1doc Citations

The mobile flavin of 4-OH benzoate hydroxylase.

Science 266 110-4 (1994)
Related entries: 1dob, 1dod, 1doe

Cited: 71 times
EuropePMC logo PMID: 7939628


Para-hydroxybenzoate hydroxylase inserts oxygen into substrates by means of the labile intermediate, flavin C(4a)-hydroperoxide. This reaction requires transient isolation of the flavin and substrate from the bulk solvent. Previous crystal structures have revealed the position of the substrate para-hydroxybenzoate during oxygenation but not how it enters the active site. In this study, enzyme structures with the flavin ring displaced relative to the protein were determined, and it was established that these or similar flavin conformations also occur in solution. Movement of the flavin appears to be essential for the translocation of substrates and products into the solvent-shielded active site during catalysis.

Articles - 1doc mentioned but not cited (2)

  1. Mechanism and kinetics of inducible nitric oxide synthase auto-S-nitrosation and inactivation. Smith BC, Fernhoff NB, Marletta MA. Biochemistry 51 1028-1040 (2012)
  2. A radical intermediate in the conversion of pentachlorophenol to tetrachlorohydroquinone by Sphingobium chlorophenolicum. Rudolph J, Erbse AH, Behlen LS, Copley SD. Biochemistry 53 6539-6549 (2014)

Reviews citing this publication (14)

  1. MICAL-family proteins: Complex regulators of the actin cytoskeleton. Giridharan SS, Caplan S. Antioxid. Redox Signal. 20 2059-2073 (2014)
  2. Structure, mechanism, and dynamics of UDP-galactopyranose mutase. Tanner JJ, Boechi L, Andrew McCammon J, Sobrado P. Arch. Biochem. Biophys. 544 128-141 (2014)
  3. Form follows function: structural and catalytic variation in the class a flavoprotein monooxygenases. Crozier-Reabe K, Moran GR. Int J Mol Sci 13 15601-15639 (2012)
  4. Seeing the forest for the trees: fluorescence studies of single enzymes in the context of ensemble experiments. Tan YW, Yang H. Phys Chem Chem Phys 13 1709-1721 (2011)
  5. Flavoenzymes catalyzing oxidative aromatic ring-cleavage reactions. Chaiyen P. Arch. Biochem. Biophys. 493 62-70 (2010)
  6. Control of catalysis in flavin-dependent monooxygenases. Palfey BA, McDonald CA. Arch. Biochem. Biophys. 493 26-36 (2010)
  7. Apoenzyme reconstitution as a chemical tool for structural enzymology and biotechnology. Fruk L, Kuo CH, Torres E, Niemeyer CM. Angew. Chem. Int. Ed. Engl. 48 1550-1574 (2009)
  8. Binding of small-molecule ligands to proteins: "what you see" is not always "what you get". Mobley DL, Dill KA. Structure 17 489-498 (2009)
  9. Redox control of protein conformation in flavoproteins. Senda T, Senda M, Kimura S, Ishida T. Antioxid. Redox Signal. 11 1741-1766 (2009)
  10. Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Entsch B, Cole LJ, Ballou DP. Arch. Biochem. Biophys. 433 297-311 (2005)
  11. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Ballou DP, Entsch B, Cole LJ. Biochem. Biophys. Res. Commun. 338 590-598 (2005)
  12. Opportunities for genetic investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species that is highly competent for natural transformation. Young DM, Parke D, Ornston LN. Annu. Rev. Microbiol. 59 519-551 (2005)
  13. Deflavination and reconstitution of flavoproteins. Hefti MH, Vervoort J, van Berkel WJ. Eur. J. Biochem. 270 4227-4242 (2003)
  14. Advances in flavin and flavoprotein optical spectroscopy. Stanley RJ. Antioxid. Redox Signal. 3 847-866 (2001)

Articles citing this publication (55)

  1. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Raman CS, Li H, Martásek P, Král V, Masters BS, Poulos TL. Cell 95 939-950 (1998)
  2. The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives. Sánchez C, Butovich IA, Braña AF, Rohr J, Méndez C, Salas JA. Chem. Biol. 9 519-531 (2002)
  3. The crystal structure of phenol hydroxylase in complex with FAD and phenol provides evidence for a concerted conformational change in the enzyme and its cofactor during catalysis. Enroth C, Neujahr H, Schneider G, Lindqvist Y. Structure 6 605-617 (1998)
  4. Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalanine substrate: insights into structure and mechanism. Moustafa IM, Foster S, Lyubimov AY, Vrielink A. J. Mol. Biol. 364 991-1002 (2006)
  5. Crystal structure of 3-hydroxybenzoate hydroxylase from Comamonas testosteroni has a large tunnel for substrate and oxygen access to the active site. Hiromoto T, Fujiwara S, Hosokawa K, Yamaguchi H. J. Mol. Biol. 364 878-896 (2006)
  6. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. Li L, Liu X, Yang W, Xu F, Wang W, Feng L, Bartlam M, Wang L, Rao Z. J. Mol. Biol. 376 453-465 (2008)
  7. Protein and ligand dynamics in 4-hydroxybenzoate hydroxylase. Wang J, Ortiz-Maldonado M, Entsch B, Massey V, Ballou D, Gatti DL. Proc. Natl. Acad. Sci. U.S.A. 99 608-613 (2002)
  8. High-resolution structure of the catalytic region of MICAL (molecule interacting with CasL), a multidomain flavoenzyme-signaling molecule. Siebold C, Berrow N, Walter TS, Harlos K, Owens RJ, Stuart DI, Terman JR, Kolodkin AL, Pasterkamp RJ, Jones EY. Proc. Natl. Acad. Sci. U.S.A. 102 16836-16841 (2005)
  9. Structure and activity of the axon guidance protein MICAL. Nadella M, Bianchet MA, Gabelli SB, Barrila J, Amzel LM. Proc. Natl. Acad. Sci. U.S.A. 102 16830-16835 (2005)
  10. Structure of the monooxygenase component of a two-component flavoprotein monooxygenase. Alfieri A, Fersini F, Ruangchan N, Prongjit M, Chaiyen P, Mattevi A. Proc. Natl. Acad. Sci. U.S.A. 104 1177-1182 (2007)
  11. Crystallographic trapping in the rebeccamycin biosynthetic enzyme RebC. Ryan KS, Howard-Jones AR, Hamill MJ, Elliott SJ, Walsh CT, Drennan CL. Proc. Natl. Acad. Sci. U.S.A. 104 15311-15316 (2007)
  12. Purification and properties of hydroquinone hydroxylase, a FAD-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604. Eppink MH, Cammaart E, Van Wassenaar D, Middelhoven WJ, van Berkel WJ. Eur. J. Biochem. 267 6832-6840 (2000)
  13. Switch of coenzyme specificity of p-hydroxybenzoate hydroxylase. Eppink MH, Overkamp KM, Schreuder HA, Van Berkel WJ. J. Mol. Biol. 292 87-96 (1999)
  14. The PHBH fold: not only flavoenzymes. Mattevi A. Biophys. Chem. 70 217-222 (1998)
  15. Hydroxylation of indole by laboratory-evolved 2-hydroxybiphenyl 3-monooxygenase. Meyer A, Würsten M, Schmid A, Kohler HP, Witholt B. J. Biol. Chem. 277 34161-34167 (2002)
  16. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism. Meneely KM, Lamb AL. Biochemistry 46 11930-11937 (2007)
  17. Structure and ligand binding properties of the epoxidase component of styrene monooxygenase . Ukaegbu UE, Kantz A, Beaton M, Gassner GT, Rosenzweig AC. Biochemistry 49 1678-1688 (2010)
  18. The crystal structure of chorismate lyase shows a new fold and a tightly retained product. Gallagher DT, Mayhew M, Holden MJ, Howard A, Kim KJ, Vilker VL. Proteins 44 304-311 (2001)
  19. Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa. Olucha J, Meneely KM, Chilton AS, Lamb AL. J. Biol. Chem. 286 31789-31798 (2011)
  20. Purine utilization by Klebsiella oxytoca M5al: genes for ring-oxidizing and -opening enzymes. Pope SD, Chen LL, Stewart V. J. Bacteriol. 191 1006-1017 (2009)
  21. The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a Criegee-like conformation. Yachnin BJ, Sprules T, McEvoy MB, Lau PC, Berghuis AM. J. Am. Chem. Soc. 134 7788-7795 (2012)
  22. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. Volkers G, Palm GJ, Weiss MS, Wright GD, Hinrichs W. FEBS Lett. 585 1061-1066 (2011)
  23. Crystal structure of p-hydroxybenzoate hydroxylase reconstituted with the modified FAD present in alcohol oxidase from methylotrophic yeasts: evidence for an arabinoflavin. van Berkel WJ, Eppink MH, Schreuder HA. Protein Sci. 3 2245-2253 (1994)
  24. Comparing protein-ligand interactions in solution and single crystals by Raman spectroscopy. Altose MD, Zheng Y, Dong J, Palfey BA, Carey PR. Proc. Natl. Acad. Sci. U.S.A. 98 3006-3011 (2001)
  25. An unusual role for a mobile flavin in StaC-like indolocarbazole biosynthetic enzymes. Goldman PJ, Ryan KS, Hamill MJ, Howard-Jones AR, Walsh CT, Elliott SJ, Drennan CL. Chem. Biol. 19 855-865 (2012)
  26. Crystal structure analysis of free and substrate-bound 6-hydroxy-L-nicotine oxidase from Arthrobacter nicotinovorans. Kachalova GS, Bourenkov GP, Mengesdorf T, Schenk S, Maun HR, Burghammer M, Riekel C, Decker K, Bartunik HD. J. Mol. Biol. 396 785-799 (2010)
  27. Structure of 2,6-dihydroxypyridine 3-hydroxylase from a nicotine-degrading pathway. Treiber N, Schulz GE. J. Mol. Biol. 379 94-104 (2008)
  28. Enantioselective substrate binding in a monooxygenase protein model by molecular dynamics and docking. Feenstra KA, Hofstetter K, Bosch R, Schmid A, Commandeur JN, Vermeulen NP. Biophys. J. 91 3206-3216 (2006)
  29. Molecular and biochemical characterization of the xlnD-encoded 3-hydroxybenzoate 6-hydroxylase involved in the degradation of 2,5-xylenol via the gentisate pathway in Pseudomonas alcaligenes NCIMB 9867. Gao X, Tan CL, Yeo CC, Poh CL. J. Bacteriol. 187 7696-7702 (2005)
  30. 4-Hydroxybenzoate hydroxylase from Pseudomonas sp. CBS3. Purification, characterization, gene cloning, sequence analysis and assignment of structural features determining the coenzyme specificity. Seibold B, Matthes M, Eppink MH, Lingens F, Van Berkel WJ, Müller R. Eur. J. Biochem. 239 469-478 (1996)
  31. Photoaffinity labeling and site-directed mutagenesis of rat squalene epoxidase. Lee HK, Denner-Ancona P, Sakakibara J, Ono T, Prestwich GD. Arch. Biochem. Biophys. 381 43-52 (2000)
  32. Antioxidative galloyl esters as enzyme inhibitors of p-hydroxybenzoate hydroxylase. Abe I, Kashiwagi K, Noguchi H. FEBS Lett. 483 131-134 (2000)
  33. Structural basis for substrate recognition and specificity in aklavinone-11-hydroxylase from rhodomycin biosynthesis. Lindqvist Y, Koskiniemi H, Jansson A, Sandalova T, Schnell R, Liu Z, Mäntsälä P, Niemi J, Schneider G. J. Mol. Biol. 393 966-977 (2009)
  34. Genetic and biochemical characterization of a 4-hydroxybenzoate hydroxylase from Corynebacterium glutamicum. Huang Y, Zhao KX, Shen XH, Jiang CY, Liu SJ. Appl. Microbiol. Biotechnol. 78 75-83 (2008)
  35. Structure and function of mutant Arg44Lys of 4-hydroxybenzoate hydroxylase implications for NADPH binding. Eppink MH, Schreuder HA, Van Berkel WJ. Eur. J. Biochem. 231 157-165 (1995)
  36. Phe161 and Arg166 variants of p-hydroxybenzoate hydroxylase. Implications for NADPH recognition and structural stability. Eppink MH, Bunthol C, Schreuder HA, van Berkel WJ. FEBS Lett. 443 251-255 (1999)
  37. Multidimensional mutual information methods for the analysis of covariation in multiple sequence alignments. Clark GW, Ackerman SH, Tillier ER, Gatti DL. BMC Bioinformatics 15 157 (2014)
  38. Crystallographic evidence of drastic conformational changes in the active site of a flavin-dependent N-hydroxylase. Setser JW, Heemstra JR, Walsh CT, Drennan CL. Biochemistry 53 6063-6077 (2014)
  39. Accurate simulation and detection of coevolution signals in multiple sequence alignments. Ackerman SH, Tillier ER, Gatti DL. PLoS ONE 7 e47108 (2012)
  40. Flavin motion in p-hydroxybenzoate hydroxylase. Substrate and effector specificity of the Tyr22-->Ala mutant. van der Bolt FJ, Vervoort J, van Berkel WJ. Eur. J. Biochem. 237 592-600 (1996)
  41. Spectral and kinetic characterization of intermediates in the aromatization reaction catalyzed by NikD, an unusual amino acid oxidase. Bruckner RC, Jorns MS. Biochemistry 48 4455-4465 (2009)
  42. Conserved and non-conserved residues and their role in the structure and function of p-hydroxybenzoate hydroxylase. Suemori A. Protein Eng. Des. Sel. 26 479-488 (2013)
  43. Crystallization and preliminary X-ray crystallographic analysis of 2-methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase from Pseudomonas sp. MA-1. Oonanant W, Sucharitakul J, Yuvaniyama J, Chaiyen P. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 312-314 (2005)
  44. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase. Luanloet T, Sucharitakul J, Chaiyen P. FEBS J. 282 3107-3125 (2015)
  45. 1-naphthol 2-hydroxylase from Pseudomonas sp. strain C6: purification, characterization and chemical modification studies. Sah S, Phale PS. Biodegradation 22 517-526 (2011)
  46. A nested gene in Streptomyces bacteria encodes a protein involved in quaternary complex formation. Kallio P, Liu Z, Mäntsälä P, Niemi J, Metsä-Ketelä M. J. Mol. Biol. 375 1212-1221 (2008)
  47. Crystallography gets the jump on the enzymologists. Ballou DP. Proc. Natl. Acad. Sci. U.S.A. 104 15587-15588 (2007)
  48. Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline-degrading monooxygenase TetX. Volkers G, Damas JM, Palm GJ, Panjikar S, Soares CM, Hinrichs W. Acta Crystallogr. D Biol. Crystallogr. 69 1758-1767 (2013)
  49. Monomer formation and function of p-hydroxybenzoate hydroxylase in reverse micelles and in dimethylsulfoxide/water mixtures. Kudryashova EV, Visser AJ, van Berkel WJ. Chembiochem 9 413-419 (2008)
  50. Tyr217 and His213 are important for substrate binding and hydroxylation of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1. Sucharitakul J, Medhanavyn D, Pakotiprapha D, van Berkel WJ, Chaiyen P. FEBS J. 283 860-881 (2016)
  51. Structures of the Apo and FAD-bound forms of 2-hydroxybiphenyl 3-monooxygenase (HbpA) locate activity hotspots identified by using directed evolution. Jensen CN, Mielke T, Farrugia JE, Frank A, Man H, Hart S, Turkenburg JP, Grogan G. Chembiochem 16 968-976 (2015)
  52. The catalytic mechanism of decarboxylative hydroxylation of salicylate hydroxylase revealed by crystal structure analysis at 2.5 Å resolution. Uemura T, Kita A, Watanabe Y, Adachi M, Kuroki R, Morimoto Y. Biochem. Biophys. Res. Commun. 469 158-163 (2016)
  53. Crystal Structures of SgcE6 and SgcC, the Two-Component Monooxygenase That Catalyzes Hydroxylation of a Carrier Protein-Tethered Substrate during the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027 in Streptomyces globisporus. Chang CY, Lohman JR, Cao H, Tan K, Rudolf JD, Ma M, Xu W, Bingman CA, Yennamalli RM, Bigelow L, Babnigg G, Yan X, Joachimiak A, Phillips GN, Shen B. Biochemistry 55 5142-5154 (2016)
  54. Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes. Park J, Gasparrini AJ, Reck MR, Symister CT, Elliott JL, Vogel JP, Wencewicz TA, Dantas G, Tolia NH. Nat. Chem. Biol. 13 730-736 (2017)
  55. Structural and mechanistic basis of differentiated inhibitors of the acute pancreatitis target kynurenine-3-monooxygenase. Hutchinson JP, Rowland P, Taylor MRD, Christodoulou EM, Haslam C, Hobbs CI, Holmes DS, Homes P, Liddle J, Mole DJ, Uings I, Walker AL, Webster SP, Mowat CG, Chung CW. Nat Commun 8 15827 (2017)

Related citations provided by authors (1)

  1. Flavin-Oxygen Derivatives Involved in Hydroxylation by P-Hydroxybenzoate Hydroxylase. Entsch B, Ballou DP, Massey V J. Biol. Chem. 251 2250- (1976)