1eso Citations

Unique structural features of the monomeric Cu,Zn superoxide dismutase from Escherichia coli, revealed by X-ray crystallography.

J Mol Biol 274 408-20 (1997)
Cited: 51 times
EuropePMC logo PMID: 9405149

Abstract

The first three-dimensional structure of a functional monomeric Cu, Zn superoxide dismutase (from Escherichia coli, E_SOD) is reported at 2.0 A resolution (R-factor=16.8%). Compared to the homologous eukaryotic enzymes, E_SOD displays a perturbed antiparallel beta-barrel structure. The most striking structural features observed include extended amino acid insertions in the surface 1, 2-loop and S-S subloop, modification of the disulfide bridge connection, and loss of functional electrostatic residues, suggesting a modified control of substrate steering toward the catalytic center. The active site Cu2+ displays a distorted coordination sphere due to an unusually long bond to the metal-bridging residue His61. Inspection of the crystal packing does not show regions of extended contact indicative of a dimeric assembly. The molecular surface region involved in subunit dimerization in eukaryotic superoxide dismutases is structurally altered in E_SOD and displays a net polar nature.

Reviews - 1eso mentioned but not cited (1)

  1. A Short Tale of the Origin of Proteins and Ribosome Evolution. Farías-Rico JA, Mourra-Díaz CM. Microorganisms 10 2115 (2022)

Articles - 1eso mentioned but not cited (10)

  1. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution. Omelchenko MV, Galperin MY, Wolf YI, Koonin EV. Biol Direct 5 31 (2010)
  2. Identification of protein oligomerization states by analysis of interface conservation. Elcock AH, McCammon JA. Proc Natl Acad Sci U S A 98 2990-2994 (2001)
  3. Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database. Tung CH, Huang JW, Yang JM. Genome Biol 8 R31 (2007)
  4. Protein purification and crystallization artifacts: The tale usually not told. Niedzialkowska E, Gasiorowska O, Handing KB, Majorek KA, Porebski PJ, Shabalin IG, Zasadzinska E, Cymborowski M, Minor W. Protein Sci 25 720-733 (2016)
  5. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. Houben B, Michiels E, Ramakers M, Konstantoulea K, Louros N, Verniers J, van der Kant R, De Vleeschouwer M, Chicória N, Vanpoucke T, Gallardo R, Schymkowitz J, Rousseau F. EMBO J 39 e102864 (2020)
  6. A comprehensive in silico analysis for identification of therapeutic epitopes in HPV16, 18, 31 and 45 oncoproteins. Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z. PLoS One 13 e0205933 (2018)
  7. Structural, Functional, and Immunogenic Insights on Cu,Zn Superoxide Dismutase Pathogenic Virulence Factors from Neisseria meningitidis and Brucella abortus. Pratt AJ, DiDonato M, Shin DS, Cabelli DE, Bruns CK, Belzer CA, Gorringe AR, Langford PR, Tabatabai LB, Kroll JS, Tainer JA, Getzoff ED. J Bacteriol 197 3834-3847 (2015)
  8. A primary role for disulfide formation in the productive folding of prokaryotic Cu,Zn-superoxide dismutase. Sakurai Y, Anzai I, Furukawa Y. J Biol Chem 289 20139-20149 (2014)
  9. In silico design and in vitro expression of novel multiepitope DNA constructs based on HIV-1 proteins and Hsp70 T-cell epitopes. Akbari E, Kardani K, Namvar A, Ajdary S, Ardakani EM, Khalaj V, Bolhassani A. Biotechnol Lett 43 1513-1550 (2021)
  10. Characterization of a novel cysteine-less Cu/Zn-superoxide dismutase in Paenibacillus lautus missing a conserved disulfide bond. Furukawa Y, Shintani A, Narikiyo S, Sue K, Akutsu M, Muraki N. J Biol Chem 299 105040 (2023)


Reviews citing this publication (8)

  1. Superoxide dismutases and superoxide reductases. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Chem Rev 114 3854-3918 (2014)
  2. Superoxide dismutases: ancient enzymes and new insights. Miller AF. FEBS Lett 586 585-595 (2012)
  3. The structural biochemistry of the superoxide dismutases. Perry JJ, Shin DS, Getzoff ED, Tainer JA. Biochim Biophys Acta 1804 245-262 (2010)
  4. Immunoglobulin domains in Escherichia coli and other enterobacteria: from pathogenesis to applications in antibody technologies. Bodelón G, Palomino C, Fernández LÁ. FEMS Microbiol Rev 37 204-250 (2013)
  5. On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Case AJ. Antioxidants (Basel) 6 E82 (2017)
  6. Active sites of transition-metal enzymes with a focus on nickel. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. Curr Opin Struct Biol 8 749-758 (1998)
  7. Unraveling new functions of superoxide dismutase using yeast model system: Beyond its conventional role in superoxide radical scavenging. Chung WH. J Microbiol 55 409-416 (2017)
  8. Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. Schatzman SS, Culotta VC. ACS Infect Dis 4 893-903 (2018)

Articles citing this publication (32)

  1. Discriminating between homodimeric and monomeric proteins in the crystalline state. Ponstingl H, Henrick K, Thornton JM. Proteins 41 47-57 (2000)
  2. Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations. Wade RC, Gabdoulline RR, Lüdemann SK, Lounnas V. Proc Natl Acad Sci U S A 95 5942-5949 (1998)
  3. Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. Shin DS, Didonato M, Barondeau DP, Hura GL, Hitomi C, Berglund JA, Getzoff ED, Cary SC, Tainer JA. J Mol Biol 385 1534-1555 (2009)
  4. Crystallographic structures of bovine copper-zinc superoxide dismutase reveal asymmetry in two subunits: functionally important three and five coordinate copper sites captured in the same crystal. Hough MA, Hasnain SS. J Mol Biol 287 579-592 (1999)
  5. Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium strain 14028. Krishnakumar R, Craig M, Imlay JA, Slauch JM. J Bacteriol 186 5230-5238 (2004)
  6. Evolutionary constraints for dimer formation in prokaryotic Cu,Zn superoxide dismutase. Bordo D, Matak D, Djinovic-Carugo K, Rosano C, Pesce A, Bolognesi M, Stroppolo ME, Falconi M, Battistoni A, Desideri A. J Mol Biol 285 283-296 (1999)
  7. The solution structure of reduced dimeric copper zinc superoxide dismutase. The structural effects of dimerization. Banci L, Bertini I, Cramaro F, Del Conte R, Viezzoli MS. Eur J Biochem 269 1905-1915 (2002)
  8. Mechanism and thermodynamics of guanidinium chloride-induced denaturation of ALS-associated mutant Cu,Zn superoxide dismutases. Rumfeldt JA, Stathopulos PB, Chakrabarrty A, Lepock JR, Meiering EM. J Mol Biol 355 106-123 (2006)
  9. The crystal structure of the monomeric human SOD mutant F50E/G51E/E133Q at atomic resolution. The enzyme mechanism revisited. Ferraroni M, Rypniewski W, Wilson KS, Viezzoli MS, Banci L, Bertini I, Mangani S. J Mol Biol 288 413-426 (1999)
  10. Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCI virulence gene. Pesce A, Battistoni A, Stroppolo ME, Polizio F, Nardini M, Kroll JS, Langford PR, O'Neill P, Sette M, Desideri A, Bolognesi M. J Mol Biol 302 465-478 (2000)
  11. Cu,Zn superoxide dismutase structure from a microbial pathogen establishes a class with a conserved dimer interface. Forest KT, Langford PR, Kroll JS, Getzoff ED. J Mol Biol 296 145-153 (2000)
  12. Conformational variability of the Cu site in one subunit of bovine CuZn superoxide dismutase: the importance of mobility in the Glu119-Leu142 loop region for catalytic function. Hough MA, Strange RW, Hasnain SS. J Mol Biol 304 231-241 (2000)
  13. Overexpression of a hydrogen peroxide-resistant periplasmic Cu,Zn superoxide dismutase protects Escherichia coli from macrophage killing. Battistoni A, Donnarumma G, Greco R, Valenti P, Rotilio G. Biochem Biophys Res Commun 243 804-807 (1998)
  14. Structural properties of periplasmic SodCI that correlate with virulence in Salmonella enterica serovar Typhimurium. Krishnakumar R, Kim B, Mollo EA, Imlay JA, Slauch JM. J Bacteriol 189 4343-4352 (2007)
  15. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. Paksi Z, Jancsó A, Pacello F, Nagy N, Battistoni A, Gajda T. J Inorg Biochem 102 1700-1710 (2008)
  16. Role of the electrostatic loop charged residues in Cu,Zn superoxide dismutase. Polticelli F, Battistoni A, O'Neill P, Rotilio G, Desideri A. Protein Sci 7 2354-2358 (1998)
  17. A prokaryotic superoxide dismutase paralog lacking two Cu ligands: from largely unstructured in solution to ordered in the crystal. Banci L, Bertini I, Calderone V, Cramaro F, Del Conte R, Fantoni A, Mangani S, Quattrone A, Viezzoli MS. Proc Natl Acad Sci U S A 102 7541-7546 (2005)
  18. The crystal structure of superoxide dismutase from Plasmodium falciparum. Boucher IW, Brzozowski AM, Brannigan JA, Schnick C, Smith DJ, Kyes SA, Wilkinson AJ. BMC Struct Biol 6 20 (2006)
  19. Conserved enzyme-substrate electrostatic attraction in prokaryotic Cu,Zn superoxide dismutases. Folcarelli S, Battistoni A, Falconi M, O'Neill P, Rotilio G, Desideri A. Biochem Biophys Res Commun 244 908-911 (1998)
  20. In vivo formation of Cu,Zn superoxide dismutase disulfide bond in Escherichia coli. Battistoni A, Mazzetti AP, Rotilio G. FEBS Lett 443 313-316 (1999)
  21. Flexibility in monomeric Cu,Zn superoxide dismutase detected by limited proteolysis and molecular dynamics simulation. Falconi M, Parrilli L, Battistoni A, Desideri A. Proteins 47 513-520 (2002)
  22. On the coordination and oxidation states of the active-site copper ion in prokaryotic Cu,Zn superoxide dismutases. Stroppolo ME, Nuzzo S, Pesce A, Rosano C, Battistoni A, Bolognesi M, Mobilio S, Desideri A. Biochem Biophys Res Commun 249 579-582 (1998)
  23. Distinctive functional features in prokaryotic and eukaryotic Cu,Zn superoxide dismutases. Gabbianelli R, D'Orazio M, Pacello F, O'Neill P, Nicolini L, Rotilio G, Battistoni A. Biol Chem 385 749-754 (2004)
  24. Long distance charge redistribution upon Cu,Zn-superoxide dismutase reduction: significance for dismutase function. Dupeyrat F, Vidaud C, Lorphelin A, Berthomieu C. J Biol Chem 279 48091-48101 (2004)
  25. Single mutation induces a metal-dependent subunit association in dimeric Cu,Zn superoxide dismutase. D'Orazio M, Battistoni A, Stroppolo ME, Desideri A. Biochem Biophys Res Commun 272 81-83 (2000)
  26. A superoxide dismutase from the archaeon Sulfolobus solfataricus is an extracellular enzyme and prevents the deactivation by superoxide of cell-bound proteins. Cannio R, D'angelo A, Rossi M, Bartolucci S. Eur J Biochem 267 235-243 (2000)
  27. Single mutation at the intersubunit interface confers extra efficiency to Cu,Zn superoxide dismutase. Stroppolo ME, Pesce A, Falconi M, O'Neill P, Bolognesi M, Desideri A. FEBS Lett 483 17-20 (2000)
  28. Toward the engineering of a super efficient enzyme. Folcarelli S, Venerini F, Battistoni A, O'neill P, Rotilio G, Desideri A. Biochem Biophys Res Commun 256 425-428 (1999)
  29. A mixed incoherent feed-forward loop allows conditional regulation of response dynamics. Semsey S. PLoS One 9 e91243 (2014)
  30. Unfolding and inactivation of monomeric superoxide dismutase from E. coli by SDS. Bozzi M, Battistoni A, Sette M, Melino S, Rotilio G, Paci M. Int J Biol Macromol 29 99-105 (2001)
  31. Characterization of the spectroscopic properties of the Cu,Co cluster in a prokaryotic superoxide dismutase. Venerini F, Sette M, Stroppolo ME, De Martino A, Desideri A. Arch Biochem Biophys 366 70-74 (1999)
  32. Investigation of the active site of Escherichia coli Cu,Zn superoxide dismutase reveals the absence of the copper-coordinated water molecule. is the water molecule really necessary for the enzymatic mechanism? Sette M, Bozzi M, Battistoni A, Fasano M, Paci M, Rotilio G. FEBS Lett 483 21-26 (2000)