1efn Citations

Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain.

Cell 85 931-42 (1996)
Cited: 255 times
EuropePMC logo PMID: 8681387

Abstract

The crystal structure of the conserved core of HIV-1 Nef has been determined in complex with the SH3 domain of a mutant Fyn tyrosine kinase (a single amino acid substitution, Arg-96 to isoleucine), to which Nef binds tightly. The conserved PxxP sequence motif of Nef, known to be important for optimal viral replication, is part of a polyproline type II helix that engages the SH3 domain in a manner resembling closely the interaction of isolated peptides with SH3 domains. The Nef-SH3 structure also reveals how high affinity and specificity in the SH3 interaction is achieved by the presentation of the PxxP motif within the context of the folded structure of Nef.

Articles - 1efn mentioned but not cited (8)

  1. Native protein sequences are close to optimal for their structures. Kuhlman B, Baker D. Proc. Natl. Acad. Sci. U.S.A. 97 10383-10388 (2000)
  2. Designing coarse grained-and atom based-potentials for protein-protein docking. Tobi D. BMC Struct. Biol. 10 40 (2010)
  3. Pseudo-merohedral twinning and noncrystallographic symmetry in orthorhombic crystals of SIVmac239 Nef core domain bound to different-length TCRzeta fragments. Kim WM, Sigalov AB, Stern LJ. Acta Crystallogr. D Biol. Crystallogr. 66 163-175 (2010)
  4. New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae. Musi V, Birdsall B, Fernandez-Ballester G, Guerrini R, Salvatori S, Serrano L, Pastore A. Protein Sci. 15 795-807 (2006)
  5. A relation between the principal axes of inertia and ligand binding. Foote J, Raman A. Proc. Natl. Acad. Sci. U.S.A. 97 978-983 (2000)
  6. The Binding of Syndapin SH3 Domain to Dynamin Proline-rich Domain Involves Short and Long Distance Elements. Luo L, Xue J, Kwan A, Gamsjaeger R, Wielens J, von Kleist L, Cubeddu L, Guo Z, Stow JL, Parker MW, Mackay JP, Robinson PJ. J. Biol. Chem. 291 9411-9424 (2016)
  7. o-Nitrotyrosine and p-iodophenylalanine as spectroscopic probes for structural characterization of SH3 complexes. De Filippis V, Draghi A, Frasson R, Grandi C, Musi V, Fontana A, Pastore A. Protein Sci. 16 1257-1265 (2007)
  8. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Padhorny D, Kazennov A, Zerbe BS, Porter KA, Xia B, Mottarella SE, Kholodov Y, Ritchie DW, Vajda S, Kozakov D. Proc. Natl. Acad. Sci. U.S.A. 113 E4286-93 (2016)


Reviews citing this publication (31)

  1. HIV-1 Nef: Taking Control of Protein Trafficking. Pereira EA, daSilva LL. Traffic 17 976-996 (2016)
  2. Nef, the shuttling molecular adaptor of HIV, influences the cytokine network. Percario ZA, Ali M, Mangino G, Affabris E. Cytokine Growth Factor Rev. 26 159-173 (2015)
  3. The activity of Nef on HIV-1 infectivity. Basmaciogullari S, Pizzato M. Front Microbiol 5 232 (2014)
  4. Small molecule inhibitors of the HIV-1 virulence factor, Nef. Smithgall TE, Thomas G. Drug Discov Today Technol 10 e523-9 (2013)
  5. SH3 domains: modules of protein-protein interactions. Kurochkina N, Guha U. Biophys Rev 5 29-39 (2013)
  6. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Xue B, Mizianty MJ, Kurgan L, Uversky VN. Cell. Mol. Life Sci. 69 1211-1259 (2012)
  7. HIV-1 Nef in macrophage-mediated disease pathogenesis. Lamers SL, Fogel GB, Singer EJ, Salemi M, Nolan DJ, Huysentruyt LC, McGrath MS. Int. Rev. Immunol. 31 432-450 (2012)
  8. Human leukocyte antigen (HLA) class I down-regulation by human immunodeficiency virus type 1 negative factor (HIV-1 Nef): what might we learn from natural sequence variants? Mwimanzi P, Markle TJ, Ueno T, Brockman MA. Viruses 4 1711-1730 (2012)
  9. SH3 domain ligand binding: What's the consensus and where's the specificity? Saksela K, Permi P. FEBS Lett. 586 2609-2614 (2012)
  10. Mechanisms of HIV-1 Nef function and intracellular signaling. Foster JL, Denial SJ, Temple BR, Garcia JV. J Neuroimmune Pharmacol 6 230-246 (2011)
  11. Novel approaches to inhibiting HIV-1 replication. Adamson CS, Freed EO. Antiviral Res. 85 119-141 (2010)
  12. Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways. Roeth JF, Collins KL. Microbiol. Mol. Biol. Rev. 70 548-563 (2006)
  13. Update on HIV-associated nephropathy. Shah SN, He CJ, Klotman P. Curr. Opin. Nephrol. Hypertens. 15 450-455 (2006)
  14. The structure and function of proline recognition domains. Zarrinpar A, Bhattacharyya RP, Lim WA. Sci. STKE 2003 RE8 (2003)
  15. HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. Greenway AL, Holloway G, McPhee DA, Ellis P, Cornall A, Lidman M. J. Biosci. 28 323-335 (2003)
  16. Mass spectrometry as a tool for protein crystallography. Cohen SL, Chait BT. Annu Rev Biophys Biomol Struct 30 67-85 (2001)
  17. Virus subversion of immunity: a structural perspective. Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL. Curr. Opin. Immunol. 13 442-450 (2001)
  18. Structure--function relationships in HIV-1 Nef. Geyer M, Fackler OT, Peterlin BM. EMBO Rep. 2 580-585 (2001)
  19. Searching for specificity in SH domains. Ladbury JE, Arold S. Chem. Biol. 7 R3-8 (2000)
  20. Molecular structures of proteins involved in vesicle coat formation. Wakeham DE, Ybe JA, Brodsky FM, Hwang PK. Traffic 1 393-398 (2000)
  21. The numerous effector functions of Nef. Marsh JW. Arch. Biochem. Biophys. 365 192-198 (1999)
  22. Structural biology of HIV. Turner BG, Summers MF. J. Mol. Biol. 285 1-32 (1999)
  23. The Nef protein of primate lentiviruses. Piguet V, Trono D. Rev. Med. Virol. 9 111-120 (1999)
  24. Adaptors for clathrin-mediated traffic. Kirchhausen T. Annu. Rev. Cell Dev. Biol. 15 705-732 (1999)
  25. HIV-1: fifteen proteins and an RNA. Frankel AD, Young JA. Annu. Rev. Biochem. 67 1-25 (1998)
  26. Nef and PAK: virulence factor and cellular accomplice. Trono D, Wang JK. Chem. Biol. 4 13-15 (1997)
  27. HIV accessory proteins as therapeutic targets. Miller RH, Sarver N. Nat. Med. 3 389-394 (1997)
  28. A crystal milestone: the structure of regulated Src. Superti-Furga G, Gonfloni S. Bioessays 19 447-450 (1997)
  29. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  30. Structures of Src-family tyrosine kinases. Sicheri F, Kuriyan J. Curr. Opin. Struct. Biol. 7 777-785 (1997)
  31. SH3 domains and drug design: ligands, structure, and biological function. Dalgarno DC, Botfield MC, Rickles RJ. Biopolymers 43 383-400 (1997)

Articles citing this publication (216)

  1. The atomic structure of protein-protein recognition sites. Lo Conte L, Chothia C, Janin J. J. Mol. Biol. 285 2177-2198 (1999)
  2. Structural characterisation and functional significance of transient protein-protein interactions. Nooren IM, Thornton JM. J. Mol. Biol. 325 991-1018 (2003)
  3. Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Le Gall S, Erdtmann L, Benichou S, Berlioz-Torrent C, Liu L, Benarous R, Heard JM, Schwartz O. Immunity 8 483-495 (1998)
  4. The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. Greenberg ME, Iafrate AJ, Skowronski J. EMBO J. 17 2777-2789 (1998)
  5. A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. Harty RN, Paragas J, Sudol M, Palese P. J. Virol. 73 2921-2929 (1999)
  6. Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Piguet V, Gu F, Foti M, Demaurex N, Gruenberg J, Carpentier JL, Trono D. Cell 97 63-73 (1999)
  7. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Cell 113 343-355 (2003)
  8. The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Wang JK, Kiyokawa E, Verdin E, Trono D. Proc. Natl. Acad. Sci. U.S.A. 97 394-399 (2000)
  9. Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. Craig HM, Pandori MW, Guatelli JC. Proc. Natl. Acad. Sci. U.S.A. 95 11229-11234 (1998)
  10. PrDOS: prediction of disordered protein regions from amino acid sequence. Ishida T, Kinoshita K. Nucleic Acids Res. 35 W460-4 (2007)
  11. A dileucine motif in HIV-1 Nef is essential for sorting into clathrin-coated pits and for downregulation of CD4. Greenberg M, DeTulleo L, Rapoport I, Skowronski J, Kirchhausen T. Curr. Biol. 8 1239-1242 (1998)
  12. Separable functions of Nef disrupt two aspects of T cell receptor machinery: CD4 expression and CD3 signaling. Iafrate AJ, Bronson S, Skowronski J. EMBO J. 16 673-684 (1997)
  13. Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation. Greenberg ME, Bronson S, Lock M, Neumann M, Pavlakis GN, Skowronski J. EMBO J. 16 6964-6976 (1997)
  14. Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Fackler OT, Luo W, Geyer M, Alberts AS, Peterlin BM. Mol. Cell 3 729-739 (1999)
  15. Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. Collet J, Spike CA, Lundquist EA, Shaw JE, Herman RK. Genetics 148 187-200 (1998)
  16. Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 gamma-sigma1 and AP-3 delta-sigma3 hemicomplexes. Janvier K, Kato Y, Boehm M, Rose JR, Martina JA, Kim BY, Venkatesan S, Bonifacino JS. J. Cell Biol. 163 1281-1290 (2003)
  17. Evasion of cytotoxic T lymphocyte (CTL) responses by nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells. Xu XN, Screaton GR, Gotch FM, Dong T, Tan R, Almond N, Walker B, Stebbings R, Kent K, Nagata S, Stott JE, McMichael AJ. J. Exp. Med. 186 7-16 (1997)
  18. The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling. Arold S, Franken P, Strub MP, Hoh F, Benichou S, Benarous R, Dumas C. Structure 5 1361-1372 (1997)
  19. The 2.35 A crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. Williams JC, Weijland A, Gonfloni S, Thompson A, Courtneidge SA, Superti-Furga G, Wierenga RK. J. Mol. Biol. 274 757-775 (1997)
  20. Activation of PAK by HIV and SIV Nef: importance for AIDS in rhesus macaques. Sawai ET, Khan IH, Montbriand PM, Peterlin BM, Cheng-Mayer C, Luciw PA. Curr. Biol. 6 1519-1527 (1996)
  21. The N-terminus of Nef from HIV-1/SIV associates with a protein complex containing Lck and a serine kinase. Baur AS, Sass G, Laffert B, Willbold D, Cheng-Mayer C, Peterlin BM. Immunity 6 283-291 (1997)
  22. Refined solution structure and backbone dynamics of HIV-1 Nef. Grzesiek S, Bax A, Hu JS, Kaufman J, Palmer I, Stahl SJ, Tjandra N, Wingfield PT. Protein Sci. 6 1248-1263 (1997)
  23. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67(phox), Grb2 and Pex13p. Kami K, Takeya R, Sumimoto H, Kohda D. EMBO J. 21 4268-4276 (2002)
  24. A structure-based benchmark for protein-protein binding affinity. Kastritis PL, Moal IH, Hwang H, Weng Z, Bates PA, Bonvin AM, Janin J. Protein Sci. 20 482-491 (2011)
  25. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Liu S, Zhang C, Zhou H, Zhou Y. Proteins 56 93-101 (2004)
  26. SH3 domain recognition of a proline-independent tyrosine-based RKxxYxxY motif in immune cell adaptor SKAP55. Kang H, Freund C, Duke-Cohan JS, Musacchio A, Wagner G, Rudd CE. EMBO J. 19 2889-2899 (2000)
  27. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Larson SM, Davidson AR. Protein Sci. 9 2170-2180 (2000)
  28. Dynamic Nef and Nef dynamics: how structure could explain the complex activities of this small HIV protein. Arold ST, Baur AS. Trends Biochem. Sci. 26 356-363 (2001)
  29. Nef-mediated downregulation of CD4 enhances human immunodeficiency virus type 1 replication in primary T lymphocytes. Lundquist CA, Tobiume M, Zhou J, Unutmaz D, Aiken C. J. Virol. 76 4625-4633 (2002)
  30. Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways. He JC, Husain M, Sunamoto M, D'Agati VD, Klotman ME, Iyengar R, Klotman PE. J. Clin. Invest. 114 643-651 (2004)
  31. Virion incorporation of human immunodeficiency virus type 1 Nef is mediated by a bipartite membrane-targeting signal: analysis of its role in enhancement of viral infectivity. Welker R, Harris M, Cardel B, Kräusslich HG. J. Virol. 72 8833-8840 (1998)
  32. Interaction between PAK and nck: a template for Nck targets and role of PAK autophosphorylation. Zhao ZS, Manser E, Lim L. Mol. Cell. Biol. 20 3906-3917 (2000)
  33. HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. Trible RP, Emert-Sedlak L, Smithgall TE. J. Biol. Chem. 281 27029-27038 (2006)
  34. Sequence variations in human immunodeficiency virus type 1 Nef are associated with different stages of disease. Kirchhoff F, Easterbrook PJ, Douglas N, Troop M, Greenough TC, Weber J, Carl S, Sullivan JL, Daniels RS. J. Virol. 73 5497-5508 (1999)
  35. HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Carlson JM, Schaefer M, Monaco DC, Batorsky R, Claiborne DT, Prince J, Deymier MJ, Ende ZS, Klatt NR, DeZiel CE, Lin TH, Peng J, Seese AM, Shapiro R, Frater J, Ndung'u T, Tang J, Goepfert P, Gilmour J, Price MA, Kilembe W, Heckerman D, Goulder PJ, Allen TM, Allen S, Hunter E. Science 345 1254031 (2014)
  36. SH3-Domain binding function of HIV-1 Nef is required for association with a PAK-related kinase. Manninen A, Hiipakka M, Vihinen M, Lu W, Mayer BJ, Saksela K. Virology 250 273-282 (1998)
  37. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Bae JH, Lew ED, Yuzawa S, Tomé F, Lax I, Schlessinger J. Cell 138 514-524 (2009)
  38. Mutation of a conserved residue (D123) required for oligomerization of human immunodeficiency virus type 1 Nef protein abolishes interaction with human thioesterase and results in impairment of Nef biological functions. Liu LX, Heveker N, Fackler OT, Arold S, Le Gall S, Janvier K, Peterlin BM, Dumas C, Schwartz O, Benichou S, Benarous R. J. Virol. 74 5310-5319 (2000)
  39. Association of simian immunodeficiency virus Nef with cellular serine/threonine kinases is dispensable for the development of AIDS in rhesus macaques. Lang SM, Iafrate AJ, Stahl-Hennig C, Kuhn EM, Nisslein T, Kaup FJ, Haupt M, Hunsmann G, Skowronski J, Kirchhoff F. Nat. Med. 3 860-865 (1997)
  40. Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. Kärkkäinen S, Hiipakka M, Wang JH, Kleino I, Vähä-Jaakkola M, Renkema GH, Liss M, Wagner R, Saksela K. EMBO Rep. 7 186-191 (2006)
  41. Simian and human immunodeficiency virus Nef proteins use different surfaces to downregulate class I major histocompatibility complex antigen expression. Swigut T, Iafrate AJ, Muench J, Kirchhoff F, Skowronski J. J. Virol. 74 5691-5701 (2000)
  42. Two elements target SIV Nef to the AP-2 clathrin adaptor complex, but only one is required for the induction of CD4 endocytosis. Lock M, Greenberg ME, Iafrate AJ, Swigut T, Muench J, Kirchhoff F, Shohdy N, Skowronski J. EMBO J. 18 2722-2733 (1999)
  43. Characterization of the pH signal transduction pathway gene palA of Aspergillus nidulans and identification of possible homologs. Negrete-Urtasun S, Denison SH, Arst HN. J. Bacteriol. 179 1832-1835 (1997)
  44. Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. Geyer M, Munte CE, Schorr J, Kellner R, Kalbitzer HR. J. Mol. Biol. 289 123-138 (1999)
  45. Src-dependent phosphorylation of ASAP1 regulates podosomes. Bharti S, Inoue H, Bharti K, Hirsch DS, Nie Z, Yoon HY, Artym V, Yamada KM, Mueller SC, Barr VA, Randazzo PA. Mol. Cell. Biol. 27 8271-8283 (2007)
  46. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. Brannetti B, Via A, Cestra G, Cesareni G, Helmer-Citterich M. J. Mol. Biol. 298 313-328 (2000)
  47. p21-activated kinase 1 plays a critical role in cellular activation by Nef. Fackler OT, Lu X, Frost JA, Geyer M, Jiang B, Luo W, Abo A, Alberts AS, Peterlin BM. Mol. Cell. Biol. 20 2619-2627 (2000)
  48. Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking. Williams M, Roeth JF, Kasper MR, Fleis RI, Przybycin CG, Collins KL. J. Virol. 76 12173-12184 (2002)
  49. Novel recognition mode between Vav and Grb2 SH3 domains. Nishida M, Nagata K, Hachimori Y, Horiuchi M, Ogura K, Mandiyan V, Schlessinger J, Inagaki F. EMBO J. 20 2995-3007 (2001)
  50. Improving SH3 domain ligand selectivity using a non-natural scaffold. Nguyen JT, Porter M, Amoui M, Miller WT, Zuckermann RN, Lim WA. Chem. Biol. 7 463-473 (2000)
  51. HIV-1 Nef disrupts the podocyte actin cytoskeleton by interacting with diaphanous interacting protein. Lu TC, He JC, Wang ZH, Feng X, Fukumi-Tominaga T, Chen N, Xu J, Iyengar R, Klotman PE. J. Biol. Chem. 283 8173-8182 (2008)
  52. Structural basis for specific binding of the Gads SH3 domain to an RxxK motif-containing SLP-76 peptide: a novel mode of peptide recognition. Liu Q, Berry D, Nash P, Pawson T, McGlade CJ, Li SS. Mol. Cell 11 471-481 (2003)
  53. Protein protein interaction inhibition (2P2I) combining high throughput and virtual screening: Application to the HIV-1 Nef protein. Betzi S, Restouin A, Opi S, Arold ST, Parrot I, Guerlesquin F, Morelli X, Collette Y. Proc. Natl. Acad. Sci. U.S.A. 104 19256-19261 (2007)
  54. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef. Jia X, Singh R, Homann S, Yang H, Guatelli J, Xiong Y. Nat. Struct. Mol. Biol. 19 701-706 (2012)
  55. Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Bottger G, Barnett P, Klein AT, Kragt A, Tabak HF, Distel B. Mol. Biol. Cell 11 3963-3976 (2000)
  56. A diacidic motif in human immunodeficiency virus type 1 Nef is a novel determinant of binding to AP-2. Lindwasser OW, Smith WJ, Chaudhuri R, Yang P, Hurley JH, Bonifacino JS. J. Virol. 82 1166-1174 (2008)
  57. Role of the SH3-ligand domain of simian immunodeficiency virus Nef in interaction with Nef-associated kinase and simian AIDS in rhesus macaques. Khan IH, Sawai ET, Antonio E, Weber CJ, Mandell CP, Montbriand P, Luciw PA. J. Virol. 72 5820-5830 (1998)
  58. The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction. Barnett P, Bottger G, Klein AT, Tabak HF, Distel B. EMBO J. 19 6382-6391 (2000)
  59. Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE. EMBO J. 28 948-958 (2009)
  60. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments. Bienkiewicz EA, Moon Woody A, Woody RW. J. Mol. Biol. 297 119-133 (2000)
  61. Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide. Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD. Proc. Natl. Acad. Sci. U.S.A. 99 14053-14058 (2002)
  62. Domain assembly, surface accessibility and sequence conservation in full length HIV-1 Nef. Geyer M, Peterlin BM. FEBS Lett. 496 91-95 (2001)
  63. Interaction between Nef and phosphatidylinositol-3-kinase leads to activation of p21-activated kinase and increased production of HIV. Linnemann T, Zheng YH, Mandic R, Peterlin BM. Virology 294 246-255 (2002)
  64. Interleukin 10 is induced by recombinant HIV-1 Nef protein involving the calcium/calmodulin-dependent phosphodiesterase signal transduction pathway. Brigino E, Haraguchi S, Koutsonikolis A, Cianciolo GJ, Owens U, Good RA, Day NK. Proc. Natl. Acad. Sci. U.S.A. 94 3178-3182 (1997)
  65. Cooperative binding of the class I major histocompatibility complex cytoplasmic domain and human immunodeficiency virus type 1 Nef to the endosomal AP-1 complex via its mu subunit. Noviello CM, Benichou S, Guatelli JC. J. Virol. 82 1249-1258 (2008)
  66. Activation of the T-cell receptor signaling pathway by Nef from an aggressive strain of simian immunodeficiency virus. Luo W, Peterlin BM. J. Virol. 71 9531-9537 (1997)
  67. Induction of AIDS in rhesus monkeys by a recombinant simian immunodeficiency virus expressing nef of human immunodeficiency virus type 1. Alexander L, Du Z, Howe AY, Czajak S, Desrosiers RC. J. Virol. 73 5814-5825 (1999)
  68. Functional and structural defects in HIV type 1 nef genes derived from pediatric long-term survivors. Geffin R, Wolf D, Müller R, Hill MD, Stellwag E, Freitag M, Sass G, Scott GB, Baur AS. AIDS Res. Hum. Retroviruses 16 1855-1868 (2000)
  69. Defective nef alleles in a cohort of hemophiliacs with progressing and nonprogressing HIV-1 infection. Brambilla A, Turchetto L, Gatti A, Bovolenta C, Veglia F, Santagostino E, Gringeri A, Clementi M, Poli G, Bagnarelli P, Vicenzi E. Virology 259 349-368 (1999)
  70. A proline-rich motif in p53 is required for transactivation-independent growth arrest as induced by Gas1. Ruaro EM, Collavin L, Del Sal G, Haffner R, Oren M, Levine AJ, Schneider C. Proc. Natl. Acad. Sci. U.S.A. 94 4675-4680 (1997)
  71. HIV-1 Nef dimerization is required for Nef-mediated receptor downregulation and viral replication. Poe JA, Smithgall TE. J. Mol. Biol. 394 329-342 (2009)
  72. The myosin-I-binding protein Acan125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins. Xu P, Mitchelhill KI, Kobe B, Kemp BE, Zot HG. Proc. Natl. Acad. Sci. U.S.A. 94 3685-3690 (1997)
  73. The transactivation region of the fis protein that controls site-specific DNA inversion contains extended mobile beta-hairpin arms. Safo MK, Yang WZ, Corselli L, Cramton SE, Yuan HS, Johnson RC. EMBO J. 16 6860-6873 (1997)
  74. Identification of regions in HIV-1 Nef required for efficient downregulation of cell surface CD4. Hua J, Blair W, Truant R, Cullen BR. Virology 231 231-238 (1997)
  75. Two independent regions of HIV-1 Nef are required for connection with the endocytic pathway through binding to the mu 1 chain of AP1 complex. Erdtmann L, Janvier K, Raposo G, Craig HM, Benaroch P, Berlioz-Torrent C, Guatelli JC, Benarous R, Benichou S. Traffic 1 871-883 (2000)
  76. In vitro treatment of human monocytes/macrophages with myristoylated recombinant Nef of human immunodeficiency virus type 1 leads to the activation of mitogen-activated protein kinases, IkappaB kinases, and interferon regulatory factor 3 and to the release of beta interferon. Mangino G, Percario ZA, Fiorucci G, Vaccari G, Manrique S, Romeo G, Federico M, Geyer M, Affabris E. J. Virol. 81 2777-2791 (2007)
  77. The human immunodeficiency virus type 1 nef gene can to a large extent replace simian immunodeficiency virus nef in vivo. Kirchhoff F, Münch J, Carl S, Stolte N, Mätz-Rensing K, Fuchs D, Haaft PT, Heeney JL, Swigut T, Skowronski J, Stahl-Hennig C. J. Virol. 73 8371-8383 (1999)
  78. The S2 gene of equine infectious anemia virus is dispensable for viral replication in vitro. Li F, Puffer BA, Montelaro RC. J. Virol. 72 8344-8348 (1998)
  79. Nef proteins from simian immunodeficiency virus-infected chimpanzees interact with p21-activated kinase 2 and modulate cell surface expression of various human receptors. Kirchhoff F, Schindler M, Bailer N, Renkema GH, Saksela K, Knoop V, Müller-Trutwin MC, Santiago ML, Bibollet-Ruche F, Dittmar MT, Heeney JL, Hahn BH, Münch J. J. Virol. 78 6864-6874 (2004)
  80. Direct in vitro binding of full-length human immunodeficiency virus type 1 Nef protein to CD4 cytoplasmic domain. Preusser A, Briese L, Baur AS, Willbold D. J. Virol. 75 3960-3964 (2001)
  81. Activation of NFAT-dependent gene expression by Nef: conservation among divergent Nef alleles, dependence on SH3 binding and membrane association, and cooperation with protein kinase C-theta. Manninen A, Huotari P, Hiipakka M, Renkema GH, Saksela K. J. Virol. 75 3034-3037 (2001)
  82. Structural characterization of Lyn-SH3 domain in complex with a herpesviral protein reveals an extended recognition motif that enhances binding affinity. Bauer F, Schweimer K, Meiselbach H, Hoffmann S, Rösch P, Sticht H. Protein Sci. 14 2487-2498 (2005)
  83. The dominant epitope of Borrelia garinii outer surface protein C recognized by sera from patients with neuroborreliosis has a surface-exposed conserved structural motif. Mathiesen MJ, Holm A, Christiansen M, Blom J, Hansen K, Ostergaard S, Theisen M. Infect. Immun. 66 4073-4079 (1998)
  84. A hydrophobic binding surface on the human immunodeficiency virus type 1 Nef core is critical for association with p21-activated kinase 2. Agopian K, Wei BL, Garcia JV, Gabuzda D. J. Virol. 80 3050-3061 (2006)
  85. SH3 domains with high affinity and engineered ligand specificities targeted to HIV-1 Nef. Hiipakka M, Poikonen K, Saksela K. J. Mol. Biol. 293 1097-1106 (1999)
  86. A natural variability in the proline-rich motif of Nef modulates HIV-1 replication in primary T cells. Fackler OT, Wolf D, Weber HO, Laffert B, D'Aloja P, Schuler-Thurner B, Geffin R, Saksela K, Geyer M, Peterlin BM, Schuler G, Baur AS. Curr. Biol. 11 1294-1299 (2001)
  87. Characterization and molecular basis of the oligomeric structure of HIV-1 nef protein. Arold S, Hoh F, Domergue S, Birck C, Delsuc MA, Jullien M, Dumas C. Protein Sci. 9 1137-1148 (2000)
  88. High-throughput limited proteolysis/mass spectrometry for protein domain elucidation. Gao X, Bain K, Bonanno JB, Buchanan M, Henderson D, Lorimer D, Marsh C, Reynes JA, Sauder JM, Schwinn K, Thai C, Burley SK. J. Struct. Funct. Genomics 6 129-134 (2005)
  89. Activation of the Src family kinase Hck without SH3-linker release. Lerner EC, Trible RP, Schiavone AP, Hochrein JM, Engen JR, Smithgall TE. J. Biol. Chem. 280 40832-40837 (2005)
  90. HIV Nef-mediated major histocompatibility complex class I down-modulation is independent of Arf6 activity. Larsen JE, Massol RH, Nieland TJ, Kirchhausen T. Mol. Biol. Cell 15 323-331 (2004)
  91. Characterization of G3BPs: tissue specific expression, chromosomal localisation and rasGAP(120) binding studies. Kennedy D, French J, Guitard E, Ru K, Tocque B, Mattick J. J. Cell. Biochem. 84 173-187 (2001)
  92. Subunit H of the V-ATPase involved in endocytosis shows homology to beta-adaptins. Geyer M, Fackler OT, Peterlin BM. Mol. Biol. Cell 13 2045-2056 (2002)
  93. CD4 and major histocompatibility complex class I downregulation by the human immunodeficiency virus type 1 nef protein in pediatric AIDS progression. Casartelli N, Di Matteo G, Potestà M, Rossi P, Doria M. J. Virol. 77 11536-11545 (2003)
  94. Interaction of two proline-rich sequences of cell adhesion kinase beta with SH3 domains of p130Cas-related proteins and a GTPase-activating protein, Graf. Ohba T, Ishino M, Aoto H, Sasaki T. Biochem. J. 330 ( Pt 3) 1249-1254 (1998)
  95. Candidate vaccine sequences to represent intra- and inter-clade HIV-1 variation. Yang OO. PLoS ONE 4 e7388 (2009)
  96. Induction of activator protein 1 (AP-1) in macrophages by human immunodeficiency virus type-1 NEF is a cell-type-specific response that requires both hck and MAPK signaling events. Biggs TE, Cooke SJ, Barton CH, Harris MP, Saksela K, Mann DA. J. Mol. Biol. 290 21-35 (1999)
  97. The human immunodeficiency virus type 1 Nef protein binds the Src-related tyrosine kinase Lck SH2 domain through a novel phosphotyrosine independent mechanism. Dutartre H, Harris M, Olive D, Collette Y. Virology 247 200-211 (1998)
  98. Pellino proteins contain a cryptic FHA domain that mediates interaction with phosphorylated IRAK1. Lin CC, Huoh YS, Schmitz KR, Jensen LE, Ferguson KM. Structure 16 1806-1816 (2008)
  99. Allosteric loss-of-function mutations in HIV-1 Nef from a long-term non-progressor. Trible RP, Emert-Sedlak L, Wales TE, Ayyavoo V, Engen JR, Smithgall TE. J. Mol. Biol. 374 121-129 (2007)
  100. Crystal structure of the SH3 domain of betaPIX in complex with a high affinity peptide from PAK2. Hoelz A, Janz JM, Lawrie SD, Corwin B, Lee A, Sakmar TP. J. Mol. Biol. 358 509-522 (2006)
  101. The tryptophan switch: changing ligand-binding specificity from type I to type II in SH3 domains. Fernandez-Ballester G, Blanes-Mira C, Serrano L. J. Mol. Biol. 335 619-629 (2004)
  102. Simian immunodeficiency virus containing mutations in N-terminal tyrosine residues and in the PxxP motif in Nef replicates efficiently in rhesus macaques. Carl S, Iafrate AJ, Lang SM, Stolte N, Stahl-Hennig C, Mätz-Rensing K, Fuchs D, Skowronski J, Kirchhoff F. J. Virol. 74 4155-4164 (2000)
  103. How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4. Ren X, Park SY, Bonifacino JS, Hurley JH. Elife 3 e01754 (2014)
  104. An interdomain binding site on HIV-1 Nef interacts with PACS-1 and PACS-2 on endosomes to down-regulate MHC-I. Dikeakos JD, Thomas L, Kwon G, Elferich J, Shinde U, Thomas G. Mol. Biol. Cell 23 2184-2197 (2012)
  105. Nef enhances HIV-1 infectivity via association with the virus assembly complex. Qi M, Aiken C. Virology 373 287-297 (2008)
  106. Myristoyl moiety of HIV Nef is involved in regulation of the interaction with calmodulin in vivo. Matsubara M, Jing T, Kawamura K, Shimojo N, Titani K, Hashimoto K, Hayashi N. Protein Sci. 14 494-503 (2005)
  107. X-ray structure determination of human profilin II: A comparative structural analysis of human profilins. Nodelman IM, Bowman GD, Lindberg U, Schutt CE. J. Mol. Biol. 294 1271-1285 (1999)
  108. Domain elucidation by mass spectrometry. Cohen SL. Structure 4 1013-1016 (1996)
  109. Conserved residues in the HIV-1 Nef hydrophobic pocket are essential for recruitment and activation of the Hck tyrosine kinase. Choi HJ, Smithgall TE. J. Mol. Biol. 343 1255-1268 (2004)
  110. Simian immunodeficiency virus and human immunodeficiency virus type 1 nef proteins show distinct patterns and mechanisms of Src kinase activation. Greenway AL, Dutartre H, Allen K, McPhee DA, Olive D, Collette Y. J. Virol. 73 6152-6158 (1999)
  111. Molecular basis for the binding of SH3 ligands with non-peptide elements identified by combinatorial synthesis. Feng S, Kapoor TM, Shirai F, Combs AP, Schreiber SL. Chem. Biol. 3 661-670 (1996)
  112. HIV control is mediated in part by CD8+ T-cell targeting of specific epitopes. Pereyra F, Heckerman D, Carlson JM, Kadie C, Soghoian DZ, Karel D, Goldenthal A, Davis OB, DeZiel CE, Lin T, Peng J, Piechocka A, Carrington M, Walker BD. J. Virol. 88 12937-12948 (2014)
  113. Effector kinase coupling enables high-throughput screens for direct HIV-1 Nef antagonists with antiretroviral activity. Emert-Sedlak LA, Narute P, Shu ST, Poe JA, Shi H, Yanamala N, Alvarado JJ, Lazo JS, Yeh JI, Johnston PA, Smithgall TE. Chem. Biol. 20 82-91 (2013)
  114. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner. McDonald CB, Seldeen KL, Deegan BJ, Farooq A. Biochemistry 48 4074-4085 (2009)
  115. Activation of c-Src is inversely correlated with biological aggressiveness of breast carcinoma. Ito Y, Kawakatsu H, Takeda T, Tani N, Kawaguchi N, Noguchi S, Sakai T, Matsuura N. Breast Cancer Res. Treat. 76 261-267 (2002)
  116. Activation of c-Src gene product in hepatocellular carcinoma is highly correlated with the indices of early stage phenotype. Ito Y, Kawakatsu H, Takeda T, Sakon M, Nagano H, Sakai T, Miyoshi E, Noda K, Tsujimoto M, Wakasa K, Monden M, Matsuura N. J. Hepatol. 35 68-73 (2001)
  117. Analysis of the SH3-binding region of HIV-1 nef: partial functional defects introduced by mutations in the polyproline helix and the hydrophobic pocket. Craig HM, Pandori MW, Riggs NL, Richman DD, Guatelli JC. Virology 262 55-63 (1999)
  118. SIV/HIV Nef recombinant virus (SHIVnef) produces simian AIDS in rhesus macaques. Mandell CP, Reyes RA, Cho K, Sawai ET, Fang AL, Schmidt KA, Luciw PA. Virology 265 235-251 (1999)
  119. Nef alleles from human immunodeficiency virus type 1-infected long-term-nonprogressor hemophiliacs with or without late disease progression are defective in enhancing virus replication and CD4 down-regulation. Crotti A, Neri F, Corti D, Ghezzi S, Heltai S, Baur A, Poli G, Santagostino E, Vicenzi E. J. Virol. 80 10663-10674 (2006)
  120. A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox. Mizuki K, Takeya R, Kuribayashi F, Nobuhisa I, Kohda D, Nunoi H, Takeshige K, Sumimoto H. Arch. Biochem. Biophys. 444 185-194 (2005)
  121. In vivo mutational analysis of the N-terminal region of HIV-1 Nef reveals critical motifs for the development of an AIDS-like disease in CD4C/HIV transgenic mice. Hanna Z, Priceputu E, Kay DG, Poudrier J, Chrobak P, Jolicoeur P. Virology 327 273-286 (2004)
  122. Proline 78 is crucial for human immunodeficiency virus type 1 Nef to down-regulate class I human leukocyte antigen. Yamada T, Kaji N, Odawara T, Chiba J, Iwamoto A, Kitamura Y. J. Virol. 77 1589-1594 (2003)
  123. Inhibition of cellular functions of HIV-1 Nef by artificial SH3 domains. Hiipakka M, Huotari P, Manninen A, Renkema GH, Saksela K. Virology 286 152-159 (2001)
  124. Infectivity enhancement by human immunodeficiency virus type 1 Nef is independent of its association with a cellular serine/threonine kinase. Luo T, Livingston RA, Garcia JV. J. Virol. 71 9524-9530 (1997)
  125. Formation of a unique cluster of G-quadruplex structures in the HIV-1 Nef coding region: implications for antiviral activity. Perrone R, Nadai M, Poe JA, Frasson I, Palumbo M, Palù G, Smithgall TE, Richter SN. PLoS ONE 8 e73121 (2013)
  126. Recognition of non-canonical peptides by the yeast Fus1p SH3 domain: elucidation of a common mechanism for diverse SH3 domain specificities. Kim J, Lee CD, Rath A, Davidson AR. J. Mol. Biol. 377 889-901 (2008)
  127. CD4 and MHC-I downregulation are conserved in primary HIV-1 Nef alleles from brain and lymphoid tissues, but Pak2 activation is highly variable. Agopian K, Wei BL, Garcia JV, Gabuzda D. Virology 358 119-135 (2007)
  128. The conserved core of human immunodeficiency virus type 1 Nef is essential for association with Lck and for enhanced viral replication in T-lymphocytes. Cheng H, Hoxie JP, Parks WP. Virology 264 5-15 (1999)
  129. Mechanistic independence of Nef and cyclophilin A enhancement of human immunodeficiency virus type 1 infectivity. Aiken C. Virology 248 139-147 (1998)
  130. Rack1 binds HIV-1 Nef and can act as a Nef-protein kinase C adaptor. Gallina A, Rossi F, Milanesi G. Virology 283 7-18 (2001)
  131. Persistence of pathogenic challenge virus in macaques protected by simian immunodeficiency virus SIVmacDeltanef. Khatissian E, Monceaux V, Cumont MC, Kieny MP, Aubertin AM, Hurtrel B. J. Virol. 75 1507-1515 (2001)
  132. Limited proteolysis of human kidney angiotensin-converting enzyme and generation of catalytically active N- and C-terminal domains. Sturrock ED, Danilov SM, Riordan JF. Biochem. Biophys. Res. Commun. 236 16-19 (1997)
  133. Specific cleavage sites of Nef proteins from human immunodeficiency virus types 1 and 2 for the viral proteases. Schorr J, Kellner R, Fackler O, Freund J, Konvalinka J, Kienzle N, Kräusslich HG, Mueller-Lantzsch N, Kalbitzer HR. J. Virol. 70 9051-9054 (1996)
  134. Molecular design, functional characterization and structural basis of a protein inhibitor against the HIV-1 pathogenicity factor Nef. Breuer S, Schievink SI, Schulte A, Blankenfeldt W, Fackler OT, Geyer M. PLoS ONE 6 e20033 (2011)
  135. Evaluation of genetic diversity of human immunodeficiency virus type 1 NEF gene associated with vertical transmission. Hahn T, Ramakrishnan R, Ahmad N. J. Biomed. Sci. 10 436-450 (2003)
  136. Copper(II) complexes with chicken prion repeats: influence of proline and tyrosine residues on the coordination features. La Mendola D, Bonomo RP, Impellizzeri G, Maccarrone G, Pappalardo G, Pietropaolo A, Rizzarelli E, Zito V. J. Biol. Inorg. Chem. 10 463-475 (2005)
  137. Virological importance of the protease-cleavage site in human immunodeficiency virus type 1 Nef is independent of both intravirion processing and CD4 down-regulation. Pandori M, Craig H, Moutouh L, Corbeil J, Guatelli J. Virology 251 302-316 (1998)
  138. SH3 in muscles: solution structure of the SH3 domain from nebulin. Politou AS, Millevoi S, Gautel M, Kolmerer B, Pastore A. J. Mol. Biol. 276 189-202 (1998)
  139. Examining the specificity of Src homology 3 domain--ligand interactions with alkaline phosphatase fusion proteins. Yamabhai M, Kay BK. Anal. Biochem. 247 143-151 (1997)
  140. Immune selection in vitro reveals human immunodeficiency virus type 1 Nef sequence motifs important for its immune evasion function in vivo. Lewis MJ, Lee P, Ng HL, Yang OO. J. Virol. 86 7126-7135 (2012)
  141. In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking. Bolstad ES, Anderson AC. Proteins 75 62-74 (2009)
  142. Structural basis of PxxDY motif recognition in SH3 binding. Aitio O, Hellman M, Kesti T, Kleino I, Samuilova O, Pääkkönen K, Tossavainen H, Saksela K, Permi P. J. Mol. Biol. 382 167-178 (2008)
  143. The acidic region and conserved putative protein kinase C phosphorylation site in Nef are important for SIV replication in rhesus macaques. Carl S, Iafrate AJ, Lang SM, Stahl-Hennig C, Kuhn EM, Fuchs D, Mätz-Rensing K, ten Haaft P, Heeney JL, Skowronski J, Kirchhoff F. Virology 257 138-155 (1999)
  144. Conformation of the dileucine-based sorting motif in HIV-1 Nef revealed by intermolecular domain assembly. Horenkamp FA, Breuer S, Schulte A, Lülf S, Weyand M, Saksela K, Geyer M. Traffic 12 867-877 (2011)
  145. Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p. Stollar EJ, Garcia B, Chong PA, Rath A, Lin H, Forman-Kay JD, Davidson AR. J. Biol. Chem. 284 26918-26927 (2009)
  146. Nef alleles from all major HIV-1 clades activate Src-family kinases and enhance HIV-1 replication in an inhibitor-sensitive manner. Narute PS, Smithgall TE. PLoS ONE 7 e32561 (2012)
  147. Effects of HIV-1 Nef on human N-myristoyltransferase 1. Morgan CR, Miglionico BV, Engen JR. Biochemistry 50 3394-3403 (2011)
  148. Self-association of the Lentivirus protein, Nef. Kwak YT, Raney A, Kuo LS, Denial SJ, Temple BR, Garcia JV, Foster JL. Retrovirology 7 77 (2010)
  149. nef-deleted HIV-1 inhibits phagocytosis by monocyte-derived macrophages in vitro but not by peripheral blood monocytes in vivo. Kedzierska K, Mak J, Jaworowski A, Greenway A, Violo A, Chan HT, Hocking J, Purcell D, Sullivan JS, Mills J, Crowe S. AIDS 15 945-955 (2001)
  150. Solution structure of the human Hck SH3 domain and identification of its ligand binding site. Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA. J. Mol. Biol. 278 253-265 (1998)
  151. Overlapping effector interfaces define the multiple functions of the HIV-1 Nef polyproline helix. Kuo LS, Baugh LL, Denial SJ, Watkins RL, Liu M, Garcia JV, Foster JL. Retrovirology 9 47 (2012)
  152. HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck. Pene-Dumitrescu T, Shu ST, Wales TE, Alvarado JJ, Shi H, Narute P, Moroco JA, Yeh JI, Engen JR, Smithgall TE. BMC Chem Biol 12 1 (2012)
  153. Co-translational myristoylation alters the quaternary structure of HIV-1 Nef in solution. Dennis CA, Baron A, Grossmann JG, Mazaleyrat S, Harris M, Jaeger J. Proteins 60 658-669 (2005)
  154. Enterohaemorrhagic Escherichia coli exploits a tryptophan switch to hijack host f-actin assembly. Aitio O, Hellman M, Skehan B, Kesti T, Leong JM, Saksela K, Permi P. Structure 20 1692-1703 (2012)
  155. Macaques infected with cloned simian immunodeficiency virus show recurring nef gene alterations. Heidecker G, Muñoz H, Lloyd P, Hodge D, Ruscetti FW, Morton WR, Hu S, Benveniste RE. Virology 249 260-274 (1998)
  156. HsN3 proteasomal subunit as a target for human immunodeficiency virus type 1 Nef protein. Rossi F, Evstafieva A, Pedrali-Noy G, Gallina A, Milanesi G. Virology 237 33-45 (1997)
  157. Human immunodeficiency virus type 1 Nef mediates activation of STAT3 in immature dendritic cells. Messmer D, Bromberg J, Devgan G, Jacqué JM, Granelli-Piperno A, Pope M. AIDS Res. Hum. Retroviruses 18 1043-1050 (2002)
  158. Hck SH3 domain-dependent abrogation of Nef-induced class 1 MHC down-regulation. Chang AH, O'Shaughnessy MV, Jirik FR. Eur. J. Immunol. 31 2382-2387 (2001)
  159. HIV-1 Nef protein: purification, crystallizations, and preliminary X-ray diffraction studies. Franken P, Arold S, Padilla A, Bodeus M, Hoh F, Strub MP, Boyer M, Jullien M, Benarous R, Dumas C. Protein Sci. 6 2681-2683 (1997)
  160. Structural constraints of HIV-1 Nef may curtail escape from HLA-B7-restricted CTL recognition. Bauer M, Lucchiari-Hartz M, Maier R, Haas G, Autran B, Eichmann K, Frank R, Maier B, Meyerhans A. Immunol. Lett. 55 119-122 (1997)
  161. Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen. Trible RP, Narute P, Emert-Sedlak LA, Alvarado JJ, Atkins K, Thomas L, Kodama T, Yanamala N, Korotchenko V, Day BW, Thomas G, Smithgall TE. Retrovirology 10 135 (2013)
  162. HIV-1 Nef induces p47(phox) phosphorylation leading to a rapid superoxide anion release from the U937 human monoblastic cell line. Olivetta E, Mallozzi C, Ruggieri V, Pietraforte D, Federico M, Sanchez M. J. Cell. Biochem. 106 812-822 (2009)
  163. Competitive displacement of full-length HIV-1 Nef from the Hck SH3 domain by a high-affinity artificial peptide. Stangler T, Tran T, Hoffmann S, Schmidt H, Jonas E, Willbold D. Biol. Chem. 388 611-615 (2007)
  164. Versatile retargeting of SH3 domain binding by modification of non-conserved loop residues. Hiipakka M, Saksela K. FEBS Lett. 581 1735-1741 (2007)
  165. Examination of possible structural constraints of MHC-binding peptides by assessment of their native structure within their source proteins. Schueler-Furman O, Altuvia Y, Margalit H. Proteins 45 47-54 (2001)
  166. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment. Alvarado JJ, Tarafdar S, Yeh JI, Smithgall TE. J. Biol. Chem. 289 28539-28553 (2014)
  167. Conformational transition of membrane-associated terminally acylated HIV-1 Nef. Akgun B, Satija S, Nanda H, Pirrone GF, Shi X, Engen JR, Kent MS. Structure 21 1822-1833 (2013)
  168. Down-regulation of CTLA-4 by HIV-1 Nef protein. El-Far M, Isabelle C, Chomont N, Bourbonnière M, Fonseca S, Ancuta P, Peretz Y, Chouikh Y, Halwani R, Schwartz O, Madrenas J, Freeman GJ, Routy JP, Haddad EK, Sékaly RP. PLoS ONE 8 e54295 (2013)
  169. Structure, dynamics, and Hck interaction of full-length HIV-1 Nef. Jung J, Byeon IJ, Ahn J, Gronenborn AM. Proteins 79 1609-1622 (2011)
  170. Two-step purification of His-tagged Nef protein in native condition using heparin and immobilized metal ion affinity chromatographies. Finzi A, Cloutier J, Cohen EA. J. Virol. Methods 111 69-73 (2003)
  171. Activation of Ste20 by Nef from human immunodeficiency virus induces cytoskeletal rearrangements and downstream effector functions in Saccharomyces cerevisiae. Plemenitas A, Lu X, Geyer M, Veranic P, Simon MN, Peterlin BM. Virology 258 271-281 (1999)
  172. The promiscuous binding of the Fyn SH3 domain to a peptide from the NS5A protein. Martin-Garcia JM, Luque I, Ruiz-Sanz J, Camara-Artigas A. Acta Crystallogr. D Biol. Crystallogr. 68 1030-1040 (2012)
  173. The HIV-1 Nef protein as a target for antiretroviral therapy. Coleman SH, Day JR, Guatelli JC. Expert Opin. Ther. Targets 5 1-22 (2001)
  174. Presence of a helix in human CD4 cytoplasmic domain promotes binding to HIV-1 Nef protein. Preusser A, Briese L, Willbold D. Biochem. Biophys. Res. Commun. 292 734-740 (2002)
  175. Molecular Determinants of Nef Function. Luo T, Foster JL, Garcia JV. J. Biomed. Sci. 4 132-138 (1997)
  176. Expression of a novel Nef epitope on the surface of HIV type 1-infected cells. Yamada T, Iwamoto A. AIDS Res. Hum. Retroviruses 15 1001-1009 (1999)
  177. Neutron reflectometry study of the conformation of HIV Nef bound to lipid membranes. Kent MS, Murton JK, Sasaki DY, Satija S, Akgun B, Nanda H, Curtis JE, Majewski J, Morgan CR, Engen JR. Biophys. J. 99 1940-1948 (2010)
  178. SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl. Patel HV, Tzeng SR, Liao CY, Chen SH, Cheng JW. Proteins 29 545-552 (1997)
  179. DNA sequence analysis of the long terminal repeat of the C subtype of human immunodeficiency virus type 1 from Southern Africa reveals a dichotomy between B subtype and African subtypes on the basis of upstream NF-IL6 motif. Zacharova V, Becker ML, Zachar V, Ebbesen P, Goustin AS. AIDS Res. Hum. Retroviruses 13 719-724 (1997)
  180. Structural framework of c-Src activation by integrin β3. Xiao R, Xi XD, Chen Z, Chen SJ, Meng G. Blood 121 700-706 (2013)
  181. Letter HIV-1 nef protein visits B-cells via macrophage nanotubes: a mechanism for AIDS-related lymphoma pathogenesis? Lamers SL, Fogel GB, Huysentruyt LC, McGrath MS. Curr. HIV Res. 8 638-640 (2010)
  182. Implication of the C-terminal domain of nef protein in the reversion to pathogenicity of attenuated SIVmacBK28-41 in macaques. Lafont BA, Rivière Y, Gloeckler L, Beyer C, Hurtrel B, Paule Kieny M, Kirn A, Aubertin AM. Virology 266 286-298 (2000)
  183. The accessory factor Nef links HIV-1 to Tec/Btk kinases in an Src homology 3 domain-dependent manner. Tarafdar S, Poe JA, Smithgall TE. J. Biol. Chem. 289 15718-15728 (2014)
  184. A novel dimer-tetramer transition captured by the crystal structure of the HIV-1 Nef. Singh P, Yadav GP, Gupta S, Tripathi AK, Ramachandran R, Tripathi RK. PLoS ONE 6 e26629 (2011)
  185. Interactions of processed Nef (58-206) with virion proteins of HIV type 1. Ciuffi A, Munoz M, Bleiber G, Favre M, Stutz F, Telenti A, Meylan PR. AIDS Res. Hum. Retroviruses 20 399-407 (2004)
  186. Structural recognition mechanisms between human Src homology domain 3 (SH3) and ALG-2-interacting protein X (Alix). Shi X, Betzi S, Lugari A, Opi S, Restouin A, Parrot I, Martinez J, Zimmermann P, Lecine P, Huang M, Arold ST, Collette Y, Morelli X. FEBS Lett. 586 1759-1764 (2012)
  187. Interactions between SH2 and SH3 domains. Vihinen M, Smith CI. Biochem. Biophys. Res. Commun. 242 351-356 (1998)
  188. Development and validation of a high-content bimolecular fluorescence complementation assay for small-molecule inhibitors of HIV-1 Nef dimerization. Poe JA, Vollmer L, Vogt A, Smithgall TE. J Biomol Screen 19 556-565 (2014)
  189. Interaction with simian Hck tyrosine kinase reveals convergent evolution of the Nef protein from simian and human immunodeficiency viruses despite differential molecular surface usage. Picard C, Greenway A, Holloway G, Olive D, Collette Y. Virology 295 320-327 (2002)
  190. Molecular cloning of a putative cyclic nucleotide-gated ion channel cDNA from Limulus polyphemus. Chen FH, Ukhanova M, Thomas D, Afshar G, Tanda S, Battelle BA, Payne R. J. Neurochem. 72 461-471 (1999)
  191. Overexpression of c-src and n-src in the developing Xenopus retina differentially impairs axonogenesis. Worley TL, Cornel E, Holt CE. Mol. Cell. Neurosci. 9 276-292 (1997)
  192. Secondary PDZ domain-binding site on class B plexins enhances the affinity for PDZ-RhoGEF. Pascoe HG, Gutowski S, Chen H, Brautigam CA, Chen Z, Sternweis PC, Zhang X. Proc. Natl. Acad. Sci. U.S.A. 112 14852-14857 (2015)
  193. HIV-1 Nef sequence and functional compartmentalization in the gut is not due to differential cytotoxic T lymphocyte selective pressure. Lewis MJ, Frohnen P, Ibarrondo FJ, Reed D, Iyer V, Ng HL, Elliott J, Yang OO, Anton P. PLoS ONE 8 e75620 (2013)
  194. Insights into the folding and unfolding processes of wild-type and mutated SH3 domain by molecular dynamics and replica exchange molecular dynamics simulations. Chu WT, Zhang JL, Zheng QC, Chen L, Zhang HX. PLoS ONE 8 e64886 (2013)
  195. HIV-1 Nef impairs heterotrimeric G-protein signaling by targeting Gα(i2) for degradation through ubiquitination. Chandrasekaran P, Buckley M, Moore V, Wang LQ, Kehrl JH, Venkatesan S. J. Biol. Chem. 287 41481-41498 (2012)
  196. A specific protein disorder catalyzer of HIV-1 Nef. Lugari A, Breuer S, Coursindel T, Opi S, Restouin A, Shi X, Nazabal A, Torbett BE, Martinez J, Collette Y, Parrot I, Arold ST, Morelli X. Bioorg. Med. Chem. 19 7401-7406 (2011)
  197. Characterization of intramolecular interactions of HIV-1 accessory protein Nef by differential scanning calorimetry. Groesch TD, Freire E. Biophys. Chem. 126 36-42 (2007)
  198. Alkylating HIV-1 Nef - a potential way of HIV intervention. Jin YJ, Zhang X, Cai CY, Burakoff SJ. AIDS Res Ther 7 26 (2010)
  199. Altered plaque formation by recombinant vaccinia virus expressing simian immunodeficiency virus Nef. Yamanaka MK, Yilma T. J. Virol. 72 5291-5295 (1998)
  200. Herb-target interaction network analysis helps to disclose molecular mechanism of traditional Chinese medicine. Liang H, Ruan H, Ouyang Q, Lai L. Sci Rep 6 36767 (2016)
  201. Membrane-Associated Conformation of HIV-1 Nef Investigated with Hydrogen Exchange Mass Spectrometry at a Langmuir Monolayer. Pirrone GF, Emert-Sedlak LA, Wales TE, Smithgall TE, Kent MS, Engen JR. Anal. Chem. 87 7030-7035 (2015)
  202. HIV-1 Nef and T-cell activation: a history of contradictions. Markle TJ, Philip M, Brockman MA. Future Virol 8 (2013)
  203. Stereoselective synthesis of original spirolactams displaying promising folded structures. Chaubet G, Coursindel T, Morelli X, Betzi S, Roche P, Guari Y, Lebrun A, Toupet L, Collette Y, Parrot I, Martinez J. Org. Biomol. Chem. 11 4719-4726 (2013)
  204. New strain of simian immunodeficiency virus identified in wild-born chimpanzees from central Africa. Souquière S, Makuwa M, Sallé B, Kazanji M. PLoS ONE 7 e44298 (2012)
  205. Molecular and structural characterization of the SH3 domain of AHI-1 in regulation of cellular resistance of BCR-ABL(+) chronic myeloid leukemia cells to tyrosine kinase inhibitors. Liu X, Chen M, Lobo P, An J, Grace Cheng SW, Moradian A, Morin GB, Van Petegem F, Jiang X. Proteomics 12 2094-2106 (2012)
  206. Inferring property selection pressure from positional residue conservation. Hoberman R, Klein-Seetharaman J, Rosenfeld R. Appl. Bioinformatics 3 167-179 (2004)
  207. Sequence diversity of SIV(Mne) Nef in vivo and in vitro. Heidecker G, Muñoz H, Lloyd PA, Hodge DR, Pei GK, Rick SW, Brehm K, Ruscetti FW, Kuller L, Polacino P, Hu SL, Morton WR, Benveniste RE. J. Med. Primatol. 27 73-80 (1998)
  208. Direct binding to GABARAP family members is essential for HIV-1 Nef plasma membrane localization. Boeske A, Schwarten M, Ma P, Tusche M, Mötter J, Möller C, Neudecker P, Hoffmann S, Willbold D. Sci Rep 7 5979 (2017)
  209. Synthesis and evaluation of orally active small molecule HIV-1 Nef antagonists. Emert-Sedlak LA, Loughran HM, Shi H, Kulp JL, Shu ST, Zhao J, Day BW, Wrobel JE, Reitz AB, Smithgall TE. Bioorg. Med. Chem. Lett. 26 1480-1484 (2016)
  210. Dynamic features of apo and bound HIV-Nef protein reveal the anti-HIV dimerization inhibition mechanism. Moonsamy S, Bhakat S, Soliman ME. J. Recept. Signal Transduct. Res. 35 346-356 (2015)
  211. Sequence heterogeneity in human immunodeficiency virus type 1 nef in patients presenting with rapid progression and delayed progression to AIDS. Gupta P, Husain M, Hans C, Ram H, Verma SS, Misbah M, Chauhan LS, Rai A. Arch. Virol. 159 2303-2320 (2014)
  212. HIV-1 infection of T cells and macrophages are differentially modulated by virion-associated Hck: a Nef-dependent phenomenon. Cornall A, Mak J, Greenway A, Tachedjian G. Viruses 5 2235-2252 (2013)
  213. The nef Gene of SIVmac239 Is Necessary for Efficient Growth in H9 Cells. Salkowitz JR, Chakrabarti BK, Yen-Lieberman B, Starkey C, Bendele T, Kestler HW. J. Biomed. Sci. 3 422-434 (1996)
  214. Interfacial atom pair analysis. Li YC, Zeng ZH. Biochemistry Mosc. 73 231-233 (2008)
  215. In-silico designing of a potent analogue against HIV-1 Nef protein and protease by predicting its interaction network with host cell proteins. Pal S, Mishra M, Sudhakar DR, Siddiqui MH. J Pharm Bioallied Sci 5 66-73 (2013)
  216. Hydrogen Exchange Mass Spectrometry of Related Proteins with Divergent Sequences: A Comparative Study of HIV-1 Nef Allelic Variants. Wales TE, Poe JA, Emert-Sedlak L, Morgan CR, Smithgall TE, Engen JR. J. Am. Soc. Mass Spectrom. 27 1048-1061 (2016)


Related citations provided by authors (2)

  1. The Solution Structure of HIV-1 Nef Reveals an Unexpected Fold and Permits Delineation of the Binding Surface for the SH3 Domain of HCK Tyrosine Protein Kinase. Grzesiek S, Bax A, Clore GM, Gronenborn AM, Hu JS, Kaufman J, Palmer I, Stahl SJ, Wingfield PT Nat. Struct. Biol. 3 340- (1996)
  2. A Single Amino Acid in the SH3 Domain of HCK Determines its High Affinity and Specificity in Binding to HIV-1 Nef Protein. Lee CH, Leung B, Lemmon MA, Zheng J, Cowburn D, Kuriyan J, Saksela K EMBO J. 14 5006- (1995)