Weber T, Marahiel MA. Structure 9 R3-9 (2001)
  19. Lipid biosynthesis as a target for antibacterial agents. Heath RJ, White SW, Rock CO. Prog. Lipid Res. 40 467-497 (2001)

Articles citing this publication (85)

  1. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Campbell JW, Cronan JE. Annu. Rev. Microbiol. 55 305-332 (2001)
  2. Architecture of mammalian respiratory complex I. Vinothkumar KR, Zhu J, Hirst J. Nature 515 80-84 (2014)
  3. Cloning and characterization of a phosphopantetheinyl transferase from Streptomyces verticillus ATCC15003, the producer of the hybrid peptide-polyketide antitumor drug bleomycin. Sánchez C, Du L, Edwards DJ, Toney MD, Shen B. Chem. Biol. 8 725-738 (2001)
  4. The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Lomakin IB, Xiong Y, Steitz TA. Cell 129 319-332 (2007)
  5. Crystal structure of the erythromycin polyketide synthase dehydratase. Keatinge-Clay A. J. Mol. Biol. 384 941-953 (2008)
  6. Structural studies of fatty acyl-(acyl carrier protein) thioesters reveal a hydrophobic binding cavity that can expand to fit longer substrates. Roujeinikova A, Simon WJ, Gilroy J, Rice DW, Rafferty JB, Slabas AR. J. Mol. Biol. 365 135-145 (2007)
  7. X-ray crystallographic studies on butyryl-ACP reveal flexibility of the structure around a putative acyl chain binding site. Roujeinikova A, Baldock C, Simon WJ, Gilroy J, Baker PJ, Stuitje AR, Rice DW, Slabas AR, Rafferty JB. Structure 10 825-835 (2002)
  8. Catalysis, specificity, and ACP docking site of Streptomyces coelicolor malonyl-CoA:ACP transacylase. Keatinge-Clay AT, Shelat AA, Savage DF, Tsai SC, Miercke LJ, O'Connell JD, Khosla C, Stroud RM. Structure 11 147-154 (2003)
  9. Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain. Drake EJ, Nicolai DA, Gulick AM. Chem. Biol. 13 409-419 (2006)
  10. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis. Nguyen C, Haushalter RW, Lee DJ, Markwick PR, Bruegger J, Caldara-Festin G, Finzel K, Jackson DR, Ishikawa F, O'Dowd B, McCammon JA, Opella SJ, Tsai SC, Burkart MD. Nature 505 427-431 (2014)
  11. Structure of acyl carrier protein bound to FabI, the FASII enoyl reductase from Escherichia coli. Rafi S, Novichenok P, Kolappan S, Stratton CF, Rawat R, Kisker C, Simmerling C, Tonge PJ. J. Biol. Chem. 281 39285-39293 (2006)
  12. Rapid determination of protein folds using residual dipolar couplings. Fowler CA, Tian F, Al-Hashimi HM, Prestegard JH. J. Mol. Biol. 304 447-460 (2000)
  13. Identification of a phosphopantetheinyl transferase for erythromycin biosynthesis in Saccharopolyspora erythraea. Weissman KJ, Hong H, Oliynyk M, Siskos AP, Leadlay PF. Chembiochem 5 116-125 (2004)
  14. Solution structure of B. subtilis acyl carrier protein. Xu GY, Tam A, Lin L, Hixon J, Fritz CC, Powers R. Structure 9 277-287 (2001)
  15. The phosphopantetheinyl transferase superfamily: phylogenetic analysis and functional implications in cyanobacteria. Copp JN, Neilan BA. Appl. Environ. Microbiol. 72 2298-2305 (2006)
  16. The crystal structure of the actIII actinorhodin polyketide reductase: proposed mechanism for ACP and polyketide binding. Hadfield AT, Limpkin C, Teartasin W, Simpson TJ, Crosby J, Crump MP. Structure 12 1865-1875 (2004)
  17. Molecular recognition between ketosynthase and acyl carrier protein domains of the 6-deoxyerythronolide B synthase. Kapur S, Chen AY, Cane DE, Khosla C. Proc. Natl. Acad. Sci. U.S.A. 107 22066-22071 (2010)
  18. Crystal structure of Streptococcus pneumoniae acyl carrier protein synthase: an essential enzyme in bacterial fatty acid biosynthesis. Chirgadze NY, Briggs SL, McAllister KA, Fischl AS, Zhao G. EMBO J. 19 5281-5287 (2000)
  19. Mechanism and substrate recognition of human holo ACP synthase. Bunkoczi G, Pasta S, Joshi A, Wu X, Kavanagh KL, Smith S, Oppermann U. Chem. Biol. 14 1243-1253 (2007)
  20. Structure of 2C-methyl-D-erythritol 2,4- cyclodiphosphate synthase: an essential enzyme for isoprenoid biosynthesis and target for antimicrobial drug development. Kemp LE, Bond CS, Hunter WN. Proc. Natl. Acad. Sci. U.S.A. 99 6591-6596 (2002)
  21. Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. Buetow L, Smith TK, Dawson A, Fyffe S, Hunter WN. Proc. Natl. Acad. Sci. U.S.A. 104 4321-4326 (2007)
  22. In vivo functional analyses of the type II acyl carrier proteins of fatty acid biosynthesis. De Lay NR, Cronan JE. J. Biol. Chem. 282 20319-20328 (2007)
  23. NMR studies of Escherichia coli acyl carrier protein: dynamic and structural differences of the apo- and holo-forms. Kim Y, Kovrigin EL, Eletr Z. Biochem. Biophys. Res. Commun. 341 776-783 (2006)
  24. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Wilson R, Kumar P, Parashar V, Vilchèze C, Veyron-Churlet R, Freundlich JS, Barnes SW, Walker JR, Szymonifka MJ, Marchiano E, Shenai S, Colangeli R, Jacobs WR, Neiditch MB, Kremer L, Alland D. Nat. Chem. Biol. 9 499-506 (2013)
  25. An ACP structural switch: conformational differences between the apo and holo forms of the actinorhodin polyketide synthase acyl carrier protein. Evans SE, Williams C, Arthur CJ, Burston SG, Simpson TJ, Crosby J, Crump MP. Chembiochem 9 2424-2432 (2008)
  26. Protein function microarrays based on self-immobilizing and self-labeling fusion proteins. Sielaff I, Arnold A, Godin G, Tugulu S, Klok HA, Johnsson K. Chembiochem 7 194-202 (2006)
  27. Chasing acyl carrier protein through a catalytic cycle of lipid A production. Masoudi A, Raetz CR, Zhou P, Pemble CW. Nature 505 422-426 (2014)
  28. Evidence for a protein-protein interaction motif on an acyl carrier protein domain from a modular polyketide synthase. Weissman KJ, Hong H, Popovic B, Meersman F. Chem. Biol. 13 625-636 (2006)
  29. Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties. Chen ZJ, Pudas R, Sharma S, Smart OS, Juffer AH, Hiltunen JK, Wierenga RK, Haapalainen AM. J. Mol. Biol. 379 830-844 (2008)
  30. Interdomain communication between the thiolation and thioesterase domains of EntF explored by combinatorial mutagenesis and selection. Zhou Z, Lai JR, Walsh CT. Chem. Biol. 13 869-879 (2006)
  31. A dedicated phosphopantetheinyl transferase for the fredericamycin polyketide synthase from Streptomyces griseus. Huang Y, Wendt-Pienkowski E, Shen B. J. Biol. Chem. 281 29660-29668 (2006)
  32. Structural modification of acyl carrier protein by butyryl group. Wu BN, Zhang YM, Rock CO, Zheng JJ. Protein Sci. 18 240-246 (2009)
  33. Molecular dynamics simulations of the Apo-, Holo-, and acyl-forms of Escherichia coli acyl carrier protein. Chan DI, Stockner T, Tieleman DP, Vogel HJ. J. Biol. Chem. 283 33620-33629 (2008)
  34. Evidence for a novel phosphopantetheinyl transferase domain in the polyketide synthase for enediyne biosynthesis. Murugan E, Liang ZX. FEBS Lett. 582 1097-1103 (2008)
  35. Rapid and flexible biochemical assays for evaluating 4'-phosphopantetheinyl transferase activity. Owen JG, Copp JN, Ackerley DF. Biochem. J. 436 709-717 (2011)
  36. Solution structures of the acyl carrier protein domain from the highly reducing type I iterative polyketide synthase CalE8. Lim J, Kong R, Murugan E, Ho CL, Liang ZX, Yang D. PLoS ONE 6 e20549 (2011)
  37. The malonyl transferase activity of type II polyketide synthase acyl carrier proteins. Arthur CJ, Szafranska AE, Long J, Mills J, Cox RJ, Findlow SC, Simpson TJ, Crump MP, Crosby J. Chem. Biol. 13 587-596 (2006)
  38. Intein-mediated cyclization of bacterial acyl carrier protein stabilizes its folded conformation but does not abolish function. Volkmann G, Murphy PW, Rowland EE, Cronan JE, Liu XQ, Blouin C, Byers DM. J. Biol. Chem. 285 8605-8614 (2010)
  39. Multimeric options for the auto-activation of the Saccharomyces cerevisiae FAS type I megasynthase. Johansson P, Mulinacci B, Koestler C, Vollrath R, Oesterhelt D, Grininger M. Structure 17 1063-1074 (2009)
  40. Structural insights into the acyl intermediates of the Plasmodium falciparum fatty acid synthesis pathway: the mechanism of expansion of the acyl carrier protein core. Upadhyay SK, Misra A, Srivastava R, Surolia N, Surolia A, Sundd M. J. Biol. Chem. 284 22390-22400 (2009)
  41. Crystal structure of a PCP/Sfp complex reveals the structural basis for carrier protein posttranslational modification. Tufar P, Rahighi S, Kraas FI, Kirchner DK, Löhr F, Henrich E, Köpke J, Dikic I, Güntert P, Marahiel MA, Dötsch V. Chem. Biol. 21 552-562 (2014)
  42. Two functionally redundant Sfp-type 4'-phosphopantetheinyl transferases differentially activate biosynthetic pathways in Myxococcus xanthus. Meiser P, Müller R. Chembiochem 9 1549-1553 (2008)
  43. Sulfonyl 3-alkynyl pantetheinamides as mechanism-based cross-linkers of acyl carrier protein dehydratase. Ishikawa F, Haushalter RW, Lee DJ, Finzel K, Burkart MD. J. Am. Chem. Soc. 135 8846-8849 (2013)
  44. Biochemical and structural characterization of germicidin synthase: analysis of a type III polyketide synthase that employs acyl-ACP as a starter unit donor. Chemler JA, Buchholz TJ, Geders TW, Akey DL, Rath CM, Chlipala GE, Smith JL, Sherman DH. J. Am. Chem. Soc. 134 7359-7366 (2012)
  45. A novel approach for over-expression, characterization, and isotopic enrichment of a homogeneous species of acyl carrier protein from Plasmodium falciparum. Sharma SK, Modak R, Sharma S, Sharma AK, Sarma SP, Surolia A, Surolia N. Biochem. Biophys. Res. Commun. 330 1019-1026 (2005)
  46. Structure-function analysis of the acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis. Dym O, Albeck S, Peleg Y, Schwarz A, Shakked Z, Burstein Y, Zimhony O. J. Mol. Biol. 393 937-950 (2009)
  47. FeeM, an N-acyl amino acid synthase from an uncultured soil microbe: structure, mechanism, and acyl carrier protein binding. Van Wagoner RM, Clardy J. Structure 14 1425-1435 (2006)
  48. Solution structure of Asl1650, an acyl carrier protein from Anabaena sp. PCC 7120 with a variant phosphopantetheinylation-site sequence. Johnson MA, Peti W, Herrmann T, Wilson IA, Wüthrich K. Protein Sci. 15 1030-1041 (2006)
  49. A homogeneous resonance energy transfer assay for phosphopantetheinyl transferase. Foley TL, Burkart MD. Anal. Biochem. 394 39-47 (2009)
  50. Anthranilate 4H-oxazol-5-ones: novel small molecule antibacterial acyl carrier protein synthase (AcpS) inhibitors. Gilbert AM, Kirisits M, Toy P, Nunn DS, Failli A, Dushin EG, Novikova E, Petersen PJ, Joseph-McCarthy D, McFadyen I, Fritz CC. Bioorg. Med. Chem. Lett. 14 37-41 (2004)
  51. Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with Its Substrate Reveals Transient, Well-Defined Contacts. Goodrich AC, Harden BJ, Frueh DP. J. Am. Chem. Soc. 137 12100-12109 (2015)
  52. Lincosamide synthetase--a unique condensation system combining elements of nonribosomal peptide synthetase and mycothiol metabolism. Janata J, Kadlcik S, Koberska M, Ulanova D, Kamenik Z, Novak P, Kopecky J, Novotna J, Radojevic B, Plhackova K, Gazak R, Najmanova L. PLoS ONE 10 e0118850 (2015)
  53. Plasmodium falciparum acyl carrier protein crystal structures in disulfide-linked and reduced states and their prevalence during blood stage growth. Gallagher JR, Prigge ST. Proteins 78 575-588 (2010)
  54. Structural characterization of CalO2: a putative orsellinic acid P450 oxidase in the calicheamicin biosynthetic pathway. McCoy JG, Johnson HD, Singh S, Bingman CA, Lei IK, Thorson JS, Phillips GN. Proteins 74 50-60 (2009)
  55. Glutamate-41 of Vibrio harveyi acyl carrier protein is essential for fatty acid synthase but not acyl-ACP synthetase activity. Gong H, Byers DM. Biochem. Biophys. Res. Commun. 302 35-40 (2003)
  56. Modeling holo-ACP:DH and holo-ACP:KR complexes of modular polyketide synthases: a docking and molecular dynamics study. Anand S, Mohanty D. BMC Struct. Biol. 12 10 (2012)
  57. Measurement of amide hydrogen exchange rates with the use of radiation damping. Fan JS, Lim J, Yu B, Yang D. J. Biomol. NMR 51 151-162 (2011)
  58. Expression, purification and characterization of the acyl carrier protein phosphodiesterase from Pseudomonas Aeruginosa. Murugan E, Kong R, Sun H, Rao F, Liang ZX. Protein Expr. Purif. 71 132-138 (2010)
  59. Genetic interaction between the Escherichia coli AcpT phosphopantetheinyl transferase and the YejM inner membrane protein. De Lay NR, Cronan JE. Genetics 178 1327-1337 (2008)
  60. Helicobacter pylori acyl carrier protein: expression, purification, and its interaction with beta-hydroxyacyl-ACP dehydratase. Liu W, Du L, Zhang L, Chen J, Shen X, Jiang H. Protein Expr. Purif. 52 74-81 (2007)
  61. Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis. Miyanaga A, Iwasawa S, Shinohara Y, Kudo F, Eguchi T. Proc. Natl. Acad. Sci. U.S.A. 113 1802-1807 (2016)
  62. High-resolution structures of the D-alanyl carrier protein (Dcp) DltC from Bacillus subtilis reveal equivalent conformations of apo- and holo-forms. Zimmermann S, Pfennig S, Neumann P, Yonus H, Weininger U, Kovermann M, Balbach J, Stubbs MT. FEBS Lett. 589 2283-2289 (2015)
  63. Adaptation of aminoacyl-tRNA synthetase catalytic core to carrier protein aminoacylation. Mocibob M, Ivic N, Luic M, Weygand-Durasevic I. Structure 21 614-626 (2013)
  64. Disrupting the Acyl Carrier Protein/SpoT interaction in vivo: identification of ACP residues involved in the interaction and consequence on growth. Angelini S, My L, Bouveret E. PLoS ONE 7 e36111 (2012)
  65. Acyl carrier protein-specific 4'-phosphopantetheinyl transferase activates 10-formyltetrahydrofolate dehydrogenase. Strickland KC, Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA. J. Biol. Chem. 285 1627-1633 (2010)
  66. Structure of the Yersinia pestis FabV enoyl-ACP reductase and its interaction with two 2-pyridone inhibitors. Hirschbeck MW, Kuper J, Lu H, Liu N, Neckles C, Shah S, Wagner S, Sotriffer CA, Tonge PJ, Kisker C. Structure 20 89-100 (2012)
  67. An off-pathway folding intermediate of an acyl carrier protein domain coexists with the folded and unfolded states under native conditions. Lim J, Xiao T, Fan J, Yang D. Angew. Chem. Int. Ed. Engl. 53 2358-2361 (2014)
  68. Detection of soluble co-factor dependent protein expression in vivo: application to the 4'-phosphopantetheinyl transferase PptT from Mycobacterium tuberculosis. Rottier K, Faille A, Prudhomme T, Leblanc C, Chalut C, Cabantous S, Guilhot C, Mourey L, Pedelacq JD. J. Struct. Biol. 183 320-328 (2013)
  69. Fatty acid synthesis in Xylella fastidiosa: correlations between genome studies, 13C NMR data, and molecular models. Osiro D, Muniz JR, Coleta Filho HD, de Sousa AA, Machado MA, Garratt RC, Colnago LA. Biochem. Biophys. Res. Commun. 323 987-995 (2004)
  70. Crystal structure of the essential Mycobacterium tuberculosis phosphopantetheinyl transferase PptT, solved as a fusion protein with maltose binding protein. Jung J, Bashiri G, Johnston JM, Brown AS, Ackerley DF, Baker EN. J. Struct. Biol. 188 274-278 (2014)
  71. Solution structure of 4'-phosphopantetheine - GmACP3 from Geobacter metallireducens: a specialized acyl carrier protein with atypical structural features and a putative role in lipopolysaccharide biosynthesis. Ramelot TA, Smola MJ, Lee HW, Ciccosanti C, Hamilton K, Acton TB, Xiao R, Everett JK, Prestegard JH, Montelione GT, Kennedy MA. Biochemistry 50 1442-1453 (2011)
  72. Partial molar volumes of acyl carrier proteins are related to their states of acylation. Gupta S, Modak R, Surolia N, Surolia A. Biochem. Biophys. Res. Commun. 380 763-768 (2009)
  73. Structure of a specialized acyl carrier protein essential for lipid A biosynthesis with very long-chain fatty acids in open and closed conformations. Ramelot TA, Rossi P, Forouhar F, Lee HW, Yang Y, Ni S, Unser S, Lew S, Seetharaman J, Xiao R, Acton TB, Everett JK, Prestegard JH, Hunt JF, Montelione GT, Kennedy MA. Biochemistry 51 7239-7249 (2012)
  74. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis. Park YG, Jung MC, Song H, Jeong KW, Bang E, Hwang GS, Kim Y. J. Biol. Chem. 291 1692-1702 (2016)
  75. A phosphopantetheinyl transferase that is essential for mitochondrial fatty acid biosynthesis. Guan X, Chen H, Abramson A, Man H, Wu J, Yu O, Nikolau BJ. Plant J. 84 718-732 (2015)
  76. Backbone 1H, 15N, and 13C resonance assignments of the Helicobacter pylori acyl carrier protein. Park SJ, Kim JS, Son WS, Ahn HC, Lee BJ. J. Biochem. Mol. Biol. 36 505-507 (2003)
  77. Crystal structure of MBP-PigG fusion protein and the essential function of PigG in the prodigiosin biosynthetic pathway in Serratia marcescens FS14. Zhang F, Wei Q, Tong H, Xu D, Wang W, Ran T. Int. J. Biol. Macromol. 99 394-400 (2017)
  78. The origin of specificity and insight into recognition between an aminoacyl carrier protein and its partner ligase. Maršavelski A, Močibob M, Gruić-Sovulj I, Vianello R. Phys Chem Chem Phys 17 19030-19038 (2015)
  79. Two functionally distinctive phosphopantetheinyl transferases from amoeba Dictyostelium discoideum. Nair DR, Ghosh R, Manocha A, Mohanty D, Saran S, Gokhale RS. PLoS ONE 6 e24262 (2011)
  80. Role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites by Serratia marcescens Db10. Gerc AJ, Stanley-Wall NR, Coulthurst SJ. Microbiology (Reading, Engl.) 160 1609-1617 (2014)
  81. The conserved modular elements of the acyl carrier proteins of lipid synthesis are only partially interchangeable. Zhu L, Cronan JE. J. Biol. Chem. 290 13791-13799 (2015)
  82. Probing the Substrate Specificity and Protein-Protein Interactions of the E. coli Fatty Acid Dehydratase, FabA. Finzel K, Nguyen C, Jackson DR, Gupta A, Tsai SC, Burkart MD. Chem. Biol. 22 1453-1460 (2015)
  83. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate. Maloney FP, Gerwick L, Gerwick WH, Sherman DH, Smith JL. Proc. Natl. Acad. Sci. U.S.A. 113 10316-10321 (2016)
  84. Structural and dynamic characterization of a freestanding acyl carrier protein involved in the biosynthesis of cyclic lipopeptide antibiotics. Paul S, Ishida H, Nguyen LT, Liu Z, Vogel HJ. Protein Sci. 26 946-959 (2017)
  85. Mass spectral determination of phosphopantetheinylation specificity for carrier proteins in Mycobacterium tuberculosis. Jung J, Bashiri G, Johnston JM, Baker EN. FEBS Open Bio 6 1220-1226 (2016)