1dml Citations

The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase.

Mol Cell 5 267-78 (2000)
Cited: 110 times
EuropePMC logo PMID: 10882068

Abstract

Herpes simplex virus DNA polymerase is a heterodimer composed of a catalytic subunit, Pol, and an unusual processivity subunit, UL42, which, unlike processivity factors such as PCNA, directly binds DNA. The crystal structure of a complex of the C-terminal 36 residues of Pol bound to residues 1-319 of UL42 reveals remarkable similarities between UL42 and PCNA despite contrasting biochemical properties and lack of sequence homology. Moreover, the Pol-UL42 interaction resembles the interaction between the cell cycle regulator p21 and PCNA. The structure and previous data suggest that the UL42 monomer interacts with DNA quite differently than does multimeric toroidal PCNA. The details of the structure lead to a model for the mechanism of UL42, provide the basis for drug design, and allow modeling of other proteins that lack sequence homology with UL42 or PCNA.

Reviews - 1dml mentioned but not cited (1)

  1. In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Shin WH, Christoffer CW, Kihara D. Methods 131 22-32 (2017)

Articles - 1dml mentioned but not cited (9)

  1. A complex prediction: three-dimensional model of the yeast exosome. Aloy P, Ciccarelli FD, Leutwein C, Gavin AC, Superti-Furga G, Bork P, Bottcher B, Russell RB, Russell RB. EMBO Rep 3 628-635 (2002)
  2. A 3D cellular context for the macromolecular world. Patwardhan A, Ashton A, Brandt R, Butcher S, Carzaniga R, Chiu W, Collinson L, Doux P, Duke E, Ellisman MH, Franken E, Grünewald K, Heriche JK, Koster A, Kühlbrandt W, Lagerstedt I, Larabell C, Lawson CL, Saibil HR, Sanz-García E, Subramaniam S, Verkade P, Swedlow JR, Kleywegt GJ. Nat Struct Mol Biol 21 841-845 (2014)
  3. A mutation in the DNA polymerase accessory factor of herpes simplex virus 1 restores viral DNA replication in the presence of raltegravir. Zhou B, Yang K, Wills E, Tang L, Baines JD. J Virol 88 11121-11129 (2014)
  4. The crystal structure of PF-8, the DNA polymerase accessory subunit from Kaposi's sarcoma-associated herpesvirus. Baltz JL, Filman DJ, Ciustea M, Silverman JE, Lautenschlager CL, Coen DM, Ricciardi RP, Hogle JM. J Virol 83 12215-12228 (2009)
  5. Hsp90 Inhibitors Prevent HSV-1 Replication by Directly Targeting UL42-Hsp90 Complex. Qin S, Hu X, Lin S, Xiao J, Wang Z, Jia J, Song X, Liu K, Ren Z, Wang Y. Front Microbiol 12 797279 (2021)
  6. Experimental Evidence for a Revision in the Annotation of Putative Pyridoxamine 5'-Phosphate Oxidases P(N/M)P from Fungi. Domitrovic T, Raymundo DP, da Silva TF, Palhano FL. PLoS One 10 e0136761 (2015)
  7. Structural basis for the assembly of the DNA polymerase holoenzyme from a monkeypox virus variant. Li Y, Shen Y, Hu Z, Yan R. Sci Adv 9 eadg2331 (2023)
  8. Structural and functional studies of PCNA from African swine fever virus. Shao Z, Yang J, Gao Y, Zhang Y, Zhao X, Shao Q, Zhang W, Cao C, Liu H, Gan J. J Virol 97 e0074823 (2023)
  9. The E301R protein of African swine fever virus functions as a sliding clamp involved in viral genome replication. Li S, Ge H, Li Y, Zhang K, Yu S, Cao H, Wang Y, Deng H, Li J, Dai J, Li L-F, Luo Y, Sun Y, Geng Z, Dong Y, Zhang H, Qiu H-J. mBio 14 e0164523 (2023)


Reviews citing this publication (18)

  1. ADMET in silico modelling: towards prediction paradise? van de Waterbeemd H, Gifford E. Nat Rev Drug Discov 2 192-204 (2003)
  2. A structural basis for processivity. Breyer WA, Matthews BW. Protein Sci 10 1699-1711 (2001)
  3. Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Coen DM, Schaffer PA. Nat Rev Drug Discov 2 278-288 (2003)
  4. Human herpes simplex virus: life cycle and development of inhibitors. Kukhanova MK, Korovina AN, Kochetkov SN. Biochemistry (Mosc) 79 1635-1652 (2014)
  5. Disruption of protein-protein interactions: towards new targets for chemotherapy. Loregian A, Palù G. J Cell Physiol 204 750-762 (2005)
  6. Opening of the clamp: an intimate view of an ATP-driven biological machine. Ellison V, Stillman B. Cell 106 655-660 (2001)
  7. Human cytomegalovirus DNA replication: antiviral targets and drugs. Mercorelli B, Sinigalia E, Loregian A, Palù G. Rev Med Virol 18 177-210 (2008)
  8. Protein-protein interactions as targets for antiviral chemotherapy. Loregian A, Marsden HS, Palù G. Rev Med Virol 12 239-262 (2002)
  9. A tale of toroids in DNA metabolism. Hingorani MM, O'Donnell M. Nat Rev Mol Cell Biol 1 22-30 (2000)
  10. Herpesvirus DNA polymerases: Structures, functions and inhibitors. Zarrouk K, Piret J, Boivin G. Virus Res 234 177-192 (2017)
  11. Replication and recombination of herpes simplex virus DNA. Muylaert I, Tang KW, Elias P. J Biol Chem 286 15619-15624 (2011)
  12. Fundamental and accessory systems in herpesviruses. Davison AJ, Dargan DJ, Stow ND. Antiviral Res 56 1-11 (2002)
  13. Processivity factor of DNA polymerase and its expanding role in normal and translesion DNA synthesis. Zhuang Z, Ai Y. Biochim Biophys Acta 1804 1081-1093 (2010)
  14. Disruption of the interactions between the subunits of herpesvirus DNA polymerases as a novel antiviral strategy. Loregian A, Palù G. Clin Microbiol Infect 11 437-446 (2005)
  15. Coordination of late gene transcription of human cytomegalovirus with viral DNA synthesis: recombinant viruses as potential therapeutic vaccine candidates. Isomura H, Stinski MF. Expert Opin Ther Targets 17 157-166 (2013)
  16. Inhibition of herpesvirus and influenza virus replication by blocking polymerase subunit interactions. Palù G, Loregian A. Antiviral Res 99 318-327 (2013)
  17. The three-component helicase/primase complex of herpes simplex virus-1. Bermek O, Williams RS. Open Biol 11 210011 (2021)
  18. From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps. Mulye M, Singh MI, Jain V. Genes (Basel) 13 2058 (2022)

Articles citing this publication (82)

  1. A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Dalrymple BP, Kongsuwan K, Wijffels G, Dixon NE, Jennings PA. Proc Natl Acad Sci U S A 98 11627-11632 (2001)
  2. Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Venclovas C, Thelen MP. Nucleic Acids Res 28 2481-2493 (2000)
  3. Evolution and diversity in human herpes simplex virus genomes. Szpara ML, Gatherer D, Ochoa A, Greenbaum B, Dolan A, Bowden RJ, Enquist LW, Legendre M, Davison AJ. J Virol 88 1209-1227 (2014)
  4. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Wang Y, Prosen DE, Mei L, Sullivan JC, Finney M, Vander Horn PB. Nucleic Acids Res 32 1197-1207 (2004)
  5. Proliferating cell nuclear antigen uses two distinct modes to move along DNA. Kochaniak AB, Habuchi S, Loparo JJ, Chang DJ, Cimprich KA, Walter JC, van Oijen AM. J Biol Chem 284 17700-17710 (2009)
  6. Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, Pol gamma B, functions as a homodimer. Carrodeguas JA, Theis K, Bogenhagen DF, Kisker C. Mol Cell 7 43-54 (2001)
  7. The human cytomegalovirus UL44 protein is a substrate for the UL97 protein kinase. Krosky PM, Baek MC, Jahng WJ, Barrera I, Harvey RJ, Biron KK, Coen DM, Sethna PB. J Virol 77 7720-7727 (2003)
  8. The cytomegalovirus DNA polymerase subunit UL44 forms a C clamp-shaped dimer. Appleton BA, Loregian A, Filman DJ, Coen DM, Hogle JM. Mol Cell 15 233-244 (2004)
  9. Nucleolin associates with the human cytomegalovirus DNA polymerase accessory subunit UL44 and is necessary for efficient viral replication. Strang BL, Boulant S, Coen DM. J Virol 84 1771-1784 (2010)
  10. PSI-BLAST searches using hidden markov models of structural repeats: prediction of an unusual sliding DNA clamp and of beta-propellers in UV-damaged DNA-binding protein. Neuwald AF, Poleksic A. Nucleic Acids Res 28 3570-3580 (2000)
  11. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes. Kazlauskas D, Krupovic M, Venclovas Č. Nucleic Acids Res 44 4551-4564 (2016)
  12. Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion. Komazin-Meredith G, Mirchev R, Golan DE, van Oijen AM, Coen DM. Proc Natl Acad Sci U S A 105 10721-10726 (2008)
  13. Residues of human cytomegalovirus DNA polymerase catalytic subunit UL54 that are necessary and sufficient for interaction with the accessory protein UL44. Loregian A, Appleton BA, Hogle JM, Coen DM. J Virol 78 158-167 (2004)
  14. Selective anti-cytomegalovirus compounds discovered by screening for inhibitors of subunit interactions of the viral polymerase. Loregian A, Coen DM. Chem Biol 13 191-200 (2006)
  15. Biochemical analysis of human POLG2 variants associated with mitochondrial disease. Young MJ, Longley MJ, Li FY, Kasiviswanathan R, Wong LJ, Copeland WC. Hum Mol Genet 20 3052-3066 (2011)
  16. RNA polymerase II-dependent transcription in trypanosomes is associated with a SNAP complex-like transcription factor. Das A, Bellofatto V. Proc Natl Acad Sci U S A 100 80-85 (2003)
  17. Characterization of human herpesvirus 8 ORF59 protein (PF-8) and mapping of the processivity and viral DNA polymerase-interacting domains. Chan SR, Chandran B. J Virol 74 10920-10929 (2000)
  18. Specific residues in the connector loop of the human cytomegalovirus DNA polymerase accessory protein UL44 are crucial for interaction with the UL54 catalytic subunit. Loregian A, Appleton BA, Hogle JM, Coen DM. J Virol 78 9084-9092 (2004)
  19. The A20R protein is a stoichiometric component of the processive form of vaccinia virus DNA polymerase. Klemperer N, McDonald W, Boyle K, Unger B, Traktman P. J Virol 75 12298-12307 (2001)
  20. Noncanonical TATA sequence in the UL44 late promoter of human cytomegalovirus is required for the accumulation of late viral transcripts. Isomura H, Stinski MF, Kudoh A, Murata T, Nakayama S, Sato Y, Iwahori S, Tsurumi T. J Virol 82 1638-1646 (2008)
  21. Identification of a small molecule that inhibits herpes simplex virus DNA Polymerase subunit interactions and viral replication. Pilger BD, Cui C, Coen DM. Chem Biol 11 647-654 (2004)
  22. A model for the mediation of processivity of DNA-targeting proteins by nonspecific binding: dependence on DNA length and presence of obstacles. Zhou HX. Biophys J 88 1608-1615 (2005)
  23. Herpes simplex virus 1 activates cdc2 to recruit topoisomerase II alpha for post-DNA synthesis expression of late genes. Advani SJ, Weichselbaum RR, Roizman B. Proc Natl Acad Sci U S A 100 4825-4830 (2003)
  24. Each monomer of the dimeric accessory protein for human mitochondrial DNA polymerase has a distinct role in conferring processivity. Lee YS, Lee S, Demeler B, Molineux IJ, Johnson KA, Yin YW. J Biol Chem 285 1490-1499 (2010)
  25. Inhibition of human cytomegalovirus DNA polymerase by C-terminal peptides from the UL54 subunit. Loregian A, Rigatti R, Murphy M, Schievano E, Palu G, Marsden HS. J Virol 77 8336-8344 (2003)
  26. The herpes simplex virus processivity factor, UL42, binds DNA as a monomer. Randell JC, Coen DM. J Mol Biol 335 409-413 (2004)
  27. Structure-function analysis of fission yeast Hus1-Rad1-Rad9 checkpoint complex. Kaur R, Kostrub CF, Enoch T. Mol Biol Cell 12 3744-3758 (2001)
  28. Crystal structure of epstein-barr virus DNA polymerase processivity factor BMRF1. Murayama K, Nakayama S, Kato-Murayama M, Akasaka R, Ohbayashi N, Kamewari-Hayami Y, Terada T, Shirouzu M, Tsurumi T, Yokoyama S. J Biol Chem 284 35896-35905 (2009)
  29. Role of the specific interaction of UL112-113 p84 with UL44 DNA polymerase processivity factor in promoting DNA replication of human cytomegalovirus. Kim YE, Ahn JH. J Virol 84 8409-8421 (2010)
  30. cdc2 cyclin-dependent kinase binds and phosphorylates herpes simplex virus 1 U(L)42 DNA synthesis processivity factor. Advani SJ, Weichselbaum RR, Roizman B. J Virol 75 10326-10333 (2001)
  31. Binding parameters and thermodynamics of the interaction of the human cytomegalovirus DNA polymerase accessory protein, UL44, with DNA: implications for the processivity mechanism. Loregian A, Sinigalia E, Mercorelli B, Palù G, Coen DM. Nucleic Acids Res 35 4779-4791 (2007)
  32. Low-resolution structure of vaccinia virus DNA replication machinery. Sèle C, Gabel F, Gutsche I, Ivanov I, Burmeister WP, Iseni F, Tarbouriech N. J Virol 87 1679-1689 (2013)
  33. The late promoter of the human cytomegalovirus viral DNA polymerase processivity factor has an impact on delayed early and late viral gene products but not on viral DNA synthesis. Isomura H, Stinski MF, Kudoh A, Nakayama S, Iwahori S, Sato Y, Tsurumi T. J Virol 81 6197-6206 (2007)
  34. Identification of crucial hydrogen-bonding residues for the interaction of herpes simplex virus DNA polymerase subunits via peptide display, mutational, and calorimetric approaches. Bridges KG, Chow CS, Coen DM. J Virol 75 4990-4998 (2001)
  35. The positively charged surface of herpes simplex virus UL42 mediates DNA binding. Komazin-Meredith G, Santos WL, Filman DJ, Hogle JM, Verdine GL, Coen DM. J Biol Chem 283 6154-6161 (2008)
  36. Contributions of nucleotide excision repair, DNA polymerase eta, and homologous recombination to replication of UV-irradiated herpes simplex virus type 1. Muylaert I, Elias P. J Biol Chem 285 13761-13768 (2010)
  37. Evidence that the C-terminal PB2-binding region of the influenza A virus PB1 protein is a discrete alpha-helical domain. Poole EL, Medcalf L, Elton D, Digard P. FEBS Lett 581 5300-5306 (2007)
  38. Binding of herpes simplex virus-1 US11 to specific RNA sequences. Bryant KF, Cox JC, Wang H, Hogle JM, Ellington AD, Coen DM. Nucleic Acids Res 33 6090-6100 (2005)
  39. Linear diffusion on DNA despite high-affinity binding by a DNA polymerase processivity factor. Randell JC, Coen DM. Mol Cell 8 911-920 (2001)
  40. The flexible loop of the human cytomegalovirus DNA polymerase processivity factor ppUL44 is required for efficient DNA binding and replication in cells. Alvisi G, Roth DM, Camozzi D, Pari GS, Loregian A, Ripalti A, Jans DA. J Virol 83 9567-9576 (2009)
  41. The human cytomegalovirus UL44 C clamp wraps around DNA. Komazin-Meredith G, Petrella RJ, Santos WL, Filman DJ, Hogle JM, Verdine GL, Karplus M, Coen DM. Structure 16 1214-1225 (2008)
  42. Crystal structures of the vaccinia virus polyadenylate polymerase heterodimer: insights into ATP selectivity and processivity. Moure CM, Bowman BR, Gershon PD, Quiocho FA. Mol Cell 22 339-349 (2006)
  43. Human cytomegalovirus inhibitor AL18 also possesses activity against influenza A and B viruses. Muratore G, Mercorelli B, Goracci L, Cruciani G, Digard P, Palù G, Loregian A. Antimicrob Agents Chemother 56 6009-6013 (2012)
  44. The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding. Tarbouriech N, Ducournau C, Hutin S, Mas PJ, Man P, Forest E, Hart DJ, Peyrefitte CN, Burmeister WP, Iseni F. Nat Commun 8 1455 (2017)
  45. Effects of substitutions of arginine residues on the basic surface of herpes simplex virus UL42 support a role for DNA binding in processive DNA synthesis. Randell JC, Komazin G, Jiang C, Hwang CB, Coen DM. J Virol 79 12025-12034 (2005)
  46. Epstein-Barr virus polymerase processivity factor enhances BALF2 promoter transcription as a coactivator for the BZLF1 immediate-early protein. Nakayama S, Murata T, Murayama K, Yasui Y, Sato Y, Kudoh A, Iwahori S, Isomura H, Kanda T, Tsurumi T. J Biol Chem 284 21557-21568 (2009)
  47. Role of homodimerization of human cytomegalovirus DNA polymerase accessory protein UL44 in origin-dependent DNA replication in cells. Sinigalia E, Alvisi G, Mercorelli B, Coen DM, Pari GS, Jans DA, Ripalti A, Palù G, Loregian A. J Virol 82 12574-12579 (2008)
  48. The catalytic subunit of herpes simplex virus type 1 DNA polymerase contains a nuclear localization signal in the UL42-binding region. Loregian A, Piaia E, Cancellotti E, Papini E, Marsden HS, Palù G. Virology 273 139-148 (2000)
  49. Evidence against a simple tethering model for enhancement of herpes simplex virus DNA polymerase processivity by accessory protein UL42. Chaudhuri M, Parris DS. J Virol 76 10270-10281 (2002)
  50. Herpes simplex virus type 1 single-strand DNA binding protein ICP8 enhances the nuclease activity of the UL12 alkaline nuclease by increasing its processivity. Reuven NB, Weller SK. J Virol 79 9356-9358 (2005)
  51. Computational analysis of DNA replicases in double-stranded DNA viruses: relationship with the genome size. Kazlauskas D, Venclovas C. Nucleic Acids Res 39 8291-8305 (2011)
  52. Mutations that decrease DNA binding of the processivity factor of the herpes simplex virus DNA polymerase reduce viral yield, alter the kinetics of viral DNA replication, and decrease the fidelity of DNA replication. Jiang C, Hwang YT, Randell JC, Coen DM, Hwang CB. J Virol 81 3495-3502 (2007)
  53. The carboxy-terminal segment of the human cytomegalovirus DNA polymerase accessory subunit UL44 is crucial for viral replication. Silva LA, Loregian A, Pari GS, Strang BL, Coen DM. J Virol 84 11563-11568 (2010)
  54. Mutations that increase DNA binding by the processivity factor of herpes simplex virus affect virus production and DNA replication fidelity. Jiang C, Komazin-Meredith G, Tian W, Coen DM, Hwang CB. J Virol 83 7573-7580 (2009)
  55. DNA from Dust: Comparative Genomics of Large DNA Viruses in Field Surveillance Samples. Pandey U, Bell AS, Renner DW, Kennedy DA, Shreve JT, Cairns CL, Jones MJ, Dunn PA, Read AF, Szpara ML. mSphere 1 e00132-16 (2016)
  56. Early nucleosome deposition on, and replication of, HSV DNA requires cell factor PCNA. Sanders I, Boyer M, Fraser NW. J Neurovirol 21 358-369 (2015)
  57. Letter A Small Covalent Allosteric Inhibitor of Human Cytomegalovirus DNA Polymerase Subunit Interactions. Chen H, Coseno M, Ficarro SB, Mansueto MS, Komazin-Meredith G, Boissel S, Filman DJ, Marto JA, Hogle JM, Coen DM. ACS Infect Dis 3 112-118 (2017)
  58. Regulated transport into the nucleus of herpesviridae DNA replication core proteins. Gualtiero A, Jans DA, Camozzi D, Avanzi S, Loregian A, Ripalti A, Palù G. Viruses 5 2210-2234 (2013)
  59. Classification of human Herpesviridae proteins using Domain-architecture Aware Inference of Orthologs (DAIO). Zmasek CM, Knipe DM, Pellett PE, Scheuermann RH. Virology 529 29-42 (2019)
  60. Nonstructural protein 5A (NS5A) and human replication protein A increase the processivity of hepatitis C virus NS5B polymerase activity in vitro. Mani N, Yuzhakov A, Yuzhakov O, Coll JT, Black J, Saxena K, Fulghum JR, Lippke JA, Rao BG, Rijnbrand R, Kwong AD. J Virol 89 165-180 (2015)
  61. Phenotypic and genotypic characterization of induced acyclovir-resistant clinical isolates of herpes simplex virus type 1. Hussin A, Md Nor NS, Ibrahim N. Antiviral Res 100 306-313 (2013)
  62. Cloning, expression, and functional characterization of the equine herpesvirus 1 DNA polymerase and its accessory subunit. Loregian A, Case A, Cancellotti E, Valente C, Marsden HS, Palù G. J Virol 80 6247-6258 (2006)
  63. Identification of conserved amino acids in the herpes simplex virus type 1 UL8 protein required for DNA synthesis and UL52 primase interaction in the virus replisome. Muylaert I, Zhao Z, Andersson T, Elias P. J Biol Chem 287 33142-33152 (2012)
  64. Herpes Simplex Virus-1 infection in human primary corneal epithelial cells is blocked by a stapled peptide that targets processive DNA synthesis. Guan H, Nuth M, Lee V, Lin C, Mitchell CH, Lu W, Scott RW, Parker MH, Kulp JL, Reitz AB, Ricciardi RP. Ocul Surf 19 313-321 (2021)
  65. Structural understanding of non-nucleoside inhibition in an elongating herpesvirus polymerase. Hayes RP, Heo MR, Mason M, Reid J, Burlein C, Armacost KA, Tellers DM, Raheem I, Shaw AW, Murray E, McKenna PM, Abeywickrema P, Sharma S, Soisson SM, Klein D. Nat Commun 12 3040 (2021)
  66. Sumoylation of the Carboxy-Terminal of Human Cytomegalovirus DNA Polymerase Processivity Factor UL44 Attenuates Viral DNA Replication. Chen J, Li G, He H, Li X, Niu W, Cao D, Shen A. Front Microbiol 12 652719 (2021)
  67. Comprehensive Mutagenesis of Herpes Simplex Virus 1 Genome Identifies UL42 as an Inhibitor of Type I Interferon Induction. Chapon M, Parvatiyar K, Aliyari SR, Zhao JS, Cheng G. J Virol 93 e01446-19 (2019)
  68. Kinetic approaches to understanding the mechanisms of fidelity of the herpes simplex virus type 1 DNA polymerase. Zhu Y, Stroud J, Song L, Parris DS. J Nucleic Acids 2010 631595 (2010)
  69. Acipenser iridovirus-European encodes a replication factor C (RFC) sub-unit. Pallandre L, Lesne M, de Boisséson C, Briand FX, Charrier A, Waltzek T, Daniel P, Tragnan A, Debeuf B, Chesneau V, Bigarré L. Arch Virol 163 2985-2995 (2018)
  70. The processivity factor complex of feline herpes virus-1 is a new drug target. Zhukovskaya NL, Guan H, Saw YL, Nuth M, Ricciardi RP. Antiviral Res 115 17-20 (2015)
  71. Crystal structure of African swine fever virus pE301R reveals a ring-shaped trimeric DNA sliding clamp. Wu J, Zheng H, Gong P. J Biol Chem 299 104872 (2023)
  72. Genotypic characterization of herpes simplex virus DNA polymerase UL42 processivity factor. Burrel S, Aït-Arkoub Z, Agut H, Boutolleau D. Antiviral Res 93 199-203 (2012)
  73. Kaposi's Sarcoma-Associated Herpesvirus Processivity Factor, ORF59, Binds to Canonical and Linker Histones, and Its Carboxy Terminus Is Dispensable for Viral DNA Synthesis. Gutierrez IV, Sarkar P, Rossetto CC. J Virol 95 e02169-20 (2021)
  74. Molecular modeling and expression of the Litopenaeus vannamei proliferating cell nuclear antigen (PCNA) after white spot syndrome virus shrimp infection. de-la-Re-Vega E, Muhlia-Almazan A, Arvizu-Flores AA, Islas-Osuna MA, Yepiz-Plascencia G, Brieba LG, Sotelo-Mundo RR. Results Immunol 1 24-30 (2011)
  75. Site-specific SUMOylation of viral polymerase processivity factor: a way of localizingtoND10 subnuclear domains for restricted and self-controlled reproduction of herpesvirus. Lai S, Xu M, Wang Y, Li R, Xia C, Xia S, Chen J. Virulence 12 2883-2901 (2021)
  76. The pseudorabies virus DNA polymerase processivity factor UL42 exists as a monomer in vitro and in vivo. Wang YP, Huang LP, Du WJ, Wei YW, Xia DL, Wu HL, Feng L, Liu CM. Arch Virol 161 1027-1031 (2016)
  77. Identification of a candidate rad1 subunit for the kinetoplastid 9-1-1 (rad9-hus1-rad1) complex. MacNeill SA. Biology (Basel) 3 922-927 (2014)
  78. Live-Cell Analysis of Human Cytomegalovirus DNA Polymerase Holoenzyme Assembly by Resonance Energy Transfer Methods. Di Antonio V, Palù G, Alvisi G. Microorganisms 9 928 (2021)
  79. Protein Displacement by Herpes Helicase-Primase and the Key Role of UL42 during Helicase-Coupled DNA Synthesis by the Herpes Polymerase. Dickerson SM, Kuchta RD. Biochemistry 56 2651-2662 (2017)
  80. A small molecule exerts selective antiviral activity by targeting the human cytomegalovirus nuclear egress complex. Chen H, Lye MF, Gorgulla C, Ficarro SB, Cuny GD, Scott DA, Wu F, Rothlauf PW, Wang X, Fernandez R, Pesola JM, Draga S, Marto JA, Hogle JM, Arthanari H, Coen DM. PLoS Pathog 19 e1011781 (2023)
  81. Correlated Target Search by Vaccinia Virus Uracil-DNA Glycosylase, a DNA Repair Enzyme and a Processivity Factor of Viral Replication Machinery. Diatlova EA, Mechetin GV, Yudkina AV, Zharkov VD, Torgasheva NA, Endutkin AV, Shulenina OV, Konevega AL, Gileva IP, Shchelkunov SN, Zharkov DO. Int J Mol Sci 24 9113 (2023)
  82. Proliferating cell nuclear antigen inhibitors block distinct stages of herpes simplex virus infection. Packard JE, Williams MR, Fromuth DP, Dembowski JA. PLoS Pathog 19 e1011539 (2023)