1djh Citations

A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-delta1.

Biochemistry 36 2753-62 (1997)
Related entries: 1djg, 1dji

Cited: 78 times
EuropePMC logo PMID: 9062102

Abstract

We have determined the crystal structures of complexes of phosphoinositide-specific phospholipase C-delta1 from rat with calcium, barium, and lanthanum at 2.5-2.6 A resolution. Binding of these metal ions is observed in the active site of the catalytic TIM barrel and in the calcium binding region (CBR) of the C2 domain. The C2 domain of PLC-delta1 is a circularly permuted topological variant (P-variant) of the synaptotagmin I C2A domain (S-variant). On the basis of sequence analysis, we propose that both the S-variant and P-variant topologies are present among other C2 domains. Multiple adjacent binding sites in the C2 domain were observed for calcium and the other metal/enzyme complexes. The maximum number of binding sites observed was for the calcium analogue lanthanum. This complex shows an array-like binding of three lanthanum ions (sites I-III) in a crevice on one end of the C2 beta-sandwich. Residues involved in metal binding are contained in three loops, CBR1, CBR2, and CBR3. Sites I and II are maintained in the calcium and barium complexes, whereas sites II and III coincide with a binary calcium binding site in the C2A domain of synaptotagmin I. Several conformers for CBR1 are observed. The conformation of CBR1 does not appear to be strictly dependent on metal binding; however, metal binding may stabilize certain conformers. No significant structural changes are observed for CBR2 or CBR3. The surface of this ternary binding site provides a cluster of freely accessible liganding positions for putative phospholipid ligands of the C2 domain. It may be that the ternary metal binding site is also a feature of calcium-dependent phospholipid binding in solution. A ternary metal binding site might be a conserved feature among C2 domains that contain the critical calcium ligands in their CBR's. The high cooperativity of calcium-mediated lipid binding by C2 domains described previously is explained by this novel type of calcium binding site.

Articles - 1djh mentioned but not cited (1)



Reviews citing this publication (26)

  1. Synthesis and function of 3-phosphorylated inositol lipids. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. Annu Rev Biochem 70 535-602 (2001)
  2. Regulation of phosphoinositide-specific phospholipase C. Rhee SG. Annu Rev Biochem 70 281-312 (2001)
  3. Phosphoinositides: tiny lipids with giant impact on cell regulation. Balla T. Physiol Rev 93 1019-1137 (2013)
  4. Structure, function, and control of phosphoinositide-specific phospholipase C. Rebecchi MJ, Pentyala SN. Physiol Rev 80 1291-1335 (2000)
  5. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Ingham RJ, Gish G, Pawson T. Oncogene 23 1972-1984 (2004)
  6. Membrane-protein interactions in cell signaling and membrane trafficking. Cho W, Stahelin RV. Annu Rev Biophys Biomol Struct 34 119-151 (2005)
  7. Signaling and subcellular targeting by membrane-binding domains. Hurley JH, Misra S. Annu Rev Biophys Biomol Struct 29 49-79 (2000)
  8. Amphitropic proteins: regulation by reversible membrane interactions (review). Johnson JE, Cornell RB. Mol Membr Biol 16 217-235 (1999)
  9. Families of phosphoinositide-specific phospholipase C: structure and function. Katan M. Biochim Biophys Acta 1436 5-17 (1998)
  10. Signaling through C2 domains: more than one lipid target. Corbalan-Garcia S, Gómez-Fernández JC. Biochim Biophys Acta 1838 1536-1547 (2014)
  11. Membrane binding domains. Hurley JH. Biochim Biophys Acta 1761 805-811 (2006)
  12. Regulation of phospholipase C isozymes by ras superfamily GTPases. Harden TK, Sondek J. Annu Rev Pharmacol Toxicol 46 355-379 (2006)
  13. The phospholipase C isozymes and their regulation. Gresset A, Sondek J, Harden TK. Subcell Biochem 58 61-94 (2012)
  14. Calcium oscillations and mammalian egg activation. Malcuit C, Kurokawa M, Fissore RA. J Cell Physiol 206 565-573 (2006)
  15. Anionic phospholipids, interfacial binding and the regulation of cell functions. Buckland AG, Wilton DC. Biochim Biophys Acta 1483 199-216 (2000)
  16. Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E. Biochimie 96 144-157 (2014)
  17. Structural insight into substrate specificity and regulatory mechanisms of phosphoinositide 3-kinases. Djordjevic S, Driscoll PC. Trends Biochem Sci 27 426-432 (2002)
  18. Stimulation of phospholipase Cbeta by membrane interactions, interdomain movement, and G protein binding--how many ways can you activate an enzyme? Drin G, Scarlata S. Cell Signal 19 1383-1392 (2007)
  19. Structural Determinants of Isoform Selectivity in PI3K Inhibitors. Miller MS, Thompson PE, Gabelli SB. Biomolecules 9 E82 (2019)
  20. Phospholipase C. Bill CA, Vines CM. Adv Exp Med Biol 1131 215-242 (2020)
  21. Modular PH and C2 domains in membrane attachment and other functions. Katan M, Allen VL. FEBS Lett 452 36-40 (1999)
  22. Mechanisms of neuronal membrane sealing following mechanical trauma. Hendricks BK, Shi R. Neurosci Bull 30 627-644 (2014)
  23. Dual-Specific Protein and Lipid Phosphatase PTEN and Its Biological Functions. Tu T, Chen J, Chen L, Stiles BL. Cold Spring Harb Perspect Med 10 a036301 (2020)
  24. Protein kinase C: an example of a calcium-regulated protein binding to membranes (review). Mosior M, Epand RM. Mol Membr Biol 14 65-70 (1997)
  25. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Genes Dis 11 103-134 (2024)
  26. Phospholipase C: underrated players in microbial infections. Singh V, Rai R, Mathew BJ, Chourasia R, Singh AK, Kumar A, Chaurasiya SK. Front Cell Infect Microbiol 13 1089374 (2023)

Articles citing this publication (51)

  1. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP. Cell 99 323-334 (1999)
  2. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Fernandez I, Araç D, Ubach J, Gerber SH, Shin O, Gao Y, Anderson RG, Südhof TC, Rizo J. Neuron 32 1057-1069 (2001)
  3. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? Ubach J, Zhang X, Shao X, Südhof TC, Rizo J. EMBO J 17 3921-3930 (1998)
  4. The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLD zeta 1 with distinct regulatory domains. Qin C, Wang X. Plant Physiol 128 1057-1068 (2002)
  5. Electrostatic control of the membrane targeting of C2 domains. Murray D, Honig B. Mol Cell 9 145-154 (2002)
  6. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-independent snare complex interaction. Sutton RB, Ernst JA, Brunger AT. J Cell Biol 147 589-598 (1999)
  7. Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. Uellner R, Zvelebil MJ, Hopkins J, Jones J, MacDougall LK, Morgan BP, Podack E, Waterfield MD, Griffiths GM. EMBO J 16 7287-7296 (1997)
  8. General and versatile autoinhibition of PLC isozymes. Hicks SN, Jezyk MR, Gershburg S, Seifert JP, Harden TK, Sondek J. Mol Cell 31 383-394 (2008)
  9. Structure of the key toxin in gas gangrene. Naylor CE, Eaton JT, Howells A, Justin N, Moss DS, Titball RW, Basak AK. Nat Struct Biol 5 738-746 (1998)
  10. Structure of the protein kinase Cbeta phospholipid-binding C2 domain complexed with Ca2+. Sutton RB, Sprang SR. Structure 6 1395-1405 (1998)
  11. Solution structure and membrane interactions of the C2 domain of cytosolic phospholipase A2. Xu GY, McDonagh T, Yu HA, Nalefski EA, Clark JD, Cumming DA. J Mol Biol 280 485-500 (1998)
  12. Crystal structure of the C2 domain from protein kinase C-delta. Pappa H, Murray-Rust J, Dekker LV, Parker PJ, McDonald NQ. Structure 6 885-894 (1998)
  13. A conformational switch in the Piccolo C2A domain regulated by alternative splicing. Garcia J, Gerber SH, Sugita S, Südhof TC, Rizo J. Nat Struct Mol Biol 11 45-53 (2004)
  14. Evolutionarily conserved multiple C2 domain proteins with two transmembrane regions (MCTPs) and unusual Ca2+ binding properties. Shin OH, Han W, Wang Y, Südhof TC. J Biol Chem 280 1641-1651 (2005)
  15. Structure of the C2 domain from novel protein kinase Cepsilon. A membrane binding model for Ca(2+)-independent C2 domains. Ochoa WF, Garcia-Garcia J, Fita I, Corbalan-Garcia S, Verdaguer N, Gomez-Fernandez JC. J Mol Biol 311 837-849 (2001)
  16. Structure of the Janus-faced C2B domain of rabphilin. Ubach J, García J, Nittler MP, Südhof TC, Rizo J. Nat Cell Biol 1 106-112 (1999)
  17. Membrane-docking loops of the cPLA2 C2 domain: detailed structural analysis of the protein-membrane interface via site-directed spin-labeling. Malmberg NJ, Van Buskirk DR, Falke JJ. Biochemistry 42 13227-13240 (2003)
  18. The Escherichia coli outer membrane cobalamin transporter BtuB: structural analysis of calcium and substrate binding, and identification of orthologous transporters by sequence/structure conservation. Chimento DP, Kadner RJ, Wiener MC. J Mol Biol 332 999-1014 (2003)
  19. Additional binding sites for anionic phospholipids and calcium ions in the crystal structures of complexes of the C2 domain of protein kinase calpha. Ochoa WF, Corbalán-Garcia S, Eritja R, Rodríguez-Alfaro JA, Gómez-Fernández JC, Fita I, Verdaguer N. J Mol Biol 320 277-291 (2002)
  20. X-ray reflectivity studies of cPLA2{alpha}-C2 domains adsorbed onto Langmuir monolayers of SOPC. Málková S, Long F, Stahelin RV, Pingali SV, Murray D, Cho W, Schlossman ML. Biophys J 89 1861-1873 (2005)
  21. An unusual C(2)-domain in the active-zone protein piccolo: implications for Ca(2+) regulation of neurotransmitter release. Gerber SH, Garcia J, Rizo J, Südhof TC. EMBO J 20 1605-1619 (2001)
  22. Alternate splicing of dysferlin C2A confers Ca²⁺-dependent and Ca²⁺-independent binding for membrane repair. Fuson K, Rice A, Mahling R, Snow A, Nayak K, Shanbhogue P, Meyer AG, Redpath GM, Hinderliter A, Cooper ST, Sutton RB. Structure 22 104-115 (2014)
  23. Characterisation of the calcium-binding C-terminal domain of Clostridium perfringens alpha-toxin. Naylor CE, Jepson M, Crane DT, Titball RW, Miller J, Basak AK, Bolgiano B. J Mol Biol 294 757-770 (1999)
  24. Calcium triggers an intramolecular association of the C2 domains in synaptotagmin. García RA, Forde CE, Godwin HA. Proc Natl Acad Sci U S A 97 5883-5888 (2000)
  25. Phospholipase C isozymes as effectors of Ras superfamily GTPases. Harden TK, Hicks SN, Sondek J. J Lipid Res 50 Suppl S243-8 (2009)
  26. Role of electrostatic and hydrophobic interactions in Ca(2+)-dependent phospholipid binding by the C(2)A-domain from synaptotagmin I. Gerber SH, Rizo J, Südhof TC. Diabetes 51 Suppl 1 S12-8 (2002)
  27. In silico functional and structural characterisation of ferlin proteins by mapping disease-causing mutations and evolutionary information onto three-dimensional models of their C2 domains. Jiménez JL, Bashir R. J Neurol Sci 260 114-123 (2007)
  28. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain. Jensen RB, Lykke-Andersen K, Frandsen GI, Nielsen HB, Haseloff J, Jespersen HM, Mundy J, Skriver K. Plant Mol Biol 44 799-814 (2000)
  29. 2.6 A resolution crystal structure of the bacterioferritin from Azotobacter vinelandii. Liu HL, Zhou HN, Xing WM, Zhao JF, Li SX, Huang JF, Bi RC. FEBS Lett 573 93-98 (2004)
  30. Mechanism of activation and inactivation of Gq/phospholipase C-β signaling nodes. Harden TK, Waldo GL, Hicks SN, Sondek J. Chem Rev 111 6120-6129 (2011)
  31. Phospholipase C-delta3 binds with high specificity to phosphatidylinositol 4,5-bisphosphate and phosphatidic acid in bilayer membranes. Pawelczyk T, Matecki A. Eur J Biochem 262 291-298 (1999)
  32. Characterization of the C. elegans gap-2 gene encoding a novel Ras-GTPase activating protein and its possible role in larval development. Hayashizaki S, Iino Y, Yamamoto M. Genes Cells 3 189-202 (1998)
  33. Structural Basis for Ca2+-mediated Interaction of the Perforin C2 Domain with Lipid Membranes. Yagi H, Conroy PJ, Leung EW, Law RH, Trapani JA, Voskoboinik I, Whisstock JC, Norton RS. J Biol Chem 290 25213-25226 (2015)
  34. A comprehensive analysis of non-sequential alignments between all protein structures. Abyzov A, Ilyin VA. BMC Struct Biol 7 78 (2007)
  35. A lobster phospholipase C-beta that associates with G-proteins in response to odorants. Xu F, McClintock TS. J Neurosci 19 4881-4888 (1999)
  36. Rare earth elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 endoplasmic reticulum-plasma membrane contact site complexes in Arabidopsis. Lee E, Santana BVN, Samuels E, Benitez-Fuente F, Corsi E, Botella MA, Perez-Sancho J, Vanneste S, Friml J, Macho A, Azevedo AA, Rosado A. J Exp Bot 71 3986-3998 (2020)
  37. Ca2+ activation of the cPLA2 C2 domain: ordered binding of two Ca2+ ions with positive cooperativity. Malmberg NJ, Varma S, Jakobsson E, Falke JJ. Biochemistry 43 16320-16328 (2004)
  38. PRIP (phospholipase C-related but catalytically inactive protein) inhibits exocytosis by direct interactions with syntaxin 1 and SNAP-25 through its C2 domain. Zhang Z, Takeuchi H, Gao J, Wang D, James DJ, Martin TFJ, Hirata M. J Biol Chem 288 7769-7780 (2013)
  39. Structural basis for calcium and phosphatidylserine regulation of phospholipase C δ1. Lomasney JW, Cheng HF, Kobayashi M, King K. Biochemistry 51 2246-2257 (2012)
  40. Fragmin60 encodes an actin-binding protein with a C2 domain and controls actin Thr-203 phosphorylation in Physarum plasmodia and sclerotia. Sklyarova T, De Corte V, Meerschaert K, Devriendt L, Vanloo B, Bailey J, Cook LJ, Goethals M, Van Damme J, Puype M, Vandekerckhove J, Gettemans J. J Biol Chem 277 39840-39849 (2002)
  41. Isolation and characterization of a phospholipase C delta isoform from pea that is regulated by light in a tissue specific manner. Venkataraman G, Goswami M, Tuteja N, Reddy MK, Sopory SK. Mol Genet Genomics 270 378-386 (2003)
  42. Beta-strand recombination in tricalbin evolution and the origin of synaptotagmin-like C2 domains. Jiménez JL, Davletov B. Proteins 68 770-778 (2007)
  43. Functional expression in insect cells, one-step purification and characterization of a recombinant phospholipase D from cowpea (Vigna unguiculata L. Walp). El Maarouf H, Carrière F, Rivière M, Abousalham A. Protein Eng 13 811-817 (2000)
  44. Mutations in PLCδ1 associated with hereditary leukonychia display divergent PIP2 hydrolytic function. Nomikos M, Thanassoulas A, Beck K, Theodoridou M, Kew J, Kashir J, Calver BL, Matthews E, Rizkallah P, Sideratou Z, Nounesis G, Lai FA. FEBS J 283 4502-4514 (2016)
  45. The cPLA2 C2alpha domain in solution: structure and dynamics of its Ca2+-activated and cation-free states. Varma S, Jakobsson E. Biophys J 92 966-976 (2007)
  46. Kinetic study of sunflower phospholipase Dα: interactions with micellar substrate, detergents and metals. Abdelkafi S, Abousalham A. Plant Physiol Biochem 49 752-757 (2011)
  47. Comment Sculpting a domain by splicing. Davletov B, Jiménez JL. Nat Struct Mol Biol 11 4-5 (2004)
  48. Structural characterization of soluble E-Syt2. Groer GJ, Haslbeck M, Roessle M, Gessner A. FEBS Lett 582 3941-3947 (2008)
  49. Cation charge and size selectivity of the C2 domain of cytosolic phospholipase A(2). Nalefski EA, Falke JJ. Biochemistry 41 1109-1122 (2002)
  50. Hetero-oligomerization of C2 domains of phospholipase C-related but catalytically inactive protein and synaptotagmin-1. Wang D, Takeuchi H, Gao J, Zhang Z, Hirata M. Adv Biol Regul 57 120-129 (2015)
  51. Whole exome sequencing identifies a novel dominant missense mutation underlying leukonychia in a Pakistani family. Khan T, Khan M, Yousaf A, Khan S, Naeem M, Shah A, Murtaza G, Ali A, Jabeen N, Hussain HMJ, Ma H, Zhang Y, Zubair M, Jiang X, Zhang H. J Hum Genet 63 1071-1076 (2018)