1epb Citations

Structure of the epididymal retinoic acid binding protein at 2.1 A resolution.

Structure 1 7-18 (1993)
Cited: 55 times
EuropePMC logo PMID: 8069623

Abstract

Background

Androgen-dependent proteins in the lumen of the epididymis are required for sperm maturation. One of these is a retinoic acid binding protein, E-RABP, which binds both all-trans and 9-cis retinoic acid. The other retinoid-binding proteins whose structures are known do not bind 9-cis retinoids.

Results

We describe the X-ray structure determination of E-RABP with and without bound ligand. The ligand binds deep in the beta-barrel of the protein, the beta-ionone ring innermost. The binding site, like the ligand, is amphipathic and the deepest part of the cavity is formed by a ring of aromatic amino acids. The isoprene tail of all-trans retinoic acid is bound in a folded conformation which resembles that of the 9-cis isomer.

Articles - 1epb mentioned but not cited (6)

  1. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. Huang B, Schroeder M. BMC Struct Biol 6 19 (2006)
  2. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. Negi SS, Braun W. J Mol Model 13 1157-1167 (2007)
  3. QM/MM refinement and analysis of protein bound retinoic acid. Li X, Fu Z, Merz KM. J Comput Chem 33 301-310 (2012)
  4. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways. Zhang YR, Zhao YQ, Huang JF. PLoS ONE 7 e36772 (2012)
  5. The major cockroach allergen Bla g 4 binds tyramine and octopamine. Offermann LR, Chan SL, Osinski T, Tan YW, Chew FT, Sivaraman J, Mok YK, Minor W, Chruszcz M. Mol. Immunol. 60 86-94 (2014)
  6. PMFF: Development of a Physics-Based Molecular Force Field for Protein Simulation and Ligand Docking. Hwang SB, Lee CJ, Lee S, Ma S, Kang YM, Cho KH, Kim SY, Kwon OY, Yoon CN, Kang YK, Yoon JH, Nam KY, Kim SG, In Y, Chai HH, Acree WE, Grant JA, Gibson KD, Jhon MS, Scheraga HA, No KT. J Phys Chem B 124 974-989 (2020)


Reviews citing this publication (11)

  1. The lipocalin protein family: structure and function. Flower DR. Biochem. J. 318 ( Pt 1) 1-14 (1996)
  2. The lipocalin protein family: structural and sequence overview. Flower DR, North AC, Sansom CE. Biochim. Biophys. Acta 1482 9-24 (2000)
  3. Cytoplasmic fatty acid-binding proteins: their structure and genes. Veerkamp JH, Maatman RG. Prog. Lipid Res. 34 17-52 (1995)
  4. The lipocalin protein family: a role in cell regulation. Flower DR. FEBS Lett. 354 7-11 (1994)
  5. Lipocalins as a scaffold. Skerra A. Biochim. Biophys. Acta 1482 337-350 (2000)
  6. Tick histamine-binding proteins: lipocalins with a second binding cavity. Paesen GC, Adams PL, Nuttall PA, Stuart DL. Biochim. Biophys. Acta 1482 92-101 (2000)
  7. How degrading: Cyp26s in hindbrain development. White RJ, Schilling TF. Dev. Dyn. 237 2775-2790 (2008)
  8. Experimentally determined lipocalin structures. Flower DR. Biochim. Biophys. Acta 1482 46-56 (2000)
  9. Retinoic acid actions through mammalian nuclear receptors. Huang P, Chandra V, Rastinejad F. Chem. Rev. 114 233-254 (2014)
  10. Epididymal retinoic acid-binding protein. Ong DE, Newcomer ME, Lareyre JJ, Orgebin-Crist MC. Biochim. Biophys. Acta 1482 209-217 (2000)
  11. Loading efficacy and binding analysis of retinoids with milk proteins: a short review. Agudelo D, Bourassa P, Bariyanga J, Tajmir-Riahi HA. J. Biomol. Struct. Dyn. 36 4246-4254 (2018)

Articles citing this publication (38)

  1. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Nature 375 377-382 (1995)
  2. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D. Nature 378 681-689 (1995)
  3. Bovine beta-lactoglobulin at 1.8 A resolution--still an enigmatic lipocalin. Brownlow S, Morais Cabral JH, Cooper R, Flower DR, Yewdall SJ, Polikarpov I, North AC, Sawyer L. Structure 5 481-495 (1997)
  4. Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Paesen GC, Adams PL, Harlos K, Nuttall PA, Stuart DI. Mol. Cell 3 661-671 (1999)
  5. Sheep liver cytosolic aldehyde dehydrogenase: the structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases. Moore SA, Baker HM, Blythe TJ, Kitson KE, Kitson TM, Baker EN. Structure 6 1541-1551 (1998)
  6. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Beste G, Schmidt FS, Stibora T, Skerra A. Proc. Natl. Acad. Sci. U.S.A. 96 1898-1903 (1999)
  7. Crystal structures of cellular retinoic acid binding proteins I and II in complex with all-trans-retinoic acid and a synthetic retinoid. Kleywegt GJ, Bergfors T, Senn H, Le Motte P, Gsell B, Shudo K, Jones TA. Structure 2 1241-1258 (1994)
  8. Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug. Fuentes-Prior P, Noeske-Jungblut C, Donner P, Schleuning WD, Huber R, Bode W. Proc. Natl. Acad. Sci. U.S.A. 94 11845-11850 (1997)
  9. The 1.8-A crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. Breustedt DA, Korndörfer IP, Redl B, Skerra A. J. Biol. Chem. 280 484-493 (2005)
  10. 12-Bromododecanoic acid binds inside the calyx of bovine beta-lactoglobulin. Qin BY, Creamer LK, Baker EN, Jameson GB. FEBS Lett. 438 272-278 (1998)
  11. The crystal structure of nitrophorin 4 at 1.5 A resolution: transport of nitric oxide by a lipocalin-based heme protein. Andersen JF, Weichsel A, Balfour CA, Champagne DE, Montfort WR. Structure 6 1315-1327 (1998)
  12. cDNA cloning and characterization of a cis-retinol/3alpha-hydroxysterol short-chain dehydrogenase. Chai X, Zhai Y, Napoli JL. J. Biol. Chem. 272 33125-33131 (1997)
  13. The 1.8-A crystal structure of alpha1-acid glycoprotein (Orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin. Schönfeld DL, Ravelli RB, Mueller U, Skerra A. J. Mol. Biol. 384 393-405 (2008)
  14. Role of conserved residues in structure and stability: tryptophans of human serum retinol-binding protein, a model for the lipocalin superfamily. Greene LH, Chrysina ED, Irons LI, Papageorgiou AC, Acharya KR, Brew K. Protein Sci. 10 2301-2316 (2001)
  15. Serendipitous fatty acid binding reveals the structural determinants for ligand recognition in apolipoprotein M. Sevvana M, Ahnström J, Egerer-Sieber C, Lange HA, Dahlbäck B, Muller YA. J. Mol. Biol. 393 920-936 (2009)
  16. Structure of human alpha1-acid glycoprotein and its high-affinity binding site. Kopecký V, Ettrich R, Hofbauerová K, Baumruk V. Biochem. Biophys. Res. Commun. 300 41-46 (2003)
  17. LCN6, a novel human epididymal lipocalin. Hamil KG, Liu Q, Sivashanmugam P, Anbalagan M, Yenugu S, Soundararajan R, Grossman G, Rao AJ, Birse CE, Ruben SM, Richardson RT, Zhang YL, O'Rand MG, Petrusz P, French FS, Hall SH. Reprod. Biol. Endocrinol. 1 112 (2003)
  18. Remarks on the phylogeny and structure of fatty acid binding proteins from parasitic platyhelminths. Esteves A, Joseph L, Paulino M, Ehrlich R. Int. J. Parasitol. 27 1013-1023 (1997)
  19. Structural basis of the catalytic mechanism operating in open-closed conformers of lipocalin type prostaglandin D synthase. Kumasaka T, Aritake K, Ago H, Irikura D, Tsurumura T, Yamamoto M, Miyano M, Urade Y, Hayaishi O. J. Biol. Chem. 284 22344-22352 (2009)
  20. Insertion of heme b into the structure of the Cys34-carbamidomethylated human lipocalin α(1)-microglobulin: formation of a [(heme)(2) (α(1)-Microglobulin)](3) complex. Siebel JF, Kosinsky RL, Åkerström B, Knipp M. Chembiochem 13 879-887 (2012)
  21. Electron microscopic immunolocalization of the 18 and 29 kilodalton secretory proteins in the mouse epididymis: evidence for differential uptake by clear cells. Vierula ME, Rankin TL, Orgebin-Crist MC. Microsc. Res. Tech. 30 24-36 (1995)
  22. Cell transformation by the v-myc oncogene abrogates c-Myc/Max-mediated suppression of a C/EBP beta-dependent lipocalin gene. Hartl M, Matt T, Schüler W, Siemeister G, Kontaxis G, Kloiber K, Konrat R, Bister K. J. Mol. Biol. 333 33-46 (2003)
  23. Crystal structure of the transthyretin--retinoic-acid complex. Zanotti G, D'Acunto MR, Malpeli G, Folli C, Berni R. Eur. J. Biochem. 234 563-569 (1995)
  24. Expression, characterization and engineered specificity of rat epididymal retinoic acid-binding protein. Sundaram M, Sivaprasadarao A, Aalten DM, Findlay JB. Biochem. J. 334 ( Pt 1) 155-160 (1998)
  25. Epididymal lipocalin-type prostaglandin D2 synthase: identification using mass spectrometry, messenger RNA localization, and immunodetection in mouse, rat, hamster, and monkey. Fouchécourt S, Chaurand P, DaGue BB, Lareyre JJ, Matusik RJ, Caprioli RM, Orgebin-Crist MC. Biol. Reprod. 66 524-533 (2002)
  26. The discovery of 9-cis retinoic acid: a hormone that binds the retinoid-X receptor. Tate BF, Levin AA, Grippo JF. Trends Endocrinol. Metab. 5 189-194 (1994)
  27. Light and electron microscopic observations of fabrication, release, and fate of biphasic secretion granules produced by epididymal epithelial principal cells of the fan-throated lizard Sitana ponticeriana cuvier. Akbarsha MA, Tamilarasan V, Kadalmani B. J. Morphol. 267 713-729 (2006)
  28. Genomic organization and chromosomal localization of the murine epididymal retinoic acid-binding protein (mE-RABP) gene. Lareyre JJ, Mattéi MG, Kasper S, Ong DE, Matusik RJ, Orgebin-Crist MC. Mol. Reprod. Dev. 50 387-395 (1998)
  29. Protein and ligand adaptation in a retinoic acid binding protein. Pattanayek R, Newcomer ME. Protein Sci. 8 2027-2032 (1999)
  30. Apo-nitrophorin 4 at atomic resolution. Amoia AM, Montfort WR. Protein Sci. 16 2076-2081 (2007)
  31. Nuclear inelastic scattering and Mössbauer spectroscopy as local probes for ligand binding modes and electronic properties in proteins: vibrational behavior of a ferriheme center inside a β-barrel protein. Moeser B, Janoschka A, Wolny JA, Paulsen H, Filippov I, Berry RE, Zhang H, Chumakov AI, Walker FA, Schünemann V. J. Am. Chem. Soc. 134 4216-4228 (2012)
  32. The lipocalin Xlcpl1 expressed in the neural plate of Xenopus laevis embryos is a secreted retinaldehyde binding protein. Lepperdinger G, Strobl B, Jilek A, Weber A, Thalhamer J, Flöckner H, Mollay C. Protein Sci. 5 1250-1260 (1996)
  33. The transfer of transthyretin and receptor-binding properties from the plasma retinol-binding protein to the epididymal retinoic acid-binding protein. Sundaram M, van Aalten DM, Findlay JB, Sivaprasadarao A. Biochem. J. 362 265-271 (2002)
  34. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis. Ilayaraja R, Rajkumar R, Rajesh D, Muralidharan AR, Padmanabhan P, Archunan G. Sci Rep 4 5201 (2014)
  35. Cloning and primary characterizations of rLcn9, a new member of epididymal lipocalins in rat. Li X, Zhan X, Liu S, Hu S, Zhu C, Hall SH, French FS, Liu Q, Zhang Y. Acta Biochim. Biophys. Sin. (Shanghai) 44 876-885 (2012)
  36. Molecular motion in solid all-trans retinoic acid (vitamin A acid) by proton NMR. Andrew ER, Peplinska B. Solid State Nucl Magn Reson 13 39-43 (1998)
  37. R-hydroxynitrile lyase from the cyanogenic millipede, Chamberlinius hualienensis-A new entry to the carrier protein family Lipocalines. Motojima F, Izumi A, Nuylert A, Zhai Z, Dadashipour M, Shichida S, Yamaguchi T, Nakano S, Asano Y. FEBS J 288 1679-1695 (2021)
  38. Targeting Cellular Retinoic Acid Binding Protein 1 with Retinoic Acid-like Compounds to Mitigate Motor Neuron Degeneration. Nhieu J, Milbauer L, Lerdall T, Najjar F, Wei CW, Ishida R, Ma Y, Kagechika H, Wei LN. Int J Mol Sci 24 4980 (2023)


Related citations provided by authors (1)

  1. X-Ray Crystallographic Identification of a Protein Binding Site for Both All-Trans-and 9-Cis-Retinoic Acid. Newcomer ME, Pappas RS, Ong DE Proc. Natl. Acad. Sci. U.S.A. 90 9223- (1993)