1enq Citations

Sequential structural changes upon zinc and calcium binding to metal-free concanavalin A.

J Biol Chem 271 16144-50 (1996)
Related entries: 1ces, 1enr, 1ens

Cited: 24 times
EuropePMC logo PMID: 8663112

Abstract

The lectin concanavalin A (ConA) sequentially binds a transition metal ion in the metal-binding site S1 and a calcium ion in the metal-binding site S2 to form its saccharide-binding site. Metal-free ConA crystals soaked with either Zn2+ (apoZn-ConA) or Co2+ (apoCo-ConA) display partial binding of these ions in the proto-transition metal-binding site, but no further conformational changes are observed. These structures can represent the very first step in going from metal-free ConA toward the holoprotein. In the co-crystals of metal-free ConA with Zn2+ (Zn-ConA), the zinc ion can fully occupy the S1 site. The positions of the carboxylate ligands Asp10 and Asp19 that bridge the S1 and S2 sites are affected. The ligation to Zn2+ orients Asp10 optimally for calcium ligation and stabilizes Asp19 by a hydrogen bond to one of its water ligands. The neutralizing and stabilizing effect of the binding of Zn2+ in S1 is necessary to allow for subsequent Ca2+ binding in the S2 site. However, the S2 site of monometallized ConA is still disrupted. The co-crystals of metal-free ConA with both Zn2+ and Ca2+ contain the active holoprotein (ConA ZnCa). Ca2+ has induced large conformational changes to stabilize its hepta-coordination in the S2 site, which comprise the trans to cis isomerization of the Ala207-Asp208 peptide bond accompanied by the formation of the saccharide-binding site. The Zn2+ ligation in ConA ZnCa is similar to Mn2+, Cd2+, Co2+, or Ni2+ ligation in the S1 site, in disagreement with earlier extended x-ray absorption fine structure results that suggested a lower coordination number for Zn2+.

Articles - 1enq mentioned but not cited (1)

  1. Predicting binding sites from unbound versus bound protein structures. Clark JJ, Orban ZJ, Carlson HA. Sci Rep 10 15856 (2020)


Reviews citing this publication (3)

  1. Proteins that bind high-mannose sugars of the HIV envelope. Botos I, Wlodawer A. Prog Biophys Mol Biol 88 233-282 (2005)
  2. Plant as a plenteous reserve of lectin. Ingale AG, Hivrale AU. Plant Signal Behav 8 e26595 (2013)
  3. Therapeutic Potentials of Antiviral Plants Used in Traditional African Medicine With COVID-19 in Focus: A Nigerian Perspective. Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba A, Babalola CP. Front Pharmacol 12 596855 (2021)

Articles citing this publication (20)

  1. Analysis of zinc binding sites in protein crystal structures. Alberts IL, Nadassy K, Wodak SJ. Protein Sci 7 1700-1716 (1998)
  2. Non-proline cis peptide bonds in proteins. Jabs A, Weiss MS, Hilgenfeld R. J Mol Biol 286 291-304 (1999)
  3. Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples. Bertok T, Klukova L, Sediva A, Kasák P, Semak V, Micusik M, Omastova M, Chovanová L, Vlček M, Imrich R, Vikartovska A, Tkac J. Anal Chem 85 7324-7332 (2013)
  4. Flexibility of metal binding sites in proteins on a database scale. Babor M, Greenblatt HM, Edelman M, Sobolev V. Proteins 59 221-230 (2005)
  5. Isolectins I-A and I-B of Griffonia (Bandeiraea) simplicifolia. Crystal structure of metal-free GS I-B(4) and molecular basis for metal binding and monosaccharide specificity. Lescar J, Loris R, Mitchell E, Gautier C, Chazalet V, Cox V, Wyns L, Pérez S, Breton C, Imberty A. J Biol Chem 277 6608-6614 (2002)
  6. The crystal structure of the carbohydrate-recognition domain of the glycoprotein sorting receptor p58/ERGIC-53 reveals an unpredicted metal-binding site and conformational changes associated with calcium ion binding. Velloso LM, Svensson K, Pettersson RF, Lindqvist Y. J Mol Biol 334 845-851 (2003)
  7. Polydispersity as a parameter for indicating the thermal stability of proteins by dynamic light scattering. Shiba K, Niidome T, Katoh E, Xiang H, Han L, Mori T, Katayama Y. Anal Sci 26 659-663 (2010)
  8. Inorganic cations mediate plant PR5 protein antifungal activity through fungal Mnn1- and Mnn4-regulated cell surface glycans. Salzman RA, Koiwa H, Ibeas JI, Pardo JM, Hasegawa PM, Bressan RA. Mol Plant Microbe Interact 17 780-788 (2004)
  9. NMR studies of zinc binding in a multi-histidinic peptide fragment. Zoroddu MA, Medici S, Peana M, Anedda R. Dalton Trans 39 1282-1294 (2010)
  10. Redox-responsive and calcium-dependent switching of glycosyldisulfide interactions with Concanavalin A. Pei Z, Aastrup T, Anderson H, Ramström O. Bioorg Med Chem Lett 15 2707-2710 (2005)
  11. Biosensor based on lectin and lipid membranes for detection of serum glycoproteins in infected patients with dengue. Luna DM, Oliveira MD, Nogueira ML, Andrade CA. Chem Phys Lipids 180 7-14 (2014)
  12. Electrochemical determination of carbohydrate-binding proteins using carbohydrate-stabilized gold nanoparticles and silver enhancement. Min IH, Choi L, Ahn KS, Kim BK, Lee BY, Kim KS, Choi HN, Lee WY. Biosens Bioelectron 26 1326-1331 (2010)
  13. Ligand accessibility to receptor binding sites enhanced by movable polyrotaxanes. Hyun H, Yui N. Macromol Biosci 11 765-771 (2011)
  14. Polyethyleneimine-modified graphene oxide nanocomposites for effective protein functionalization. Weng Y, Jiang B, Yang K, Sui Z, Zhang L, Zhang Y. Nanoscale 7 14284-14291 (2015)
  15. Pro4 prolyl peptide bond isomerization in human galectin-7 modulates the monomer-dimer equilibrum to affect function. Miller MC, Nesmelova IV, Daragan VA, Ippel H, Michalak M, Dregni A, Kaltner H, Kopitz J, Gabius HJ, Mayo KH. Biochem J 477 3147-3165 (2020)
  16. Interplay between metal binding and cis/trans isomerization in legume lectins: structural and thermodynamic study of P. angolensis lectin. Garcia-Pino A, Buts L, Wyns L, Loris R. J Mol Biol 361 153-167 (2006)
  17. Protein adsorption on a glycosylated polyacrylonitrile surface: monitoring with QCM and SPR. Che AF, Huang XJ, Xu ZK. Macromol Biosci 10 955-962 (2010)
  18. Calcium modulates protease resistance and carbohydrate binding of a plant defense legume lectin, Griffonia simplicifolia lectin II (GSII). Zhu-Salzman K, Hammen PK, Salzman RA, Koiwa H, Bressan RA, Murdock LL, Hasegawa PM. Comp Biochem Physiol B Biochem Mol Biol 132 327-334 (2002)
  19. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases. Patra A, Bera M. Carbohydr Res 384 87-98 (2014)
  20. Polypropylene non-woven meshes with conformal glycosylated layer for lectin affinity adsorption: the effect of side chain length. Ye XY, Huang XJ, Xu ZK. Colloids Surf B Biointerfaces 115 340-348 (2014)


Related citations provided by authors (1)

  1. Crystallographic Structure of Metal-Free Concanavalin a at 2.5 Angstrom Resolution. Bouckaert J, Loris R, Poortmans F, Wyns L Proteins 23 510- (1995)