1ej6 Citations

Structure of the reovirus core at 3.6 A resolution.

Nature 404 960-7 (2000)
Cited: 291 times
EuropePMC logo PMID: 10801118

Abstract

The reovirus core is an assembly with a relative molecular mass of 52 million that synthesizes, modifies and exports viral messenger RNA. Analysis of its structure by X-ray crystallography shows that there are alternative, specific and completely non-equivalent contacts made by several surfaces of two of its proteins; that the RNA capping and export apparatus is a hollow cylinder, which probably sequesters its substrate to ensure completion of the capping reactions; that the genomic double-stranded RNA is coiled into concentric layers within the particle; and that there is a protein shell that appears to be common to all groups of double-stranded RNA viruses.

Reviews - 1ej6 mentioned but not cited (6)

  1. Conventional and unconventional mechanisms for capping viral mRNA. Decroly E, Ferron F, Lescar J, Canard B. Nat Rev Microbiol 10 51-65 (2011)
  2. Structural insights into the coupling of virion assembly and rotavirus replication. Trask SD, McDonald SM, Patton JT. Nat Rev Microbiol 10 165-177 (2012)
  3. RNA methyltransferases involved in 5' cap biosynthesis. Byszewska M, Śmietański M, Purta E, Bujnicki JM. RNA Biol 11 1597-1607 (2014)
  4. Interactions among capsid proteins orchestrate rotavirus particle functions. Trask SD, Ogden KM, Patton JT. Curr Opin Virol 2 373-379 (2012)
  5. Capsid Structure of dsRNA Fungal Viruses. Luque D, Mata CP, Suzuki N, Ghabrial SA, Castón JR. Viruses 10 E481 (2018)
  6. Captivating Perplexities of Spinareovirinae 5' RNA Caps. Kniert J, Lin QF, Shmulevitz M. Viruses 13 294 (2021)

Articles - 1ej6 mentioned but not cited (24)

  1. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE. Protein Sci 27 14-25 (2018)
  2. Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Zhang X, Walker SB, Chipman PR, Nibert ML, Baker TS. Nat Struct Biol 10 1011-1018 (2003)
  3. Letter mRNA cap-1 methyltransferase in the SARS genome. von Grotthuss M, Wyrwicz LS, Rychlewski L. Cell 113 701-702 (2003)
  4. Subnanometer-resolution structures of the grass carp reovirus core and virion. Cheng L, Fang Q, Shah S, Atanasov IC, Zhou ZH. J Mol Biol 382 213-222 (2008)
  5. Features of reovirus outer capsid protein mu1 revealed by electron cryomicroscopy and image reconstruction of the virion at 7.0 Angstrom resolution. Zhang X, Ji Y, Zhang L, Harrison SC, Marinescu DC, Nibert ML, Baker TS. Structure 13 1545-1557 (2005)
  6. Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. De la Peña M, Kyrieleis OJ, Cusack S. EMBO J 26 4913-4925 (2007)
  7. A Structural-informatics approach for tracing beta-sheets: building pseudo-C(alpha) traces for beta-strands in intermediate-resolution density maps. Kong Y, Zhang X, Baker TS, Ma J. J Mol Biol 339 117-130 (2004)
  8. Partitivirus structure reveals a 120-subunit, helix-rich capsid with distinctive surface arches formed by quasisymmetric coat-protein dimers. Ochoa WF, Havens WM, Sinkovits RS, Nibert ML, Ghabrial SA, Baker TS. Structure 16 776-786 (2008)
  9. Plate tectonics of virus shell assembly and reorganization in phage φ8, a distant relative of mammalian reoviruses. El Omari K, Sutton G, Ravantti JJ, Zhang H, Walter TS, Grimes JM, Bamford DH, Stuart DI, Mancini EJ. Structure 21 1384-1395 (2013)
  10. Reassignment of specificities of two cap methyltransferase domains in the reovirus lambda 2 protein. Bujnicki JM, Rychlewski L. Genome Biol 2 RESEARCH0038 (2001)
  11. Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. Zhu J, Cheng L, Fang Q, Zhou ZH, Honig B. J Mol Biol 397 835-851 (2010)
  12. The T=1 capsid protein of Penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication. Luque D, González JM, Garriga D, Ghabrial SA, Havens WM, Trus B, Verdaguer N, Carrascosa JL, Castón JR. J Virol 84 7256-7266 (2010)
  13. Assembly intermediates of orthoreovirus captured in the cell. Sutton G, Sun D, Fu X, Kotecha A, Hecksel CW, Clare DK, Zhang P, Stuart DI, Boyce M. Nat Commun 11 4445 (2020)
  14. Cryo-EM near-atomic structure of a dsRNA fungal virus shows ancient structural motifs preserved in the dsRNA viral lineage. Luque D, Gómez-Blanco J, Garriga D, Brilot AF, González JM, Havens WM, Carrascosa JL, Trus BL, Verdaguer N, Ghabrial SA, Castón JR. Proc Natl Acad Sci U S A 111 7641-7646 (2014)
  15. Single Amino Acid Differences between Closely Related Reovirus T3D Lab Strains Alter Oncolytic Potency In Vitro and In Vivo. Mohamed A, Clements DR, Gujar SA, Lee PW, Smiley JR, Shmulevitz M. J Virol 94 e01688-19 (2020)
  16. Conformational changes accompany activation of reovirus RNA-dependent RNA transcription. Mendez II, Weiner SG, She YM, Yeager M, Coombs KM. J Struct Biol 162 277-289 (2008)
  17. Crystal structure of the avian reovirus inner capsid protein sigmaA. Guardado-Calvo P, Vazquez-Iglesias L, Martinez-Costas J, Llamas-Saiz AL, Schoehn G, Fox GC, Hermo-Parrado XL, Benavente J, van Raaij MJ. J Virol 82 11208-11216 (2008)
  18. Impact of synchrotron radiation on macromolecular crystallography: a personal view. Dauter Z, Jaskolski M, Wlodawer A. J Synchrotron Radiat 17 433-444 (2010)
  19. Reovirus directly engages integrin to recruit clathrin for entry into host cells. Koehler M, Petitjean SJL, Yang J, Aravamudhan P, Somoulay X, Lo Giudice C, Poncin MA, Dumitru AC, Dermody TS, Alsteens D. Nat Commun 12 2149 (2021)
  20. Conserved structure/function of the orthoreovirus major core proteins. Xu W, Coombs KM. Virus Res 144 44-57 (2009)
  21. A N7-guanine RNA cap methyltransferase signature-sequence as a genetic marker of large genome, non-mammalian Tobaniviridae. Ferron F, Debat HJ, Shannon A, Decroly E, Canard B. NAR Genom Bioinform 2 lqz022 (2020)
  22. Avian reovirus temperature-sensitive mutant tsA12 has a lesion in major core protein sigmaA and is defective in assembly. Xu W, Patrick MK, Hazelton PR, Coombs KM. J Virol 78 11142-11151 (2004)
  23. A Single Point Mutation, Asn16→Lys, Dictates the Temperature-Sensitivity of the Reovirus tsG453 Mutant. Glover KKM, Sutherland DM, Dermody TS, Coombs KM. Viruses 13 289 (2021)
  24. Assignment of avian reovirus temperature-sensitive mutant recombination groups E, F, and G to genome segments. Tran AT, Xu W, Racine T, Silaghi DA, Coombs KM. Virology 375 504-513 (2008)


Reviews citing this publication (61)

  1. 50-plus years of fungal viruses. Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. Virology 479-480 356-368 (2015)
  2. What does structure tell us about virus evolution? Bamford DH, Grimes JM, Stuart DI. Curr Opin Struct Biol 15 655-663 (2005)
  3. Cytoplasmic viral replication complexes. den Boon JA, Diaz A, Ahlquist P. Cell Host Microbe 8 77-85 (2010)
  4. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Ahlquist P. Nat Rev Microbiol 4 371-382 (2006)
  5. Structure unifies the viral universe. Abrescia NG, Bamford DH, Grimes JM, Stuart DI. Annu Rev Biochem 81 795-822 (2012)
  6. Avian reovirus: structure and biology. Benavente J, Martínez-Costas J. Virus Res 123 105-119 (2007)
  7. Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Grigorieff N, Harrison SC. Curr Opin Struct Biol 21 265-273 (2011)
  8. Innate immune restriction and antagonism of viral RNA lacking 2׳-O methylation. Hyde JL, Diamond MS. Virology 479-480 66-74 (2015)
  9. Evolution of viral structure. Bamford DH, Burnett RM, Stuart DI. Theor Popul Biol 61 461-470 (2002)
  10. Flavivirus methyltransferase: a novel antiviral target. Dong H, Zhang B, Shi PY. Antiviral Res 80 1-10 (2008)
  11. Towards atomic resolution structural determination by single-particle cryo-electron microscopy. Zhou ZH. Curr Opin Struct Biol 18 218-228 (2008)
  12. Enzymology of RNA cap synthesis. Ghosh A, Lima CD. Wiley Interdiscip Rev RNA 1 152-172 (2010)
  13. Genome replication and packaging of segmented double-stranded RNA viruses. Patton JT, Spencer E. Virology 277 217-225 (2000)
  14. Flavivirus RNA methylation. Dong H, Fink K, Züst R, Lim SP, Qin CF, Shi PY. J Gen Virol 95 763-778 (2014)
  15. Principles of virus structural organization. Prasad BV, Schmid MF. Adv Exp Med Biol 726 17-47 (2012)
  16. Rotavirus and reovirus modulation of the interferon response. Sherry B. J Interferon Cytokine Res 29 559-567 (2009)
  17. Animal cell invasion by a large nonenveloped virus: reovirus delivers the goods. Chandran K, Nibert ML. Trends Microbiol 11 374-382 (2003)
  18. Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Jayaram H, Estes MK, Prasad BV. Virus Res 101 67-81 (2004)
  19. The bluetongue virus core: a nano-scale transcription machine. Mertens PP, Diprose J. Virus Res 101 29-43 (2004)
  20. Structure of human adenovirus. Nemerow GR, Stewart PL, Reddy VS. Curr Opin Virol 2 115-121 (2012)
  21. From touchdown to transcription: the reovirus cell entry pathway. Danthi P, Guglielmi KM, Kirchner E, Mainou B, Stehle T, Dermody TS. Curr Top Microbiol Immunol 343 91-119 (2010)
  22. Insights into adenovirus host cell interactions from structural studies. Nemerow GR, Pache L, Reddy V, Stewart PL. Virology 384 380-388 (2009)
  23. Mechanism of genome transcription in segmented dsRNA viruses. Lawton JA, Estes MK, Prasad BV. Adv Virus Res 55 185-229 (2000)
  24. Breaking symmetry in protein dimers: designs and functions. Brown JH. Protein Sci 15 1-13 (2006)
  25. Freedom and restraint: themes in virus capsid assembly. Dokland T. Structure 8 R157-62 (2000)
  26. Bluetongue virus: dissection of the polymerase complex. Roy P. J Gen Virol 89 1789-1804 (2008)
  27. Not all viruses are bad guys: the case for reovirus in cancer therapy. Norman KL, Lee PW. Drug Discov Today 10 847-855 (2005)
  28. Atomic resolution cryo electron microscopy of macromolecular complexes. Zhou ZH. Adv Protein Chem Struct Biol 82 1-35 (2011)
  29. The familiar and the unexpected in structures of icosahedral viruses. Harrison SC. Curr Opin Struct Biol 11 195-199 (2001)
  30. Mechanisms of reovirus-induced cell death and tissue injury: role of apoptosis and virus-induced perturbation of host-cell signaling and transcription factor activation. Clarke P, Debiasi RL, Goody R, Hoyt CC, Richardson-Burns S, Tyler KL. Viral Immunol 18 89-115 (2005)
  31. Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein-protein interfaces. Kim J, Tao Y, Reinisch KM, Harrison SC, Nibert ML. Virus Res 101 15-28 (2004)
  32. Electron cryomicroscopy of single particles at subnanometer resolution. Jiang W, Ludtke SJ. Curr Opin Struct Biol 15 571-577 (2005)
  33. Molecular Machines: putting the pieces together. Nogales E, Grigorieff N. J Cell Biol 152 F1-10 (2001)
  34. Genome packaging in multi-segmented dsRNA viruses: distinct mechanisms with similar outcomes. Borodavka A, Desselberger U, Patton JT. Curr Opin Virol 33 106-112 (2018)
  35. Self-assembly of double-stranded RNA bacteriophages. Poranen MM, Tuma R. Virus Res 101 93-100 (2004)
  36. Whither structural biology? Harrison SC. Nat Struct Mol Biol 11 12-15 (2004)
  37. X-ray crystallography over the past decade for novel drug discovery - where are we heading next? Zheng H, Handing KB, Zimmerman MD, Shabalin IG, Almo SC, Minor W. Expert Opin Drug Discov 10 975-989 (2015)
  38. 3D structures of fungal partitiviruses. Nibert ML, Tang J, Xie J, Collier AM, Ghabrial SA, Baker TS, Tao YJ. Adv Virus Res 86 59-85 (2013)
  39. Potential for Improving Potency and Specificity of Reovirus Oncolysis with Next-Generation Reovirus Variants. Mohamed A, Johnston RN, Shmulevitz M. Viruses 7 6251-6278 (2015)
  40. Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology. Mäntynen S, Sundberg LR, Oksanen HM, Poranen MM. Viruses 11 E76 (2019)
  41. Structural evidence for common functions and ancestry of the reovirus and adenovirus attachment proteins. Stehle T, Dermody TS. Rev Med Virol 13 123-132 (2003)
  42. Biochemical principles and inhibitors to interfere with viral capping pathways. Decroly E, Canard B. Curr Opin Virol 24 87-96 (2017)
  43. Synthesis and Translation of Viral mRNA in Reovirus-Infected Cells: Progress and Remaining Questions. Lemay G. Viruses 10 E671 (2018)
  44. Icosahedral virus structures and the protein data bank. Johnson JE, Olson AJ. J Biol Chem 296 100554 (2021)
  45. High resolution structural studies of complex icosahedral viruses: a brief overview. Chiu W, Rixon FJ. Virus Res 82 9-17 (2002)
  46. Macromolecular assemblies: greater than their parts. Bamford DH, Gilbert RJ, Grimes JM, Stuart DI. Curr Opin Struct Biol 11 107-113 (2001)
  47. Recent developments in cryo-electron microscopy reconstruction of single particles. Tao Y, Zhang W. Curr Opin Struct Biol 10 616-622 (2000)
  48. The role of interferon regulatory factors in the cardiac response to viral infection. Sherry B. Viral Immunol 15 17-28 (2002)
  49. Viral and cellular determinants of apoptosis induced by mammalian reovirus. O'Donnell SM, Hansberger MW, Dermody TS. Int Rev Immunol 22 477-503 (2003)
  50. Electron Cryomicroscopy of Viruses at Near-Atomic Resolutions. Kaelber JT, Hryc CF, Chiu W. Annu Rev Virol 4 287-308 (2017)
  51. High-resolution 3D structures reveal the biological functions of reoviruses. Li X, Fang Q. Virol Sin 28 318-325 (2013)
  52. How Many Mammalian Reovirus Proteins are involved in the Control of the Interferon Response? Lanoie D, Boudreault S, Bisaillon M, Lemay G. Pathogens 8 E83 (2019)
  53. [Capping strategies in RNA viruses]. Bouvet M, Ferron F, Imbert I, Gluais L, Selisko B, Coutard B, Canard B, Decroly E. Med Sci (Paris) 28 423-429 (2012)
  54. Virus structures: Those magnificent molecular machines. Bamford DH. Curr Biol 10 R558-61 (2000)
  55. Control of Capsid Transformations during Reovirus Entry. Gummersheimer SL, Snyder AJ, Danthi P. Viruses 13 153 (2021)
  56. The Symmetry of Viral Sialic Acid Binding Sites-Implications for Antiviral Strategies. Rustmeier NH, Strebl M, Stehle T. Viruses 11 E947 (2019)
  57. Reovirus Activated Cell Death Pathways. DeAntoneo C, Danthi P, Balachandran S. Cells 11 1757 (2022)
  58. The Paradoxes of Viral mRNA Translation during Mammalian Orthoreovirus Infection. Guo Y, Parker JSL. Viruses 13 275 (2021)
  59. Hierarchical structure assembly model of rice dwarf virus particle formation. Nakagawa A, Miyazaki N, Higashiura A. Biophys Rev 10 659-665 (2018)
  60. Mechanisms of Cell Entry by dsRNA Viruses: Insights for Efficient Delivery of dsRNA and Tools for Improved RNAi-Based Pest Control. Swevers L, Kontogiannatos D, Kolliopoulou A, Ren F, Feng M, Sun J. Front Physiol 12 749387 (2021)
  61. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses. Azad K, Banerjee M, Johnson JE. Annu Rev Virol 4 221-240 (2017)

Articles citing this publication (200)

  1. An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B. EMBO J 21 2757-2768 (2002)
  2. Structure of the bacteriophage phi29 DNA packaging motor. Simpson AA, Tao Y, Leiman PG, Badasso MO, He Y, Jardine PJ, Olson NH, Morais MC, Grimes S, Anderson DL, Baker TS, Rossmann MG. Nature 408 745-750 (2000)
  3. A mechanism for initiating RNA-dependent RNA polymerization. Butcher SJ, Grimes JM, Makeyev EV, Bamford DH, Stuart DI. Nature 410 235-240 (2001)
  4. A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P. Mol Cell 9 505-514 (2002)
  5. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. Bouvet M, Debarnot C, Imbert I, Selisko B, Snijder EJ, Canard B, Decroly E. PLoS Pathog 6 e1000863 (2010)
  6. Structure and function of flavivirus NS5 methyltransferase. Zhou Y, Ray D, Zhao Y, Dong H, Ren S, Li Z, Guo Y, Bernard KA, Shi PY, Li H. J Virol 81 3891-3903 (2007)
  7. RNA synthesis in a cage--structural studies of reovirus polymerase lambda3. Tao Y, Farsetta DL, Nibert ML, Harrison SC. Cell 111 733-745 (2002)
  8. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-O-methyltransferase nsp10/nsp16 complex. Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B, Imbert I, Gluais L, Papageorgiou N, Sharff A, Bricogne G, Ortiz-Lombardia M, Lescar J, Canard B. PLoS Pathog 7 e1002059 (2011)
  9. Quantitative analysis of the hepatitis C virus replication complex. Quinkert D, Bartenschlager R, Lohmann V. J Virol 79 13594-13605 (2005)
  10. Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle. Kopek BG, Perkins G, Miller DJ, Ellisman MH, Ahlquist P. PLoS Biol 5 e220 (2007)
  11. 3.3 A cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH. Cell 141 472-482 (2010)
  12. The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Coulibaly F, Chevalier C, Gutsche I, Pous J, Navaza J, Bressanelli S, Delmas B, Rey FA. Cell 120 761-772 (2005)
  13. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. Decroly E, Imbert I, Coutard B, Bouvet M, Selisko B, Alvarez K, Gorbalenya AE, Snijder EJ, Canard B. J Virol 82 8071-8084 (2008)
  14. Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber. Chappell JD, Prota AE, Dermody TS, Stehle T. EMBO J 21 1-11 (2002)
  15. 3.88 A structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Yu X, Jin L, Zhou ZH. Nature 453 415-419 (2008)
  16. Structure of the reovirus membrane-penetration protein, Mu1, in a complex with is protector protein, Sigma3. Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC. Cell 108 283-295 (2002)
  17. Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Ogino T, Banerjee AK. Mol Cell 25 85-97 (2007)
  18. Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein micro 1 mediates membrane disruption. Chandran K, Farsetta DL, Nibert ML. J Virol 76 9920-9933 (2002)
  19. Do viruses form lineages across different domains of life? Bamford DH. Res Microbiol 154 231-236 (2003)
  20. Structural and functional analysis of methylation and 5'-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. Egloff MP, Decroly E, Malet H, Selisko B, Benarroch D, Ferron F, Canard B. J Mol Biol 372 723-736 (2007)
  21. Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation. Mancini EJ, Kainov DE, Grimes JM, Tuma R, Bamford DH, Stuart DI. Cell 118 743-755 (2004)
  22. Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion. Mathieu M, Petitpas I, Navaza J, Lepault J, Kohli E, Pothier P, Prasad BV, Cohen J, Rey FA. EMBO J 20 1485-1497 (2001)
  23. Stability and dynamics of virus capsids described by coarse-grained modeling. Arkhipov A, Freddolino PL, Schulten K. Structure 14 1767-1777 (2006)
  24. Beta1 integrin mediates internalization of mammalian reovirus. Maginnis MS, Forrest JC, Kopecky-Bromberg SA, Dickeson SK, Santoro SA, Zutter MM, Nemerow GR, Bergelson JM, Dermody TS. J Virol 80 2760-2770 (2006)
  25. A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Li J, Wang JT, Whelan SP. Proc Natl Acad Sci U S A 103 8493-8498 (2006)
  26. Putative autocleavage of outer capsid protein micro1, allowing release of myristoylated peptide micro1N during particle uncoating, is critical for cell entry by reovirus. Odegard AL, Chandran K, Zhang X, Parker JS, Baker TS, Nibert ML. J Virol 78 8732-8745 (2004)
  27. Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. Li J, Fontaine-Rodriguez EC, Whelan SP. J Virol 79 13373-13384 (2005)
  28. The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. Nakagawa A, Miyazaki N, Taka J, Naitow H, Ogawa A, Fujimoto Z, Mizuno H, Higashi T, Watanabe Y, Omura T, Cheng RH, Tsukihara T. Structure 11 1227-1238 (2003)
  29. X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution. McClain B, Settembre E, Temple BR, Bellamy AR, Harrison SC. J Mol Biol 397 587-599 (2010)
  30. C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. Castón JR, Martínez-Torrecuadrada JL, Maraver A, Lombardo E, Rodríguez JF, Casal JI, Carrascosa JL. J Virol 75 10815-10828 (2001)
  31. West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism. Dong H, Ren S, Zhang B, Zhou Y, Puig-Basagoiti F, Li H, Shi PY. J Virol 82 4295-4307 (2008)
  32. Structure of the bacteriophage phi6 nucleocapsid suggests a mechanism for sequential RNA packaging. Huiskonen JT, de Haas F, Bubeck D, Bamford DH, Fuller SD, Butcher SJ. Structure 14 1039-1048 (2006)
  33. Structure of the herpesvirus major capsid protein. Bowman BR, Baker ML, Rixon FJ, Chiu W, Quiocho FA. EMBO J 22 757-765 (2003)
  34. The delta region of outer-capsid protein micro 1 undergoes conformational change and release from reovirus particles during cell entry. Chandran K, Parker JS, Ehrlich M, Kirchhausen T, Nibert ML. J Virol 77 13361-13375 (2003)
  35. Rotavirus architecture at subnanometer resolution. Li Z, Baker ML, Jiang W, Estes MK, Prasad BV. J Virol 83 1754-1766 (2009)
  36. Reovirus nonstructural protein mu NS recruits viral core surface proteins and entering core particles to factory-like inclusions. Broering TJ, Kim J, Miller CL, Piggott CD, Dinoso JB, Nibert ML, Parker JS. J Virol 78 1882-1892 (2004)
  37. The structure of the RlmB 23S rRNA methyltransferase reveals a new methyltransferase fold with a unique knot. Michel G, Sauvé V, Larocque R, Li Y, Matte A, Cygler M. Structure 10 1303-1315 (2002)
  38. The picobirnavirus crystal structure provides functional insights into virion assembly and cell entry. Duquerroy S, Da Costa B, Henry C, Vigouroux A, Libersou S, Lepault J, Navaza J, Delmas B, Rey FA. EMBO J 28 1655-1665 (2009)
  39. In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Zhang X, Ding K, Yu X, Chang W, Sun J, Zhou ZH. Nature 527 531-534 (2015)
  40. Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics. Cheng L, Zhu J, Hui WH, Zhang X, Honig B, Fang Q, Zhou ZH. J Mol Biol 397 852-863 (2010)
  41. Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Jayaram H, Taraporewala Z, Patton JT, Prasad BV. Nature 417 311-315 (2002)
  42. Atomic structure reveals the unique capsid organization of a dsRNA virus. Pan J, Dong L, Lin L, Ochoa WF, Sinkovits RS, Havens WM, Nibert ML, Baker TS, Ghabrial SA, Tao YJ. Proc Natl Acad Sci U S A 106 4225-4230 (2009)
  43. A single amino acid change in the L-polymerase protein of vesicular stomatitis virus completely abolishes viral mRNA cap methylation. Grdzelishvili VZ, Smallwood S, Tower D, Hall RL, Hunt DM, Moyer SA. J Virol 79 7327-7337 (2005)
  44. In silico identification, structure prediction and phylogenetic analysis of the 2'-O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses. Bujnicki JM, Rychlewski L. Protein Eng 15 101-108 (2002)
  45. Bluetongue virus VP4 is an RNA-capping assembly line. Sutton G, Grimes JM, Stuart DI, Roy P. Nat Struct Mol Biol 14 449-451 (2007)
  46. Structure of the reovirus outer capsid and dsRNA-binding protein sigma3 at 1.8 A resolution. Olland AM, Jané-Valbuena J, Schiff LA, Nibert ML, Harrison SC. EMBO J 20 979-989 (2001)
  47. Structural polymorphism of the major capsid protein of rotavirus. Lepault J, Petitpas I, Erk I, Navaza J, Bigot D, Dona M, Vachette P, Cohen J, Rey FA. EMBO J 20 1498-1507 (2001)
  48. The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. Andrés G, Charro D, Matamoros T, Dillard RS, Abrescia NGA. J Biol Chem 295 1-12 (2020)
  49. Self-assembly of a viral molecular machine from purified protein and RNA constituents. Poranen MM, Paatero AO, Tuma R, Bamford DH. Mol Cell 7 845-854 (2001)
  50. Cryo-EM shows the polymerase structures and a nonspooled genome within a dsRNA virus. Liu H, Cheng L. Science 349 1347-1350 (2015)
  51. Nucleoside and RNA triphosphatase activities of orthoreovirus transcriptase cofactor mu2. Kim J, Parker JS, Murray KE, Nibert ML. J Biol Chem 279 4394-4403 (2004)
  52. The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. Maraver A, Oña A, Abaitua F, González D, Clemente R, Ruiz-Díaz JA, Castón JR, Pazos F, Rodriguez JF. J Virol 77 6438-6449 (2003)
  53. Crystal structures of major envelope proteins VP26 and VP28 from white spot syndrome virus shed light on their evolutionary relationship. Tang X, Wu J, Sivaraman J, Hew CL. J Virol 81 6709-6717 (2007)
  54. Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles. Estrozi LF, Settembre EC, Goret G, McClain B, Zhang X, Chen JZ, Grigorieff N, Harrison SC. J Mol Biol 425 124-132 (2013)
  55. Determining the structure of an unliganded and fully glycosylated SIV gp120 envelope glycoprotein. Chen B, Vogan EM, Gong H, Skehel JJ, Wiley DC, Harrison SC. Structure 13 197-211 (2005)
  56. Structural polymorphism of the major capsid protein of a double-stranded RNA virus: an amphipathic alpha helix as a molecular switch. Saugar I, Luque D, Oña A, Rodríguez JF, Carrascosa JL, Trus BL, Castón JR. Structure 13 1007-1017 (2005)
  57. Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Zhang X, Tang J, Walker SB, O'Hara D, Nibert ML, Duncan R, Baker TS. Virology 343 25-35 (2005)
  58. Requirements for the formation of membrane pores by the reovirus myristoylated micro1N peptide. Zhang L, Agosto MA, Ivanovic T, King DS, Nibert ML, Harrison SC. J Virol 83 7004-7014 (2009)
  59. The polymerase subunit of a dsRNA virus plays a central role in the regulation of viral RNA metabolism. Makeyev EV, Bamford DH. EMBO J 19 6275-6284 (2000)
  60. Mammalian reovirus L2 gene and lambda2 core spike protein sequences and whole-genome comparisons of reoviruses type 1 Lang, type 2 Jones, and type 3 Dearing. Breun LA, Broering TJ, McCutcheon AM, Harrison SJ, Luongo CL, Nibert ML. Virology 287 333-348 (2001)
  61. Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of sigmaNS and lambdaA to microNS inclusions. Tourís-Otero F, Cortez-San Martín M, Martínez-Costas J, Benavente J. J Mol Biol 341 361-374 (2004)
  62. Identification of rotavirus VP6 residues located at the interface with VP2 that are essential for capsid assembly and transcriptase activity. Charpilienne A, Lepault J, Rey F, Cohen J. J Virol 76 7822-7831 (2002)
  63. Sequence analysis of the genome of piscine orthoreovirus (PRV) associated with heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar). Markussen T, Dahle MK, Tengs T, Løvoll M, Finstad ØW, Wiik-Nielsen CR, Grove S, Lauksund S, Robertsen B, Rimstad E. PLoS One 8 e70075 (2013)
  64. A 9 angstroms single particle reconstruction from CCD captured images on a 200 kV electron cryomicroscope. Booth CR, Jiang W, Baker ML, Zhou ZH, Ludtke SJ, Chiu W. J Struct Biol 147 116-127 (2004)
  65. Atomic model of CPV reveals the mechanism used by this single-shelled virus to economically carry out functions conserved in multishelled reoviruses. Yu X, Ge P, Jiang J, Atanasov I, Zhou ZH. Structure 19 652-661 (2011)
  66. Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. Guardado Calvo P, Fox GC, Hermo Parrado XL, Llamas-Saiz AL, Costas C, Martínez-Costas J, Benavente J, van Raaij MJ. J Mol Biol 354 137-149 (2005)
  67. Cytoplasmic polyhedrosis virus structure at 8 A by electron cryomicroscopy: structural basis of capsid stability and mRNA processing regulation. Zhou ZH, Zhang H, Jakana J, Lu XY, Zhang JQ. Structure 11 651-663 (2003)
  68. The structure of the bacteriophage PRD1 spike sheds light on the evolution of viral capsid architecture. Merckel MC, Huiskonen JT, Bamford DH, Goldman A, Tuma R. Mol Cell 18 161-170 (2005)
  69. Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping. Cheng L, Sun J, Zhang K, Mou Z, Huang X, Ji G, Sun F, Zhang J, Zhu P. Proc Natl Acad Sci U S A 108 1373-1378 (2011)
  70. Flavivirus RNA cap methyltransferase: structure, function, and inhibition. Liu L, Dong H, Chen H, Zhang J, Ling H, Li Z, Shi PY, Li H. Front Biol (Beijing) 5 286-303 (2010)
  71. Electron cryomicroscopy comparison of the architectures of the enveloped bacteriophages phi6 and phi8. Jäälinoja HT, Huiskonen JT, Butcher SJ. Structure 15 157-167 (2007)
  72. Parvovirus uncoating in vitro reveals a mechanism of DNA release without capsid disassembly and striking differences in encapsidated DNA stability. Ros C, Baltzer C, Mani B, Kempf C. Virology 345 137-147 (2006)
  73. A newly isolated reovirus has the simplest genomic and structural organization of any reovirus. Auguste AJ, Kaelber JT, Fokam EB, Guzman H, Carrington CV, Erasmus JH, Kamgang B, Popov VL, Jakana J, Liu X, Wood TG, Widen SG, Vasilakis N, Tesh RB, Chiu W, Weaver SC. J Virol 89 676-687 (2015)
  74. Cryo-EM structure of a transcribing cypovirus. Yang C, Ji G, Liu H, Zhang K, Liu G, Sun F, Zhu P, Cheng L. Proc Natl Acad Sci U S A 109 6118-6123 (2012)
  75. Mechanism of intraparticle synthesis of the rotavirus double-stranded RNA genome. Guglielmi KM, McDonald SM, Patton JT. J Biol Chem 285 18123-18128 (2010)
  76. Nonspecific nucleoside triphosphatase P4 of double-stranded RNA bacteriophage phi6 is required for single-stranded RNA packaging and transcription. Pirttimaa MJ, Paatero AO, Frilander MJ, Bamford DH. J Virol 76 10122-10127 (2002)
  77. Trypsin-induced structural transformation in aquareovirus. Nason EL, Samal SK, Venkataram Prasad BV. J Virol 74 6546-6555 (2000)
  78. Complete genomic sequence of a reovirus isolated from grass carp in China. Ye X, Tian YY, Deng GC, Chi YY, Jiang XY. Virus Res 163 275-283 (2012)
  79. Infectious myonecrosis virus has a totivirus-like, 120-subunit capsid, but with fiber complexes at the fivefold axes. Tang J, Ochoa WF, Sinkovits RS, Poulos BT, Ghabrial SA, Lightner DV, Baker TS, Nibert ML. Proc Natl Acad Sci U S A 105 17526-17531 (2008)
  80. The closest relatives of icosahedral viruses of thermophilic bacteria are among viruses and plasmids of the halophilic archaea. Jalasvuori M, Jaatinen ST, Laurinavicius S, Ahola-Iivarinen E, Kalkkinen N, Bamford DH, Bamford JK. J Virol 83 9388-9397 (2009)
  81. A molecular switch in the capsid protein controls the particle polymorphism in an icosahedral virus. Lokesh GL, Gowri TD, Satheshkumar PS, Murthy MR, Savithri HS. Virology 292 211-223 (2002)
  82. Identification and genomic characterization of a novel fish reovirus, Hubei grass carp disease reovirus, isolated in 2009 in China. Fan Y, Rao S, Zeng L, Ma J, Zhou Y, Xu J, Zhang H. J Gen Virol 94 2266-2277 (2013)
  83. Rice black-streaked dwarf virus outer capsid protein P10 has self-interactions and forms oligomeric complexes in solution. Liu H, Wei C, Zhong Y, Li Y. Virus Res 127 34-42 (2007)
  84. Three-dimensional structure of penicillium chrysogenum virus: a double-stranded RNA virus with a genuine T=1 capsid. Castón JR, Ghabrial SA, Jiang D, Rivas G, Alfonso C, Roca R, Luque D, Carrascosa JL. J Mol Biol 331 417-431 (2003)
  85. DNA packaging: a new class of molecular motors. Moore SD, Prevelige PE. Curr Biol 12 R96-8 (2002)
  86. Rice black-streaked dwarf virus P10 induces membranous structures at the ER and elicits the unfolded protein response in Nicotiana benthamiana. Sun Z, Yang D, Xie L, Sun L, Zhang S, Zhu Q, Li J, Wang X, Chen J. Virology 447 131-139 (2013)
  87. Structural bases for substrate recognition and activity in Meaban virus nucleoside-2'-O-methyltransferase. Mastrangelo E, Bollati M, Milani M, Selisko B, Peyrane F, Canard B, Grard G, de Lamballerie X, Bolognesi M. Protein Sci 16 1133-1145 (2007)
  88. Transcapsidation and the conserved interactions of two major structural proteins of a pair of phytoreoviruses confirm the mechanism of assembly of the outer capsid layer. Miyazaki N, Hagiwara K, Naitow H, Higashi T, Cheng RH, Tsukihara T, Nakagawa A, Omura T. J Mol Biol 345 229-237 (2005)
  89. Structural insight into African horsesickness virus infection. Manole V, Laurinmäki P, Van Wyngaardt W, Potgieter CA, Wright IM, Venter GJ, van Dijk AA, Sewell BT, Butcher SJ. J Virol 86 7858-7866 (2012)
  90. Antibody inhibition of the transcriptase activity of the rotavirus DLP: a structural view. Thouvenin E, Schoehn G, Rey F, Petitpas I, Mathieu M, Vaney MC, Cohen J, Kohli E, Pothier P, Hewat E. J Mol Biol 307 161-172 (2001)
  91. Reovirus mu1 structural rearrangements that mediate membrane penetration. Zhang L, Chandran K, Nibert ML, Harrison SC. J Virol 80 12367-12376 (2006)
  92. Structure of a protozoan virus from the human genitourinary parasite Trichomonas vaginalis. Parent KN, Takagi Y, Cardone G, Olson NH, Ericsson M, Yang M, Lee Y, Asara JM, Fichorova RN, Baker TS, Nibert ML. mBio 4 e00056-13 (2013)
  93. Conserved intermediates on the assembly pathway of double-stranded RNA bacteriophages. Kainov DE, Butcher SJ, Bamford DH, Tuma R. J Mol Biol 328 791-804 (2003)
  94. In situ data collection and structure refinement from microcapillary protein crystallization. Yadav MK, Gerdts CJ, Sanishvili R, Smith WW, Roach LS, Ismagilov RF, Kuhn P, Stevens RC. J Appl Crystallogr 38 900-905 (2005)
  95. Predicted structure and domain organization of rotavirus capping enzyme and innate immune antagonist VP3. Ogden KM, Snyder MJ, Dennis AF, Patton JT. J Virol 88 9072-9085 (2014)
  96. Separate molecules of West Nile virus methyltransferase can independently catalyze the N7 and 2'-O methylations of viral RNA cap. Dong H, Ren S, Li H, Shi PY. Virology 377 1-6 (2008)
  97. Subunit folds and maturation pathway of a dsRNA virus capsid. Nemecek D, Boura E, Wu W, Cheng N, Plevka P, Qiao J, Mindich L, Heymann JB, Hurley JH, Steven AC. Structure 21 1374-1383 (2013)
  98. The structural basis of recognition and removal of cellular mRNA 7-methyl G 'caps' by a viral capsid protein: a unique viral response to host defense. Tang J, Naitow H, Gardner NA, Kolesar A, Tang L, Wickner RB, Johnson JE. J Mol Recognit 18 158-168 (2005)
  99. A putative ATPase mediates RNA transcription and capping in a dsRNA virus. Yu X, Jiang J, Sun J, Zhou ZH. Elife 4 e07901 (2015)
  100. Structural evolution of reoviridae revealed by oryzavirus in acquiring the second capsid shell. Miyazaki N, Uehara-Ichiki T, Xing L, Bergman L, Higashiura A, Nakagawa A, Omura T, Cheng RH. J Virol 82 11344-11353 (2008)
  101. Cloning, expression, and characterization of avian reovirus guanylyltransferase. Hsiao J, Martínez-Costas J, Benavente J, Vakharia VN. Virology 296 288-299 (2002)
  102. Diffraction quality crystals of PRD1, a 66-MDa dsDNA virus with an internal membrane. Bamford JK, Cockburn JJ, Diprose J, Grimes JM, Sutton G, Stuart DI, Bamford DH. J Struct Biol 139 103-112 (2002)
  103. Reovirus variants with mutations in genome segments S1 and L2 exhibit enhanced virion infectivity and superior oncolysis. Shmulevitz M, Gujar SA, Ahn DG, Mohamed A, Lee PW. J Virol 86 7403-7413 (2012)
  104. Structural peptides of a nonenveloped virus are involved in assembly and membrane translocation. Chevalier C, Galloux M, Pous J, Henry C, Denis J, Da Costa B, Navaza J, Lepault J, Delmas B. J Virol 79 12253-12263 (2005)
  105. RNA virus replication complexes. Tao YJ, Ye Q. PLoS Pathog 6 e1000943 (2010)
  106. A force field for virtual atom molecular mechanics of proteins. Korkut A, Hendrickson WA. Proc Natl Acad Sci U S A 106 15667-15672 (2009)
  107. Enterovirus particles expel capsid pentamers to enable genome release. Buchta D, Füzik T, Hrebík D, Levdansky Y, Sukeník L, Mukhamedova L, Moravcová J, Vácha R, Plevka P. Nat Commun 10 1138 (2019)
  108. Increased ubiquitination and other covariant phenotypes attributed to a strain- and temperature-dependent defect of reovirus core protein mu2. Miller CL, Parker JS, Dinoso JB, Piggott CD, Perron MJ, Nibert ML. J Virol 78 10291-10302 (2004)
  109. A post-entry step in the mammalian orthoreovirus replication cycle is a determinant of cell tropism. Ooms LS, Kobayashi T, Dermody TS, Chappell JD. J Biol Chem 285 41604-41613 (2010)
  110. Engineering recombinant reoviruses with tandem repeats and a tetravirus 2A-like element for exogenous polypeptide expression. Demidenko AA, Blattman JN, Blattman NN, Greenberg PD, Nibert ML. Proc Natl Acad Sci U S A 110 E1867-76 (2013)
  111. Identification of two histidines necessary for reovirus mRNA guanylyltransferase activity. Qiu T, Luongo CL. Virology 316 313-324 (2003)
  112. The hydrophilic amino-terminal arm of reovirus core shell protein lambda1 is dispensable for particle assembly. Kim J, Zhang X, Centonze VE, Bowman VD, Noble S, Baker TS, Nibert ML. J Virol 76 12211-12222 (2002)
  113. The reversible condensation and expansion of the rotavirus genome. Pesavento JB, Lawton JA, Estes ME, Venkataram Prasad BV. Proc Natl Acad Sci U S A 98 1381-1386 (2001)
  114. Three-dimensional structure and stoichiometry of Helmintosporium victoriae190S totivirus. Castón JR, Luque D, Trus BL, Rivas G, Alfonso C, González JM, Carrascosa JL, Annamalai P, Ghabrial SA. Virology 347 323-332 (2006)
  115. A zinc ion controls assembly and stability of the major capsid protein of rotavirus. Erk I, Huet JC, Duarte M, Duquerroy S, Rey F, Cohen J, Lepault J. J Virol 77 3595-3601 (2003)
  116. Folding of phage P22 coat protein monomers: kinetic and thermodynamic properties. Anderson E, Teschke CM. Virology 313 184-197 (2003)
  117. Structure of RNA polymerase complex and genome within a dsRNA virus provides insights into the mechanisms of transcription and assembly. Wang X, Zhang F, Su R, Li X, Chen W, Chen Q, Yang T, Wang J, Liu H, Fang Q, Cheng L. Proc Natl Acad Sci U S A 115 7344-7349 (2018)
  118. A dissection of the protein-protein interfaces in icosahedral virus capsids. Bahadur RP, Rodier F, Janin J. J Mol Biol 367 574-590 (2007)
  119. Backbone trace of partitivirus capsid protein from electron cryomicroscopy and homology modeling. Tang J, Pan J, Havens WM, Ochoa WF, Guu TS, Ghabrial SA, Nibert ML, Tao YJ, Baker TS. Biophys J 99 685-694 (2010)
  120. Reduction of virion-associated σ1 fibers on oncolytic reovirus variants promotes adaptation toward tumorigenic cells. Mohamed A, Teicher C, Haefliger S, Shmulevitz M. J Virol 89 4319-4334 (2015)
  121. Determining protein topology from skeletons of secondary structures. Wu Y, Chen M, Lu M, Wang Q, Ma J. J Mol Biol 350 571-586 (2005)
  122. Mapping the assembly pathway of Bluetongue virus scaffolding protein VP3. Kar AK, Ghosh M, Roy P. Virology 324 387-399 (2004)
  123. Reovirus replication protein μ2 influences cell tropism by promoting particle assembly within viral inclusions. Ooms LS, Jerome WG, Dermody TS, Chappell JD. J Virol 86 10979-10987 (2012)
  124. A general method to quantify quasi-equivalence in icosahedral viruses. Damodaran KV, Reddy VS, Johnson JE, Brooks CL. J Mol Biol 324 723-737 (2002)
  125. Autographa californica nucleopolyhedrovirus orf69 encodes an RNA cap (nucleoside-2'-O)-methyltransferase. Wu X, Guarino LA. J Virol 77 3430-3440 (2003)
  126. Letter Conserved sequence motifs for nucleoside triphosphate binding unique to turreted reoviridae members and coltiviruses. Nibert ML, Kim J. J Virol 78 5528-5530 (2004)
  127. Intermolecular interactions in a two-layered viral capsid that requires a complex symmetry mismatch. Limn CK, Roy P. J Virol 77 11114-11124 (2003)
  128. Molecular characterization of a subgroup specificity associated with the rotavirus inner capsid protein VP2. McDonald SM, Patton JT. J Virol 82 2752-2764 (2008)
  129. Sequences of avian reovirus M1, M2 and M3 genes and predicted structure/function of the encoded mu proteins. Noad L, Shou J, Coombs KM, Duncan R. Virus Res 116 45-57 (2006)
  130. The amino-terminal region of major capsid protein P3 is essential for self-assembly of single-shelled core-like particles of Rice dwarf virus. Hagiwara K, Higashi T, Miyazaki N, Naitow H, Cheng RH, Nakagawa A, Mizuno H, Tsukihara T, Omura T. J Virol 78 3145-3148 (2004)
  131. Virion structure of baboon reovirus, a fusogenic orthoreovirus that lacks an adhesion fiber. Yan X, Parent KN, Goodman RP, Tang J, Shou J, Nibert ML, Duncan R, Baker TS. J Virol 85 7483-7495 (2011)
  132. Digestion pattern of reovirus outer capsid protein sigma3 determined by mass spectrometry. Mendez II, She YM, Ens W, Coombs KM. Virology 311 289-304 (2003)
  133. Disulfide bonding among micro 1 trimers in mammalian reovirus outer capsid: a late and reversible step in virion morphogenesis. Odegard AL, Chandran K, Liemann S, Harrison SC, Nibert ML. J Virol 77 5389-5400 (2003)
  134. In Situ Structures of the Polymerase Complex and RNA Genome Show How Aquareovirus Transcription Machineries Respond to Uncoating. Ding K, Nguyen L, Zhou ZH. J Virol 92 e00774-18 (2018)
  135. Letter Viral genomes are part of the phylogenetic tree of life. Ludmir EB, Enquist LW. Nat Rev Microbiol 7 615; author reply 615 (2009)
  136. Crystal structure of the dengue virus methyltransferase bound to a 5'-capped octameric RNA. Yap LJ, Luo D, Chung KY, Lim SP, Bodenreider C, Noble C, Shi PY, Lescar J. PLoS One 5 e12836 (2010)
  137. Inhibition of reovirus by mycophenolic acid is associated with the M1 genome segment. Hermann LL, Coombs KM. J Virol 78 6171-6179 (2004)
  138. Polymorphisms in the Most Oncolytic Reovirus Strain Confer Enhanced Cell Attachment, Transcription, and Single-Step Replication Kinetics. Mohamed A, Smiley JR, Shmulevitz M. J Virol 94 e01937-19 (2020)
  139. Crystallization and preliminary crystallographic analysis of San Miguel sea lion virus: an animal calicivirus. Chen R, Neill JD, Prasad BV. J Struct Biol 141 143-148 (2003)
  140. Geometric mismatches within the concentric layers of rotavirus particles: a potential regulatory switch of viral particle transcription activity. Libersou S, Siebert X, Ouldali M, Estrozi LF, Navaza J, Charpilienne A, Garnier P, Poncet D, Lepault J. J Virol 82 2844-2852 (2008)
  141. Asymmetric reconstruction of mammalian reovirus reveals interactions among RNA, transcriptional factor µ2 and capsid proteins. Pan M, Alvarez-Cabrera AL, Kang JS, Wang L, Fan C, Zhou ZH. Nat Commun 12 4176 (2021)
  142. Correcting for the ewald sphere in high-resolution single-particle reconstructions. Leong PA, Yu X, Zhou ZH, Jensen GJ. Methods Enzymol 482 369-380 (2010)
  143. Loss of activities for mRNA synthesis accompanies loss of lambda2 spikes from reovirus cores: an effect of lambda2 on lambda1 shell structure. Luongo CL, Zhang X, Walker SB, Chen Y, Broering TJ, Farsetta DL, Bowman VD, Baker TS, Nibert ML. Virology 296 24-38 (2002)
  144. The Vaccinia virion: Filling the gap between atomic and ultrastructure. Mirzakhanyan Y, Gershon P. PLoS Pathog 15 e1007508 (2019)
  145. A single amino acid substitution in the mRNA capping enzyme λ2 of a mammalian orthoreovirus mutant increases interferon sensitivity. Sandekian V, Lemay G. Virology 483 229-235 (2015)
  146. Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses. Mata CP, Luque D, Gómez-Blanco J, Rodríguez JM, González JM, Suzuki N, Ghabrial SA, Carrascosa JL, Trus BL, Castón JR. PLoS Pathog 13 e1006755 (2017)
  147. Genome segment 6 of Antheraea mylitta cypovirus encodes a structural protein with ATPase activity. Chavali VR, Madhurantakam C, Ghorai S, Roy S, Das AK, Ghosh AK. Virology 377 7-18 (2008)
  148. Identification of the active sites in the methyltransferases of a transcribing dsRNA virus. Zhu B, Yang C, Liu H, Cheng L, Song F, Zeng S, Huang X, Ji G, Zhu P. J Mol Biol 426 2167-2174 (2014)
  149. The μ1 72-96 loop controls conformational transitions during reovirus cell entry. Sarkar P, Danthi P. J Virol 87 13532-13542 (2013)
  150. C-terminal hydrophobic interactions play a critical role in oligomeric assembly of the P22 tailspike trimer. Gage MJ, Robinson AS. Protein Sci 12 2732-2747 (2003)
  151. Dissection of mammalian orthoreovirus µ2 reveals a self-associative domain required for binding to microtubules but not to factory matrix protein µNS. Eichwald C, Kim J, Nibert ML. PLoS One 12 e0184356 (2017)
  152. Heterodimers as the Structural Unit of the T=1 Capsid of the Fungal Double-Stranded RNA Rosellinia necatrix Quadrivirus 1. Luque D, Mata CP, González-Camacho F, González JM, Gómez-Blanco J, Alfonso C, Rivas G, Havens WM, Kanematsu S, Suzuki N, Ghabrial SA, Trus BL, Castón JR. J Virol 90 11220-11230 (2016)
  153. Mammalian reovirus core protein micro 2 initiates at the first start codon and is acetylated. Swanson MI, She YM, Ens W, Brown EG, Coombs KM. Rapid Commun Mass Spectrom 16 2317-2324 (2002)
  154. Mutational analysis of a mammalian reovirus mRNA capping enzyme. Luongo CL. Biochem Biophys Res Commun 291 932-938 (2002)
  155. Purification, crystallization, and preliminary X-ray analysis of L-A: a dsRNA yeast virus. Naitow H, Canady MA, Lin T, Wickner RB, Johnson JE. J Struct Biol 135 1-7 (2001)
  156. Hidden symmetry of small spherical viruses and organization principles in "anomalous" and double-shelled capsid nanoassemblies. Rochal SB, Konevtsova OV, Myasnikova AE, Lorman VL. Nanoscale 8 16976-16988 (2016)
  157. Rearrangements of mycoreovirus 1 S1, S2 and S3 induced by the multifunctional protein p29 encoded by the prototypic hypovirus Cryphonectria hypovirus 1 strain EP713. Tanaka T, Sun L, Tsutani K, Suzuki N. J Gen Virol 92 1949-1959 (2011)
  158. Improved Virus Isoelectric Point Estimation by Exclusion of Known and Predicted Genome-Binding Regions. Heffron J, Mayer BK. Appl Environ Microbiol 86 e01674-20 (2020)
  159. The functional organization of the internal components of Rice dwarf virus. Miyazaki N, Wu B, Hagiwara K, Wang CY, Xing L, Hammar L, Higashiura A, Tsukihara T, Nakagawa A, Omura T, Cheng RH. J Biochem 147 843-850 (2010)
  160. Cell Entry-Independent Role for the Reovirus μ1 Protein in Regulating Necroptosis and the Accumulation of Viral Gene Products. Roebke KE, Danthi P. J Virol 93 (2019)
  161. Nonstructural Protein σ1s Is Required for Optimal Reovirus Protein Expression. Phillips MB, Stuart JD, Simon EJ, Boehme KW. J Virol 92 e02259-17 (2018)
  162. Aquareovirus protein VP6 colocalizes with NS80 protein in infected and transfected cells. Wen D, Yan L, Shao L, Guo H, Li X, Fang Q. Virol J 10 133 (2013)
  163. Comment CPV, a stable and symmetrical machine for mRNA synthesis. Nibert ML, Baker TS. Structure 11 605-607 (2003)
  164. Capsid Structure of Leishmania RNA Virus 1. Procházková M, Füzik T, Grybchuk D, Falginella FL, Podešvová L, Yurchenko V, Vácha R, Plevka P. J Virol 95 e01957-20 (2021)
  165. Extent of protein-protein interactions and quasi-equivalence in viral capsids. Shepherd CM, Reddy VS. Proteins 58 472-477 (2005)
  166. Molecular interactions and viral stability revealed by structural analyses of chemically treated cypovirus capsids. Zhang H, Yu XK, Lu XY, Zhang JQ, Zhou ZH. Virology 298 45-52 (2002)
  167. Protein Mismatches Caused by Reassortment Influence Functions of the Reovirus Capsid. Thete D, Danthi P. J Virol 92 e00858-18 (2018)
  168. Reovirus Core Proteins λ1 and σ2 Promote Stability of Disassembly Intermediates and Influence Early Replication Events. Gummersheimer SL, Danthi P. J Virol 94 e00491-20 (2020)
  169. A molecular dynamics study of reovirus attachment protein sigma1 reveals conformational changes in sigma1 structure. Cavalli A, Prota AE, Stehle T, Dermody TS, Recanatini M, Folkers G, Scapozza L. Biophys J 86 3423-3431 (2004)
  170. AlphaFold2 and CryoEM: Revisiting CryoEM modeling in near-atomic resolution density maps. Hryc CF, Baker ML. iScience 25 104496 (2022)
  171. Diphosphates at the 5' end of the positive strand of yeast L-A double-stranded RNA virus as a molecular self-identity tag. Fujimura T, Esteban R. Mol Microbiol 102 71-80 (2016)
  172. Effects of viscogens on RNA transcription inside reovirus particles. Demidenko AA, Lee J, Powers TR, Nibert ML. J Biol Chem 286 29521-29530 (2011)
  173. Probing the transcription mechanisms of reovirus cores with molecules that alter RNA duplex stability. Demidenko AA, Nibert ML. J Virol 83 5659-5670 (2009)
  174. Unified data resource for cryo-EM. Lawson CL. Methods Enzymol 483 73-90 (2010)
  175. Comment An atomic model of a plant reovirus: rice dwarf virus. Johnson JE. Structure 11 1193-1194 (2003)
  176. Atomic Structure of the Trichomonas vaginalis Double-Stranded RNA Virus 2. Stevens A, Muratore K, Cui Y, Johnson PJ, Zhou ZH. mBio 12 e02924-20 (2021)
  177. Cryo-EM Reveals Architectural Diversity in Active Rotavirus Particles. Hauser M, Dearnaley WJ, Varano AC, Casasanta M, McDonald SM, Kelly DF. Comput Struct Biotechnol J 17 1178-1183 (2019)
  178. Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus. Ortega-Esteban Á, Mata CP, Rodríguez-Espinosa MJ, Luque D, Irigoyen N, Rodríguez JM, de Pablo PJ, Castón JR. J Virol 94 e01542-20 (2020)
  179. Identification of aromatic amino acid residues in conserved region VI of the large polymerase of vesicular stomatitis virus is essential for both guanine-N-7 and ribose 2'-O methyltransferases. Zhang X, Wei Y, Ma Y, Hu S, Li J. Virology 408 241-252 (2010)
  180. In vivo studies of genomic packaging in the dsRNA bacteriophage Phi8. Qiao J, Qiao X, Mindich L. BMC Microbiol 5 10 (2005)
  181. Those magnificent molecular machines: logistics in dsRNA virus transcription. Bamford DH. EMBO Rep 3 317-318 (2002)
  182. Cystovirus maturation at atomic resolution. Veesler D, Johnson JE. Structure 21 1266-1268 (2013)
  183. How to not build a cage: endohedral functionalization of polyoxometalate-based metal-organic polyhedra. Guo J, Chang Q, Liu Z, Wang Y, Liu C, Wang M, Huang D, Chen G, Zhao H, Wang W, Fang X. Chem Sci 12 7361-7368 (2021)
  184. Type 3 reovirus neuroinvasion after intramuscular inoculation: viral genetic determinants of lethality and spinal cord infection. Mann MA, Tyler KL, Knipe DM, Fields BN. Virology 303 213-221 (2002)
  185. Assignment of avian reovirus temperature-sensitive mutant recombination groups B, C, and D to genome segments. Xu W, Tran AT, Patrick MK, Coombs KM. Virology 338 227-235 (2005)
  186. Editorial Bilayers and nonbilayers: structure, forces and protein crystallization. Shipley GG. Curr Opin Struct Biol 10 471-473 (2000)
  187. Crystallization of the avian reovirus double-stranded RNA-binding and core protein sigmaA. Hermo-Parrado XL, Guardado-Calvo P, Llamas-Saiz AL, Fox GC, Vazquez-Iglesias L, Martínez-Costas J, Benavente J, van Raaij MJ. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 426-429 (2007)
  188. FEMME database: topologic and geometric information of macromolecules. Jiménez-Lozano N, Chagoyen M, Cuenca-Alba J, Carazo JM. J Struct Biol 144 104-113 (2003)
  189. Genome segment 5 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes a bona fide guanylyltransferase. Biswas P, Kundu A, Ghosh AK. Virol J 11 53 (2014)
  190. IRAM: virus capsid database and analysis resource. Almansour I, Alhagri M, Alfares R, Alshehri M, Bakhashwain R, Maarouf A. Database (Oxford) 2019 baz079 (2019)
  191. Veritas per structuram. Harrison SC. Annu Rev Biochem 84 37-60 (2015)
  192. Asymmetric reconstruction of the aquareovirus core at near-atomic resolution and mechanism of transcription initiation. Stevens A, Cui Y, Shivakoti S, Zhou ZH. Protein Cell 14 544-548 (2023)
  193. Further characterization and determination of the single amino acid change in the tsI138 reovirus thermosensitive mutant. Lemay G, Bisaillon M. Can J Microbiol 58 589-595 (2012)
  194. In situ structures of polymerase complex of mammalian reovirus illuminate RdRp activation and transcription regulation. Bao K, Zhang X, Li D, Sun W, Sun Z, Wang J, Zhu P. Proc Natl Acad Sci U S A 119 e2203054119 (2022)
  195. Modeling of the full-length Escherichia coli SeqA protein, in complex with DNA. Daghfous D, Chatti A, Hammami R, Landoulsi A. Pathol Biol (Paris) 57 e61-6 (2009)
  196. Proteasome activity is required for reovirus entry into cells. Abad AT, McNamara AJ, Danthi P. J Virol 97 e0134823 (2023)
  197. Structure and function of S9 segment of grass carp reovirus Anhui strain. Wu M, Li H, Jiang H, Hou G, He J, Jiang Y, Chen H. Virusdisease 28 26-32 (2017)
  198. The Reovirus σ1 Attachment Protein Influences the Stability of Its Entry Intermediate. Garcia ML, Danthi P. J Virol 97 e0058523 (2023)
  199. The structure of a 12-segmented dsRNA reovirus: New insights into capsid stabilization and organization. Zhang Q, Gao Y, Baker ML, Liu S, Jia X, Xu H, He J, Kaelber JT, Weng S, Jiang W. PLoS Pathog 19 e1011341 (2023)
  200. Three-dimensional structure of the inner core of rice dwarf virus. Shao C, Zhou ZH, Lu G. Sci China C Life Sci 44 192-198 (2001)