1e6j Citations

Mutual conformational adaptations in antigen and antibody upon complex formation between an Fab and HIV-1 capsid protein p24.

Abstract

Background

Elucidating the structural basis of antigen-antibody recognition ideally requires a structural comparison of free and complexed components. To this end we have studied a mouse monoclonal antibody, denoted 13B5, raised against p24, the capsid protein of HIV-1. We have previously described the first crystal structure of intact p24 as visualized in the Fab13B5-p24 complex. Here we report the structure of the uncomplexed Fab13B5 at 1.8 A resolution and analyze the Fab-p24 interface and the conformational changes occurring upon complex formation.

Results

Fab13B5 recognizes a nearly continuous epitope comprising a helix-turn-helix motif in the C-terminal domain of p24. Only 4 complementarity-determining regions (CDRs) are in contact with p24 with most interactions being by the heavy chain. Comparison of the free and complexed Fab reveals that structural changes upon binding are localized to a few side chains of CDR-H1 and -H2 but involve a larger, concerted displacement of CDR-H3. Antigen binding is also associated with an 8 degrees relative rotation of the heavy and light chain variable regions. In p24, small conformational changes localized to the turn between the two helices comprising the epitope result from Fab binding.

Conclusion

The relatively small area of contact between Fab13B5 and p24 may be related to the fact that the epitope is a continuous peptide rather than a more complex protein surface and correlates with a relatively low affinity of antigen and antibody. Despite this, a significant quaternary structural change occurs in the Fab upon complex formation, with additional smaller adaptations of both antigen and antibody.

Reviews - 1e6j mentioned but not cited (2)

  1. In situ click chemistry: from small molecule discovery to synthetic antibodies. Millward SW, Agnew HD, Lai B, Lee SS, Lim J, Nag A, Pitram S, Rohde R, Heath JR. Integr Biol (Camb) 5 87-95 (2013)
  2. Inhibitors of peptidyl proline isomerases as antivirals in hepatitis C and other viruses. Striker R, Mehle A. PLoS Pathog 10 e1004428 (2014)

Articles - 1e6j mentioned but not cited (59)

  1. Benchmarking and analysis of protein docking performance in Rosetta v3.2. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, Gray JJ. PLoS One 6 e22477 (2011)
  2. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  3. An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Zhang C, Liu S, Zhou H, Zhou Y. Protein Sci 13 400-411 (2004)
  4. Crystal structures of the human adiponectin receptors. Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Nakamura Y, Hosaka T, Motoyama K, Ikeda M, Wakiyama M, Terada T, Ohsawa N, Hato M, Ogasawara S, Hino T, Murata T, Iwata S, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Shirouzu M, Yamauchi T, Kadowaki T, Yokoyama S. Nature 520 312-316 (2015)
  5. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Zhu K, Day T, Warshaviak D, Murrett C, Friesner R, Pearlman D. Proteins 82 1646-1655 (2014)
  6. Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. Chaudhury S, Gray JJ. J Mol Biol 381 1068-1087 (2008)
  7. Application of asymmetric statistical potentials to antibody-protein docking. Brenke R, Hall DR, Chuang GY, Comeau SR, Bohnuud T, Beglov D, Schueler-Furman O, Vajda S, Kozakov D. Bioinformatics 28 2608-2614 (2012)
  8. Conformation of the HIV-1 Gag protein in solution. Datta SA, Curtis JE, Ratcliff W, Clark PK, Crist RM, Lebowitz J, Krueger S, Rein A. J Mol Biol 365 812-824 (2007)
  9. Protein-protein docking using region-based 3D Zernike descriptors. Venkatraman V, Yang YD, Sael L, Kihara D. BMC Bioinformatics 10 407 (2009)
  10. Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Mayrose I, Shlomi T, Rubinstein ND, Gershoni JM, Ruppin E, Sharan R, Pupko T. Nucleic Acids Res 35 69-78 (2007)
  11. Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Minici C, Gounari M, Übelhart R, Scarfò L, Dühren-von Minden M, Schneider D, Tasdogan A, Alkhatib A, Agathangelidis A, Ntoufa S, Chiorazzi N, Jumaa H, Stamatopoulos K, Ghia P, Degano M. Nat Commun 8 15746 (2017)
  12. Prediction of antigenic epitopes on protein surfaces by consensus scoring. Liang S, Zheng D, Zhang C, Zacharias M. BMC Bioinformatics 10 302 (2009)
  13. Atypical antigen recognition mode of a shark immunoglobulin new antigen receptor (IgNAR) variable domain characterized by humanization and structural analysis. Kovalenko OV, Olland A, Piché-Nicholas N, Godbole A, King D, Svenson K, Calabro V, Müller MR, Barelle CJ, Somers W, Gill DS, Mosyak L, Tchistiakova L. J Biol Chem 288 17408-17419 (2013)
  14. Automated detection of conformational epitopes using phage display Peptide sequences. Negi SS, Braun W. Bioinform Biol Insights 3 71-81 (2009)
  15. Structure of the HIV-1 full-length capsid protein in a conformationally trapped unassembled state induced by small-molecule binding. Du S, Betts L, Yang R, Shi H, Concel J, Ahn J, Aiken C, Zhang P, Yeh JI. J Mol Biol 406 371-386 (2011)
  16. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis. Opron K, Xia K, Wei GW. J Chem Phys 140 234105 (2014)
  17. DOT2: Macromolecular docking with improved biophysical models. Roberts VA, Thompson EE, Pique ME, Perez MS, Ten Eyck LF. J Comput Chem 34 1743-1758 (2013)
  18. Prediction of protein-protein interaction sites using electrostatic desolvation profiles. Fiorucci S, Zacharias M. Biophys J 98 1921-1930 (2010)
  19. Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis. Huang YX, Bao YL, Guo SY, Wang Y, Zhou CG, Li YX. BMC Bioinformatics 9 538 (2008)
  20. Engineered humanized diabodies for microPET imaging of prostate stem cell antigen-expressing tumors. Leyton JV, Olafsen T, Sherman MA, Bauer KB, Aghajanian P, Reiter RE, Wu AM. Protein Eng Des Sel 22 209-216 (2009)
  21. Ty3 capsid mutations reveal early and late functions of the amino-terminal domain. Larsen LS, Zhang M, Beliakova-Bethell N, Bilanchone V, Lamsa A, Nagashima K, Najdi R, Kosaka K, Kovacevic V, Cheng J, Baldi P, Hatfield GW, Sandmeyer S. J Virol 81 6957-6972 (2007)
  22. Evolutionary modeling of rate shifts reveals specificity determinants in HIV-1 subtypes. Penn O, Stern A, Rubinstein ND, Dutheil J, Bacharach E, Galtier N, Pupko T. PLoS Comput Biol 4 e1000214 (2008)
  23. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Padhorny D, Kazennov A, Zerbe BS, Porter KA, Xia B, Mottarella SE, Kholodov Y, Ritchie DW, Vajda S, Kozakov D. Proc Natl Acad Sci U S A 113 E4286-93 (2016)
  24. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  25. MimoPro: a more efficient Web-based tool for epitope prediction using phage display libraries. Chen WH, Sun PP, Lu Y, Guo WW, Huang YX, Ma ZQ. BMC Bioinformatics 12 199 (2011)
  26. Designing a nanotube using naturally occurring protein building blocks. Tsai CJ, Zheng J, Nussinov R. PLoS Comput Biol 2 e42 (2006)
  27. Structure-based cross-docking analysis of antibody-antigen interactions. Kilambi KP, Gray JJ. Sci Rep 7 8145 (2017)
  28. Consensus structural models for the amino terminal domain of the retrovirus restriction gene Fv1 and the murine leukaemia virus capsid proteins. Taylor WR, Stoye JP. BMC Struct Biol 4 1 (2004)
  29. PRODIGY: A Contact-based Predictor of Binding Affinity in Protein-protein Complexes. Vangone A, Bonvin AMJJ. Bio Protoc 7 e2124 (2017)
  30. DrugScorePPI knowledge-based potentials used as scoring and objective function in protein-protein docking. Krüger DM, Ignacio Garzón J, Chacón P, Gohlke H. PLoS One 9 e89466 (2014)
  31. Epitope prediction based on random peptide library screening: benchmark dataset and prediction tools evaluation. Sun P, Chen W, Huang Y, Wang H, Ma Z, Lv Y. Molecules 16 4971-4993 (2011)
  32. Mutation in the loop C-terminal to the cyclophilin A binding site of HIV-1 capsid protein disrupts proper virus assembly and infectivity. Abdurahman S, Höglund S, Höglund A, Vahlne A. Retrovirology 4 19 (2007)
  33. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. BMC Struct Biol 12 6 (2012)
  34. Structural deformation upon protein-protein interaction: a structural alphabet approach. Martin J, Regad L, Lecornet H, Camproux AC. BMC Struct Biol 8 12 (2008)
  35. SymmRef: a flexible refinement method for symmetric multimers. Mashiach-Farkash E, Nussinov R, Wolfson HJ. Proteins 79 2607-2623 (2011)
  36. Expression, purification, crystallization, and preliminary X-ray crystallographic studies of the human adiponectin receptors, AdipoR1 and AdipoR2. Tanabe H, Motoyama K, Ikeda M, Wakiyama M, Terada T, Ohsawa N, Hosaka T, Hato M, Fujii Y, Nakamura Y, Ogasawara S, Hino T, Murata T, Iwata S, Okada-Iwabu M, Iwabu M, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Shirouzu M, Yamauchi T, Kadowaki T, Yokoyama S. J Struct Funct Genomics 16 11-23 (2015)
  37. Gag-protease coevolution analyses define novel structural surfaces in the HIV-1 matrix and capsid involved in resistance to Protease Inhibitors. Codoñer FM, Peña R, Blanch-Lombarte O, Jimenez-Moyano E, Pino M, Vollbrecht T, Clotet B, Martinez-Picado J, Draenert R, Prado JG. Sci Rep 7 3717 (2017)
  38. Refining near-native protein-protein docking decoys by local resampling and energy minimization. Liang S, Wang G, Zhou Y. Proteins 76 309-316 (2009)
  39. How to use not-always-reliable binding site information in protein-protein docking prediction. Li L, Huang Y, Xiao Y. PLoS One 8 e75936 (2013)
  40. A complete, multi-level conformational clustering of antibody complementarity-determining regions. Nikoloudis D, Pitts JE, Saldanha JW. PeerJ 2 e456 (2014)
  41. A triclinic crystal structure of the carboxy-terminal domain of HIV-1 capsid protein with four molecules in the asymmetric unit reveals a novel packing interface. Lampel A, Yaniv O, Berger O, Bacharach E, Gazit E, Frolow F. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 602-606 (2013)
  42. PepMapper: a collaborative web tool for mapping epitopes from affinity-selected peptides. Chen W, Guo WW, Huang Y, Ma Z. PLoS One 7 e37869 (2012)
  43. Predictions of novel Schistosoma mansoni - human protein interactions consistent with experimental data. White Bear J, Long T, Skinner D, McKerrow JH. Sci Rep 8 13092 (2018)
  44. The cysteine residues of HIV-1 capsid regulate oligomerization and cyclophilin A-induced changes. Bon Homme M, Carter C, Scarlata S. Biophys J 88 2078-2088 (2005)
  45. Conformational B-cell epitope prediction method based on antigen preprocessing and mimotopes analysis. Sun P, Ju H, Zhang B, Gu Y, Liu B, Huang Y, Zhang H, Li Y. Biomed Res Int 2015 257030 (2015)
  46. Determining Complex Structures using Docking Method with Single Particle Scattering Data. Wang H, Liu H. Front Mol Biosci 4 23 (2017)
  47. HIV-1 Gag mutations alone are sufficient to reduce darunavir susceptibility during virological failure to boosted PI therapy. Blanch-Lombarte O, Santos JR, Peña R, Jiménez-Moyano E, Clotet B, Paredes R, Prado JG. J Antimicrob Chemother 75 2535-2546 (2020)
  48. Specificity of broad protein interaction surfaces for proteins with multiple binding partners. Uchikoga N, Matsuzaki Y, Ohue M, Akiyama Y. Biophys Physicobiol 13 105-115 (2016)
  49. The C-terminal domain of glyceraldehyde 3-phosphate dehydrogenase plays an important role in suppression of tRNALys3 packaging into human immunodeficiency virus type-1 particles. Kishimoto N, Onitsuka-Kishimoto A, Iga N, Takamune N, Shoji S, Misumi S. Biochem Biophys Rep 8 325-332 (2016)
  50. A cell-free antigen processing system informs HIV-1 epitope selection and vaccine design. Sengupta S, Zhang J, Reed MC, Yu J, Kim A, Boronina TN, Board NL, Wrabl JO, Shenderov K, Welsh RA, Yang W, Timmons AE, Hoh R, Cole RN, Deeks SG, Siliciano JD, Siliciano RF, Sadegh-Nasseri S. J Exp Med 220 e20221654 (2023)
  51. Applying Side-chain Flexibility in Motifs for Protein Docking. Liu H, Lin F, Yang JL, Wang HR, Liu XL. Genomics Insights 8 1-10 (2015)
  52. Deciphering evolution of immune recognition in antibodies. Kaur H, Sain N, Mohanty D, Salunke DM. BMC Struct Biol 18 19 (2018)
  53. Structure of a novel shoulder-to-shoulder p24 dimer in complex with the broad-spectrum antibody A10F9 and its implication in capsid assembly. Gu Y, Cao F, Wang L, Hou W, Zhang J, Hew CL, Li S, Yuan YA, Xia N. PLoS One 8 e61314 (2013)
  54. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking. Su C, Nguyen TD, Zheng J, Kwoh CK. BMC Bioinformatics 15 Suppl 16 S9 (2014)
  55. Computational approach for binding prediction of SARS-CoV-2 with neutralizing antibodies. Beshnova D, Fang Y, Du M, Sun Y, Du F, Ye J, Chen ZJ, Li B. Comput Struct Biotechnol J 20 2212-2222 (2022)
  56. Protein-Protein Docking Using EMAP in CHARMM and Support Vector Machine: Application to Ab/Ag Complexes. Wright JD, Sargsyan K, Wu X, Brooks BR, Lim C. J Chem Theory Comput 9 4186-4194 (2013)
  57. Sampling the conformation of protein surface residues for flexible protein docking. Francis-Lyon P, Gu S, Hass J, Amenta N, Koehl P. BMC Bioinformatics 11 575 (2010)
  58. Specific attributes of the VL domain influence both the structure and structural variability of CDR-H3 through steric effects. Guloglu B, Deane CM. Front Immunol 14 1223802 (2023)
  59. Systematic Review Protein Science Meets Artificial Intelligence: A Systematic Review and a Biochemical Meta-Analysis of an Inter-Field. Villalobos-Alva J, Ochoa-Toledo L, Villalobos-Alva MJ, Aliseda A, Pérez-Escamirosa F, Altamirano-Bustamante NF, Ochoa-Fernández F, Zamora-Solís R, Villalobos-Alva S, Revilla-Monsalve C, Kemper-Valverde N, Altamirano-Bustamante MM. Front Bioeng Biotechnol 10 788300 (2022)


Reviews citing this publication (2)

  1. Roles of HIV-1 capsid in viral replication and immune evasion. Le Sage V, Mouland AJ, Valiente-Echeverría F. Virus Res 193 116-129 (2014)
  2. Reductionism and the search for structure-function relationships in antibody molecules. Van Regenmortel MH. J Mol Recognit 15 240-247 (2002)

Articles citing this publication (30)

  1. HIV capsid is a tractable target for small molecule therapeutic intervention. Blair WS, Pickford C, Irving SL, Brown DG, Anderson M, Bazin R, Cao J, Ciaramella G, Isaacson J, Jackson L, Hunt R, Kjerrstrom A, Nieman JA, Patick AK, Perros M, Scott AD, Whitby K, Wu H, Butler SL. PLoS Pathog 6 e1001220 (2010)
  2. A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Reiser JB, Grégoire C, Darnault C, Mosser T, Guimezanes A, Schmitt-Verhulst AM, Fontecilla-Camps JC, Mazza G, Malissen B, Housset D. Immunity 16 345-354 (2002)
  3. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Phys Chem Chem Phys 18 22129-22139 (2016)
  4. Structure and dynamics of full-length HIV-1 capsid protein in solution. Deshmukh L, Schwieters CD, Grishaev A, Ghirlando R, Baber JL, Clore GM. J Am Chem Soc 135 16133-16147 (2013)
  5. The mapping and reconstitution of a conformational discontinuous B-cell epitope of HIV-1. Enshell-Seijffers D, Denisov D, Groisman B, Smelyanski L, Meyuhas R, Gross G, Denisova G, Gershoni JM. J Mol Biol 334 87-101 (2003)
  6. T cell receptor recognition via cooperative conformational plasticity. Gagnon SJ, Borbulevych OY, Davis-Harrison RL, Turner RV, Damirjian M, Wojnarowicz A, Biddison WE, Baker BM. J Mol Biol 363 228-243 (2006)
  7. Protein-protein binding affinity prediction from amino acid sequence. Yugandhar K, Gromiha MM. Bioinformatics 30 3583-3589 (2014)
  8. Targeting of antigen to the herpesvirus entry mediator augments primary adaptive immune responses. Lasaro MO, Tatsis N, Hensley SE, Whitbeck JC, Lin SW, Rux JJ, Wherry EJ, Cohen GH, Eisenberg RJ, Ertl HC. Nat Med 14 205-212 (2008)
  9. HIV-2 capsids distinguish high and low virus load patients in a West African community cohort. Onyango CO, Leligdowicz A, Yokoyama M, Sato H, Song H, Nakayama EE, Shioda T, de Silva T, Townend J, Jaye A, Whittle H, Rowland-Jones S, Cotten M. Vaccine 28 Suppl 2 B60-7 (2010)
  10. Slow, reversible, coupled folding and binding of the spectrin tetramerization domain. Shammas SL, Rogers JM, Hill SA, Clarke J. Biophys J 103 2203-2214 (2012)
  11. Affinity maturation increases the stability and plasticity of the Fv domain of anti-protein antibodies. Acierno JP, Braden BC, Klinke S, Goldbaum FA, Cauerhff A. J Mol Biol 374 130-146 (2007)
  12. Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity. Abdurahman S, Youssefi M, Höglund S, Vahlne A. Retrovirology 4 69 (2007)
  13. Coordination topology and stability for the native and binding conformers of chymotrypsin inhibitor 2. Baysal C, Atilgan AR, Atilgan AR. Proteins 45 62-70 (2001)
  14. PredPRBA: Prediction of Protein-RNA Binding Affinity Using Gradient Boosted Regression Trees. Deng L, Yang W, Liu H. Front Genet 10 637 (2019)
  15. Analysis of correlated domain motions in IgG light chain reveals possible mechanisms of immunological signal transduction. Król M, Roterman I, Piekarska B, Konieczny L, Rybarska J, Stopa B, Spólnik P. Proteins 59 545-554 (2005)
  16. Biophysical characterization of the feline immunodeficiency virus p24 capsid protein conformation and in vitro capsid assembly. Serrière J, Fenel D, Schoehn G, Gouet P, Guillon C. PLoS One 8 e56424 (2013)
  17. Conformational shift of a major poliovirus antigen confirmed by immuno-cryogenic electron microscopy. Lin J, Cheng N, Hogle JM, Steven AC, Belnap DM. J Immunol 191 884-891 (2013)
  18. Canonical structures of short CDR-L3 in antibodies. Teplyakov A, Gilliland GL. Proteins 82 1668-1673 (2014)
  19. Computational and statistical study on the molecular interaction between antigen and antibody. Osajima T, Suzuki M, Neya S, Hoshino T. J Mol Graph Model 53 128-139 (2014)
  20. Packaging HIV virion components through dynamic equilibria of a human tRNA synthetase. Guo M, Shapiro R, Morris GM, Yang XL, Schimmel P. J Phys Chem B 114 16273-16279 (2010)
  21. Alterations in immunodominance of Streptococcus mutans AgI/II: lessons learned from immunomodulatory antibodies. Robinette RA, Heim KP, Oli MW, Crowley PJ, McArthur WP, Brady LJ. Vaccine 32 375-382 (2014)
  22. PreDBA: A heterogeneous ensemble approach for predicting protein-DNA binding affinity. Yang W, Deng L. Sci Rep 10 1278 (2020)
  23. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition. Hoffmann T, Krackhardt AM, Antes I. PLoS Comput Biol 11 e1004244 (2015)
  24. Proteolytic Post-Translational Processing of Adhesins in a Pathogenic Bacterium. Dubrana MP, Guéguéniat J, Bertin C, Duret S, Arricau-Bouvery N, Claverol S, Lartigue C, Blanchard A, Renaudin J, Béven L. J Mol Biol 429 1889-1902 (2017)
  25. Roles of the respective loops at complementarity determining region on the antigen-antibody recognition. Osajima T, Hoshino T. Comput Biol Chem 64 368-383 (2016)
  26. Epitope mapping and in silico characterization of interactions between Der p 7 allergen and MoAb WH9. Tai HY, Zhou JK, Chou H, Tam MF, Chen YS, Sheu SY, Shen HD. PLoS One 8 e71269 (2013)
  27. High-affinity anti-Arc nanobodies provide tools for structural and functional studies. Markússon S, Hallin EI, Bustad HJ, Raasakka A, Xu J, Muruganandam G, Loris R, Martinez A, Bramham CR, Kursula P. PLoS One 17 e0269281 (2022)
  28. Letter Response to Comment on Three X-ray Crystal Structure Papers. Salunke DM, Khan T, Gaur V, Tapryal S, Kaur K. J Immunol 196 524-528 (2016)
  29. Role of conformational dynamics in sequence-specific autoantibody*ssDNA recognition. Bobeck MJ, Glick GD. Biopolymers 85 481-489 (2007)
  30. Thermodynamic analysis of an entropically driven, high-affinity nanobody-HIV p24 interaction. Brookes JC, Gray ER, Loynachan CN, Gut MJ, Miller BS, P S Brogan A, McKendry RA. Biophys J 122 279-289 (2023)


Related citations provided by authors (2)