1dq1 Citations

The structural features of concanavalin A governing non-proline peptide isomerization.

J Biol Chem 275 19778-87 (2000)
Related entries: 1dq0, 1dq2, 1dq4, 1dq5, 1dq6

Cited: 32 times
EuropePMC logo PMID: 10748006

Abstract

The reversible binding of manganese and calcium to concanavalin A determines the carbohydrate binding of the lectin by inducing large conformational changes. These changes are governed by the isomerization of a non-proline peptide bond, Ala-207-Asp-208, positioned in a beta-strand in between the calcium binding site S2 and the carbohydrate specificity-determining loop. The replacement of calcium by manganese allowed us to investigate the structures of the carbohydrate binding, locked state and the inactive, unlocked state of concanavalin A, both with and without metal ions bound. Crystals of unlocked metal-free concanavalin A convert to the locked form with the binding of two Mn(2+) ions. Removal of these ions from the crystals traps metal-free concanavalin A in its locked state, a minority species in solution. The ligation of a metal ion in S2 to unlocked concanavalin A causes bending of the beta-strand foregoing the S2 ligand residues Asp-10 and Tyr-12. This bending disrupts conventional beta-sheet hydrogen bonding and forces the Thr-11 side chain against the Ala-207-Asp-208 peptide bond. The steric strain exerted by Thr-11 is presumed to drive the trans-to-cis isomerization. Upon isomerization, Asp-208 flips into its carbohydrate binding position, and the conformation of the carbohydrate specificity determining loop changes dramatically.

Articles - 1dq1 mentioned but not cited (4)

  1. Relating destabilizing regions to known functional sites in proteins. Dessailly BH, Lensink MF, Wodak SJ. BMC Bioinformatics 8 141 (2007)
  2. Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Pihíková D, Belicky Š, Kasák P, Bertok T, Tkac J. Analyst 141 1044-1051 (2016)
  3. A score of the ability of a three-dimensional protein model to retrieve its own sequence as a quantitative measure of its quality and appropriateness. Martínez-Castilla LP, Rodríguez-Sotres R. PLoS One 5 e12483 (2010)
  4. Exploration of the metal coordination region of concanavalin A for its interaction with human norovirus. Kim D, Lee HM, Oh KS, Ki AY, Protzman RA, Kim D, Choi JS, Kim MJ, Kim SH, Vaidya B, Lee SJ, Kwon J. Biomaterials 128 33-43 (2017)


Reviews citing this publication (3)

  1. Plant lectins: occurrence, biochemistry, functions and applications. Rüdiger H, Gabius HJ. Glycoconj J 18 589-613 (2001)
  2. Technology modules from micro- and nano-electronics for the life sciences. Birkholz M, Mai A, Wenger C, Meliani C, Scholz R. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8 355-377 (2016)
  3. Structural modelling of metal ion binding to human haemopexin. Mauk MR, Rosell FI, Mauk AG. Nat Prod Rep 24 523-532 (2007)

Articles citing this publication (25)

  1. A new bioinformatic approach to detect common 3D sites in protein structures. Jambon M, Imberty A, Deléage G, Geourjon C. Proteins 52 137-145 (2003)
  2. Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL, Rosen BP, Edwards BF. Structure 9 1071-1081 (2001)
  3. Structural basis of carbohydrate recognition by the lectin LecB from Pseudomonas aeruginosa. Loris R, Tielker D, Jaeger KE, Wyns L. J Mol Biol 331 861-870 (2003)
  4. Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces. Jeyachandran YL, Mielczarski JA, Mielczarski E, Rai B. J Colloid Interface Sci 341 136-142 (2010)
  5. Onion-like glycodendrimersomes from sequence-defined Janus glycodendrimers and influence of architecture on reactivity to a lectin. Xiao Q, Zhang S, Wang Z, Sherman SE, Moussodia RO, Peterca M, Muncan A, Williams DR, Hammer DA, Vértesy S, André S, Gabius HJ, Klein ML, Percec V. Proc Natl Acad Sci U S A 113 1162-1167 (2016)
  6. Isolectins I-A and I-B of Griffonia (Bandeiraea) simplicifolia. Crystal structure of metal-free GS I-B(4) and molecular basis for metal binding and monosaccharide specificity. Lescar J, Loris R, Mitchell E, Gautier C, Chazalet V, Cox V, Wyns L, Pérez S, Breton C, Imberty A. J Biol Chem 277 6608-6614 (2002)
  7. Stereochemical errors and their implications for molecular dynamics simulations. Schreiner E, Trabuco LG, Freddolino PL, Schulten K. BMC Bioinformatics 12 190 (2011)
  8. Improving structure-based function prediction using molecular dynamics. Glazer DS, Radmer RJ, Altman RB. Structure 17 919-929 (2009)
  9. Native crystal structure of a nitric oxide-releasing lectin from the seeds of Canavalia maritima. Gadelha CA, Moreno FB, Santi-Gadelha T, Cajazeiras JB, Rocha BA, Assreuy AM, Lima Mota MR, Pinto NV, Passos Meireles AV, Borges JC, Freitas BT, Canduri F, Souza EP, Delatorre P, Criddle DN, de Azevedo WF, Cavada BS. J Struct Biol 152 185-194 (2005)
  10. Structural basis of oligomannose recognition by the Pterocarpus angolensis seed lectin. Loris R, Van Walle I, De Greve H, Beeckmans S, Deboeck F, Wyns L, Bouckaert J. J Mol Biol 335 1227-1240 (2004)
  11. Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association. Wah DA, Romero A, Gallego del Sol F, Cavada BS, Ramos MV, Grangeiro TB, Sampaio AH, Calvete JJ. J Mol Biol 310 885-894 (2001)
  12. Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins. Guan RJ, Xiang Y, He XL, Wang CG, Wang M, Zhang Y, Sundberg EJ, Wang DC. J Mol Biol 341 1189-1204 (2004)
  13. Catalysis of proline-directed protein phosphorylation by peptidyl-prolyl cis/trans isomerases. Weiwad M, Werner A, Rücknagel P, Schierhorn A, Küllertz G, Fischer G. J Mol Biol 339 635-646 (2004)
  14. Rational design of a novel calcium-binding site adjacent to the ligand-binding site on CD2 increases its CD48 affinity. Jones LM, Yang W, Maniccia AW, Harrison A, van der Merwe PA, Yang JJ. Protein Sci 17 439-449 (2008)
  15. Crystal structure of Dioclea violacea lectin and a comparative study of vasorelaxant properties with Dioclea rostrata lectin. Bezerra MJ, Rodrigues NV, Pires Ade F, Bezerra GA, Nobre CB, Alencar KL, Soares PM, do Nascimento KS, Nagano CS, Martins JL, Gruber K, Sampaio AH, Delatorre P, Rocha BA, Assreuy AM, Cavada BS. Int J Biochem Cell Biol 45 807-815 (2013)
  16. A mechanistic and structural analysis of the inhibition of the 90-kDa heat shock protein by the benzoquinone and hydroquinone ansamycins. Reigan P, Siegel D, Guo W, Ross D. Mol Pharmacol 79 823-832 (2011)
  17. Pro4 prolyl peptide bond isomerization in human galectin-7 modulates the monomer-dimer equilibrum to affect function. Miller MC, Nesmelova IV, Daragan VA, Ippel H, Michalak M, Dregni A, Kaltner H, Kopitz J, Gabius HJ, Mayo KH. Biochem J 477 3147-3165 (2020)
  18. Purification of a PHA-like chitin-binding protein from Acacia farnesiana seeds: a time-dependent oligomerization protein. Santi-Gadelha T, Rocha BA, Oliveira CC, Aragão KS, Marinho ES, Gadelha CA, Toyama MH, Pinto VP, Nagano CS, Delatorre P, Martins JL, Galvani FR, Sampaio AH, Debray H, Cavada BS. Appl Biochem Biotechnol 150 97-111 (2008)
  19. Interplay between metal binding and cis/trans isomerization in legume lectins: structural and thermodynamic study of P. angolensis lectin. Garcia-Pino A, Buts L, Wyns L, Loris R. J Mol Biol 361 153-167 (2006)
  20. Structural and biochemical analyses of concanavalin A circular permutation by jack bean asparaginyl endopeptidase. Nonis SG, Haywood J, Schmidberger JW, Mackie ERR, Soares da Costa TP, Bond CS, Mylne JS. Plant Cell 33 2794-2811 (2021)
  21. A canonical EF-loop directs Ca(2+) -sensitivity in phospholipase C-η2. Popovics P, Lu J, Nadia Kamil L, Morgan K, Millar RP, Schmid R, Blindauer CA, Stewart AJ. J Cell Biochem 115 557-565 (2014)
  22. Adsorption of concanavalin A and lentil lectin on platinum electrodes followed by electrochemical impedance spectroscopy: effect of protein state. Ueta RR, Diniz FB. Colloids Surf B Biointerfaces 61 244-249 (2008)
  23. Biosensing breast cancer cells based on a three-dimensional TIO2 nanomembrane transducer. Zanghelini F, Frías IAM, Rêgo MJBM, Pitta MGR, Sacilloti M, Oliveira MDL, Andrade CAS. Biosens Bioelectron 92 313-320 (2017)
  24. Molecular modeling of lectin-like protein from Acacia farnesiana reveals a possible anti-inflammatory mechanism in Carrageenan-induced inflammation. Abrantes VE, Matias da Rocha BA, Batista da Nóbrega R, Silva-Filho JC, Teixeira CS, Cavada BS, Gadelha CA, Ferreira SH, Figueiredo JG, Santi-Gadelha T, Delatorre P. Biomed Res Int 2013 253483 (2013)
  25. Structural Analysis and Characterization of an Antiproliferative Lectin from Canavalia villosa Seeds. Lossio CF, Osterne VJS, Pinto-Junior VR, Chen S, Oliveira MV, Verduijn J, Verbeke I, Serna S, Reichardt NC, Skirtach A, Cavada BS, Van Damme EJM, Nascimento KS. Int J Mol Sci 24 15966 (2023)