1diz Citations

DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA.

EMBO J 19 758-66 (2000)
Cited: 126 times
EuropePMC logo PMID: 10675345

Abstract

The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 A crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1-azaribose abasic nucleotide out of DNA and induces a 66 degrees bend in the DNA with a marked widening of the minor groove. The position of the 1-azaribose in the enzyme active site suggests an S(N)1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA-DNA complex offers the first glimpse of a helix-hairpin-helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner.

Reviews - 1diz mentioned but not cited (4)

  1. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Cheng X, Roberts RJ. Nucleic Acids Res 29 3784-3795 (2001)
  2. Recent advances in the structural mechanisms of DNA glycosylases. Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Biochim Biophys Acta 1834 247-271 (2013)
  3. Studying protein-DNA interactions using atomic force microscopy. Beckwitt EC, Kong M, Van Houten B. Semin Cell Dev Biol 73 220-230 (2018)
  4. Ada response - a strategy for repair of alkylated DNA in bacteria. Mielecki D, Grzesiuk E. FEMS Microbiol Lett 355 1-11 (2014)

Articles - 1diz mentioned but not cited (15)

  1. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA. Hollis T, Ichikawa Y, Ellenberger T. EMBO J 19 758-766 (2000)
  2. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. Petrova NV, Wu CH. BMC Bioinformatics 7 312 (2006)
  3. Mismatch repair in methylated DNA. Structure and activity of the mismatch-specific thymine glycosylase domain of methyl-CpG-binding protein MBD4. Wu P, Qiu C, Sohail A, Zhang X, Bhagwat AS, Cheng X. J Biol Chem 278 5285-5291 (2003)
  4. A protein-DNA docking benchmark. van Dijk M, Bonvin AM. Nucleic Acids Res 36 e88 (2008)
  5. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD. Rubinson EH, Metz AH, O'Quin J, Eichman BF. J Mol Biol 381 13-23 (2008)
  6. Structure of the E. coli DNA glycosylase AlkA bound to the ends of duplex DNA: a system for the structure determination of lesion-containing DNA. Bowman BR, Lee S, Wang S, Verdine GL. Structure 16 1166-1174 (2008)
  7. Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats. Dalhus B, Helle IH, Backe PH, Alseth I, Rognes T, Bjørås M, Laerdahl JK. Nucleic Acids Res 35 2451-2459 (2007)
  8. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases. Woods RD, O'Shea VL, Chu A, Cao S, Richards JL, Horvath MP, David SS. Nucleic Acids Res 44 801-810 (2016)
  9. Structure of Escherichia coli AlkA in complex with undamaged DNA. Bowman BR, Lee S, Wang S, Verdine GL. J Biol Chem 285 35783-35791 (2010)
  10. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. Houben B, Michiels E, Ramakers M, Konstantoulea K, Louros N, Verniers J, van der Kant R, De Vleeschouwer M, Chicória N, Vanpoucke T, Gallardo R, Schymkowitz J, Rousseau F. EMBO J 39 e102864 (2020)
  11. Evolutionary history of the TBP-domain superfamily. Brindefalk B, Dessailly BH, Yeats C, Orengo C, Werner F, Poole AM. Nucleic Acids Res 41 2832-2845 (2013)
  12. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase. Adhikary S, Eichman BF. EMBO Rep 12 1286-1292 (2011)
  13. MARTINI-Based Protein-DNA Coarse-Grained HADDOCKing. Honorato RV, Roel-Touris J, Bonvin AMJJ. Front Mol Biosci 6 102 (2019)
  14. Substrate specificity and sequence-dependent activity of the Saccharomyces cerevisiae 3-methyladenine DNA glycosylase (Mag). Lingaraju GM, Kartalou M, Meira LB, Samson LD. DNA Repair (Amst) 7 970-982 (2008)
  15. Breaking the Rules: Protein Sculpting in NEIL2 Regulation. Tsutakawa SE, Sarker AH. Structure 29 1-2 (2021)


Reviews citing this publication (21)

  1. Base excision repair. Krokan HE, Bjørås M. Cold Spring Harb Perspect Biol 5 a012583 (2013)
  2. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Schärer OD, Jiricny J. Bioessays 23 270-281 (2001)
  3. DNA base damage recognition and removal: new twists and grooves. Huffman JL, Sundheim O, Tainer JA. Mutat Res 577 55-76 (2005)
  4. Detection of damaged DNA bases by DNA glycosylase enzymes. Friedman JI, Stivers JT. Biochemistry 49 4957-4967 (2010)
  5. DNA glycosylase recognition and catalysis. Fromme JC, Banerjee A, Banerjee A, Verdine GL. Curr Opin Struct Biol 14 43-49 (2004)
  6. DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. Tubbs JL, Pegg AE, Tainer JA. DNA Repair (Amst) 6 1100-1115 (2007)
  7. DNA base repair--recognition and initiation of catalysis. Dalhus B, Laerdahl JK, Backe PH, Bjørås M. FEMS Microbiol Rev 33 1044-1078 (2009)
  8. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Boiteux S, Coste F, Castaing B. Free Radic Biol Med 107 179-201 (2017)
  9. Biological properties of single chemical-DNA adducts: a twenty year perspective. Delaney JC, Essigmann JM. Chem Res Toxicol 21 232-252 (2008)
  10. The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases. Zharkov DO, Grollman AP. Mutat Res 577 24-54 (2005)
  11. Regulation of DNA glycosylases and their role in limiting disease. Sampath H, McCullough AK, Lloyd RS. Free Radic Res 46 460-478 (2012)
  12. A Decade of Biochemical and Structural Studies of the DNA Repair Machinery of Deinococcus radiodurans: Major Findings, Functional and Mechanistic Insight and Challenges. Timmins J, Moe E. Comput Struct Biotechnol J 14 168-176 (2016)
  13. Inducible repair of alkylated DNA in microorganisms. Mielecki D, Wrzesiński M, Grzesiuk E. Mutat Res Rev Mutat Res 763 294-305 (2015)
  14. Crystal structure analysis of DNA lesion repair and tolerance mechanisms. Schneider S, Schorr S, Carell T. Curr Opin Struct Biol 19 87-95 (2009)
  15. Chemical synthesis of oligonucleotides containing damaged bases for biological studies. Iwai S. Nucleosides Nucleotides Nucleic Acids 25 561-582 (2006)
  16. Combining structural and bioinformatics methods for the analysis of functionally important residues in DNA glycosylases. Zharkov DO, Grollman AP. Free Radic Biol Med 32 1254-1263 (2002)
  17. Site-selective reactions of imperfectly matched DNA with small chemical molecules: applications in mutation detection. Bui CT, Rees K, Lambrinakos A, Bedir A, Cotton RG. Bioorg Chem 30 216-232 (2002)
  18. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases. Shi R, Shen XX, Rokas A, Eichman BF. Bioessays 40 e1800133 (2018)
  19. Focus on DNA Glycosylases-A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets. Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Int J Mol Sci 21 E9226 (2020)
  20. Repair of Hypoxanthine in DNA Revealed by DNA Glycosylases and Endonucleases From Hyperthermophilic Archaea. Lin T, Zhang L, Wu M, Jiang D, Li Z, Yang Z. Front Microbiol 12 736915 (2021)
  21. Archaeal DNA alkylation repair conducted by DNA glycosylase and methyltransferase. Yin Y, Zhang L. Appl Microbiol Biotechnol 107 3131-3142 (2023)

Articles citing this publication (86)

  1. HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Sun ZY, Oh KJ, Kim M, Yu J, Brusic V, Song L, Qiao Z, Wang JH, Wagner G, Reinherz EL. Immunity 28 52-63 (2008)
  2. DNA binding and nucleotide flipping by the human DNA repair protein AGT. Daniels DS, Woo TT, Luu KX, Noll DM, Clarke ND, Pegg AE, Tainer JA. Nat Struct Mol Biol 11 714-720 (2004)
  3. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Fromme JC, Banerjee A, Banerjee A, Huang SJ, Verdine GL. Nature 427 652-656 (2004)
  4. Structure of a trapped endonuclease III-DNA covalent intermediate. Fromme JC, Verdine GL. EMBO J 22 3461-3471 (2003)
  5. Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate. Zharkov DO, Golan G, Gilboa R, Fernandes AS, Gerchman SE, Kycia JH, Rieger RA, Grollman AP, Shoham G. EMBO J 21 789-800 (2002)
  6. Common fold in helix-hairpin-helix proteins. Shao X, Grishin NV. Nucleic Acids Res 28 2643-2650 (2000)
  7. Product-assisted catalysis in base-excision DNA repair. Fromme JC, Bruner SD, Yang W, Karplus M, Verdine GL. Nat Struct Biol 10 204-211 (2003)
  8. Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilus HB8. Sugahara M, Mikawa T, Kumasaka T, Yamamoto M, Kato R, Fukuyama K, Inoue Y, Kuramitsu S. EMBO J 19 3857-3869 (2000)
  9. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Iyer LM, Zhang D, Burroughs AM, Aravind L. Nucleic Acids Res 41 7635-7655 (2013)
  10. Convergent evolution of enzyme active sites is not a rare phenomenon. Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJ. J Mol Biol 372 817-845 (2007)
  11. Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. O'Rourke EJ, Chevalier C, Pinto AV, Thiberge JM, Ielpi L, Labigne A, Radicella JP. Proc Natl Acad Sci U S A 100 2789-2794 (2003)
  12. Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. Serre L, Pereira de Jésus K, Boiteux S, Zelwer C, Castaing B. EMBO J 21 2854-2865 (2002)
  13. Structural basis for DNA bridging by barrier-to-autointegration factor. Bradley CM, Ronning DR, Ghirlando R, Craigie R, Dyda F. Nat Struct Mol Biol 12 935-936 (2005)
  14. Direct visualization of a DNA glycosylase searching for damage. Chen L, Haushalter KA, Lieber CM, Verdine GL. Chem Biol 9 345-350 (2002)
  15. The C-terminal alphaO helix of human Ogg1 is essential for 8-oxoguanine DNA glycosylase activity: the mitochondrial beta-Ogg1 lacks this domain and does not have glycosylase activity. Hashiguchi K, Stuart JA, de Souza-Pinto NC, Bohr VA. Nucleic Acids Res 32 5596-5608 (2004)
  16. The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA. Mah TF, Kuznedelov K, Mushegian A, Severinov K, Greenblatt J. Genes Dev 14 2664-2675 (2000)
  17. Catalysing new reactions during evolution: economy of residues and mechanism. Bartlett GJ, Borkakoti N, Thornton JM. J Mol Biol 331 829-860 (2003)
  18. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation. Hashimoto H, Zhang X, Cheng X. Nucleic Acids Res 40 8276-8284 (2012)
  19. Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine. Szulik MW, Pallan PS, Nocek B, Voehler M, Banerjee S, Brooks S, Joachimiak A, Egli M, Eichman BF, Stone MP. Biochemistry 54 1294-1305 (2015)
  20. Duplex interrogation by a direct DNA repair protein in search of base damage. Yi C, Chen B, Qi B, Zhang W, Jia G, Zhang L, Li CJ, Dinner AR, Yang CG, He C. Nat Struct Mol Biol 19 671-676 (2012)
  21. Structure and function of the PWI motif: a novel nucleic acid-binding domain that facilitates pre-mRNA processing. Szymczyna BR, Bowman J, McCracken S, Pineda-Lucena A, Lu Y, Cox B, Lambermon M, Graveley BR, Arrowsmith CH, Blencowe BJ. Genes Dev 17 461-475 (2003)
  22. Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N7-methylguanine. Lee S, Bowman BR, Ueno Y, Wang S, Verdine GL. J Am Chem Soc 130 11570-11571 (2008)
  23. Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1. Odell ID, Newick K, Heintz NH, Wallace SS, Pederson DS. DNA Repair (Amst) 9 134-143 (2010)
  24. Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases. Mol CD, Arvai AS, Begley TJ, Cunningham RP, Tainer JA. J Mol Biol 315 373-384 (2002)
  25. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases. Eichman BF, O'Rourke EJ, Radicella JP, Ellenberger T. EMBO J 22 4898-4909 (2003)
  26. Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase. Koval VV, Kuznetsov NA, Zharkov DO, Ishchenko AA, Douglas KT, Nevinsky GA, Fedorova OS. Nucleic Acids Res 32 926-935 (2004)
  27. Structure of the N-terminal fragment of topoisomerase V reveals a new family of topoisomerases. Taneja B, Patel A, Slesarev A, Mondragón A. EMBO J 25 398-408 (2006)
  28. Structural basis for enzymatic excision of N1-methyladenine and N3-methylcytosine from DNA. Leiros I, Nabong MP, Grøsvik K, Ringvoll J, Haugland GT, Uldal L, Reite K, Olsbu IK, Knaevelsrud I, Moe E, Andersen OA, Birkeland NK, Ruoff P, Klungland A, Bjelland S. EMBO J 26 2206-2217 (2007)
  29. DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG). Metz AH, Hollis T, Eichman BF. EMBO J 26 2411-2420 (2007)
  30. Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid. Terato H, Masaoka A, Asagoshi K, Honsho A, Ohyama Y, Suzuki T, Yamada M, Makino K, Yamamoto K, Ide H. Nucleic Acids Res 30 4975-4984 (2002)
  31. A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus. Starkuviene V, Fritz HJ. Nucleic Acids Res 30 2097-2102 (2002)
  32. Nucleotide flipping by restriction enzymes analyzed by 2-aminopurine steady-state fluorescence. Tamulaitis G, Zaremba M, Szczepanowski RH, Bochtler M, Siksnys V. Nucleic Acids Res 35 4792-4799 (2007)
  33. Base-flipping dynamics in a DNA hairpin processing reaction. Bischerour J, Chalmers R. Nucleic Acids Res 35 2584-2595 (2007)
  34. Crystal structure of human methyl-binding domain IV glycosylase bound to abasic DNA. Manvilla BA, Maiti A, Begley MC, Toth EA, Drohat AC. J Mol Biol 420 164-175 (2012)
  35. Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase. Kuznetsova AA, Kuznetsov NA, Ishchenko AA, Saparbaev MK, Fedorova OS. Biochim Biophys Acta 1840 387-395 (2014)
  36. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging. Buechner CN, Maiti A, Drohat AC, Tessmer I. Nucleic Acids Res 43 2716-2729 (2015)
  37. A discontinuous DNA glycosylase domain in a family of enzymes that excise 5-methylcytosine. Ponferrada-Marín MI, Parrilla-Doblas JT, Roldán-Arjona T, Ariza RR. Nucleic Acids Res 39 1473-1484 (2011)
  38. Catalytic contributions of key residues in the adenine glycosylase MutY revealed by pH-dependent kinetics and cellular repair assays. Brinkmeyer MK, Pope MA, David SS. Chem Biol 19 276-286 (2012)
  39. Modeling of flap endonuclease interactions with DNA substrate. Allawi HT, Kaiser MW, Onufriev AV, Ma WP, Brogaard AE, Case DA, Neri BP, Lyamichev VI. J Mol Biol 328 537-554 (2003)
  40. Solution structure and base perturbation studies reveal a novel mode of alkylated base recognition by 3-methyladenine DNA glycosylase I. Cao C, Kwon K, Jiang YL, Drohat AC, Stivers JT. J Biol Chem 278 48012-48020 (2003)
  41. A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure. Lingaraju GM, Sartori AA, Kostrewa D, Prota AE, Jiricny J, Winkler FK. Structure 13 87-98 (2005)
  42. Crystal structure of family 5 uracil-DNA glycosylase bound to DNA. Kosaka H, Hoseki J, Nakagawa N, Kuramitsu S, Masui R. J Mol Biol 373 839-850 (2007)
  43. DNA mismatch-specific base flipping by a bisacridine macrocycle. David A, Bleimling N, Beuck C, Lehn JM, Weinhold E, Teulade-Fichou MP. Chembiochem 4 1326-1331 (2003)
  44. The C-terminal region of Escherichia coli UvrC contributes to the flexibility of the UvrABC nucleotide excision repair system. Verhoeven EE, van Kesteren M, Turner JJ, van der Marel GA, van Boom JH, Moolenaar GF, Goosen N. Nucleic Acids Res 30 2492-2500 (2002)
  45. Structural and functional analyses of five conserved positively charged residues in the L1 and N-terminal DNA binding motifs of archaeal RADA protein. Chen LT, Ko TP, Chang YW, Lin KA, Wang AH, Wang TF. PLoS One 2 e858 (2007)
  46. The ada operon of Mycobacterium tuberculosis encodes two DNA methyltransferases for inducible repair of DNA alkylation damage. Yang M, Aamodt RM, Dalhus B, Balasingham S, Helle I, Andersen P, Tønjum T, Alseth I, Rognes T, Bjørås M. DNA Repair (Amst) 10 595-602 (2011)
  47. Protein-DNA docking with a coarse-grained force field. Setny P, Bahadur RP, Zacharias M. BMC Bioinformatics 13 228 (2012)
  48. Searching for DNA lesions: structural evidence for lower- and higher-affinity DNA binding conformations of human alkyladenine DNA glycosylase. Setser JW, Lingaraju GM, Davis CA, Samson LD, Drennan CL. Biochemistry 51 382-390 (2012)
  49. A base-flipping mechanism for the T4 phage beta-glucosyltransferase and identification of a transition-state analog. Larivière L, Moréra S. J Mol Biol 324 483-490 (2002)
  50. Crystal structures of two archaeal 8-oxoguanine DNA glycosylases provide structural insight into guanine/8-oxoguanine distinction. Faucher F, Duclos S, Bandaru V, Wallace SS, Doublié S. Structure 17 703-712 (2009)
  51. Solubility engineering of the HhaI methyltransferase. Daujotyte D, Vilkaitis G, Manelyte L, Skalicky J, Szyperski T, Klimasauskas S. Protein Eng 16 295-301 (2003)
  52. Structural Basis for the Lesion-scanning Mechanism of the MutY DNA Glycosylase. Wang L, Chakravarthy S, Verdine GL. J Biol Chem 292 5007-5017 (2017)
  53. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC. Shi R, Mullins EA, Shen XX, Lay KT, Yuen PK, David SS, Rokas A, Eichman BF. EMBO J 37 63-74 (2018)
  54. Sequence-dependent structural variation in DNA undergoing intrahelical inspection by the DNA glycosylase MutM. Sung RJ, Zhang M, Qi Y, Verdine GL. J Biol Chem 287 18044-18054 (2012)
  55. The C-terminal domain of Escherichia coli MutY is involved in DNA binding and glycosylase activities. Li L, Lu AL. Nucleic Acids Res 31 3038-3049 (2003)
  56. The carboxy-terminal domain of ROS1 is essential for 5-methylcytosine DNA glycosylase activity. Hong S, Hashimoto H, Kow YW, Zhang X, Cheng X. J Mol Biol 426 3703-3712 (2014)
  57. Two amino acid replacements change the substrate preference of DNA mismatch glycosylase Mig.MthI from T/G to A/G. Fondufe-Mittendorf YN, Härer C, Kramer W, Fritz HJ. Nucleic Acids Res 30 614-621 (2002)
  58. Characterisation of Archaeglobus fulgidus AlkA hypoxanthine DNA glycosylase activity. Mansfield C, Kerins SM, McCarthy TV. FEBS Lett 540 171-175 (2003)
  59. Structural characterization of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase in its apo form and in complex with 8-oxodeoxyguanosine. Faucher F, Robey-Bond SM, Wallace SS, Doublié S. J Mol Biol 387 669-679 (2009)
  60. Base excision repair sensitizes cells to sulfur mustard and chloroethyl ethyl sulfide. Matijasevic Z, Volkert MR. DNA Repair (Amst) 6 733-741 (2007)
  61. Intact MutY and its catalytic domain differentially contact with A/8-oxoG-containing DNA. Li X, Lu AL. Nucleic Acids Res 28 4593-4603 (2000)
  62. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends. Zhao B, O'Brien PJ. Biochemistry 50 4350-4359 (2011)
  63. Structure-function studies of an unusual 3-methyladenine DNA glycosylase II (AlkA) from Deinococcus radiodurans. Moe E, Hall DR, Leiros I, Monsen VT, Timmins J, McSweeney S. Acta Crystallogr D Biol Crystallogr 68 703-712 (2012)
  64. The synthesis of anti-fixed 3-methyl-3-deaza-2'-deoxyadenosine and other 3H-imidazo[4,5-c]pyridine analogs. Irani RJ, SantaLucia J. Nucleosides Nucleotides Nucleic Acids 21 737-751 (2002)
  65. A thermostable endonuclease III homolog from the archaeon Pyrobaculum aerophilum. Yang H, Phan IT, Fitz-Gibbon S, Shivji MK, Wood RD, Clendenin WM, Hyman EC, Miller JH. Nucleic Acids Res 29 604-613 (2001)
  66. Chloroethylnitrosourea-derived ethano cytosine and adenine adducts are substrates for Escherichia coli glycosylases excising analogous etheno adducts. Guliaev AB, Singer B, Hang B. DNA Repair (Amst) 3 1311-1321 (2004)
  67. Identification of one of the apurinic/apyrimidinic lyase active sites of topoisomerase V by structural and functional studies. Rajan R, Prasad R, Taneja B, Wilson SH, Mondragón A. Nucleic Acids Res 41 657-666 (2013)
  68. Sculpting of DNA at abasic sites by DNA glycosylase homolog mag2. Dalhus B, Nilsen L, Korvald H, Huffman J, Forstrøm RJ, McMurray CT, Alseth I, Tainer JA, Bjørås M. Structure 21 154-166 (2013)
  69. Structural and functional characterization of two unusual endonuclease III enzymes from Deinococcus radiodurans. Sarre A, Ökvist M, Klar T, Hall DR, Smalås AO, McSweeney S, Timmins J, Moe E. J Struct Biol 191 87-99 (2015)
  70. Dispensability of the [4Fe-4S] cluster in novel homologues of adenine glycosylase MutY. Trasviña-Arenas CH, Lopez-Castillo LM, Sanchez-Sandoval E, Brieba LG. FEBS J 283 521-540 (2016)
  71. Depurination of N7-methylguanine by DNA glycosylase AlkD is dependent on the DNA backbone. Rubinson EH, Christov PP, Eichman BF. Biochemistry 52 7363-7365 (2013)
  72. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA. Taylor EL, O'Brien PJ. Biochemistry 54 898-908 (2015)
  73. Identification of alkA gene related to virulence of Shigella flexneri 2a by mutational analysis. Shi ZX, Wang HL, Hu K, Feng EL, Yao X, Su GF, Huang PT, Huang LY. World J Gastroenterol 9 2720-2725 (2003)
  74. Structural Insights into the Mechanism of Base Excision by MBD4. Pidugu LS, Bright H, Lin WJ, Majumdar C, Van Ostrand RP, David SS, Pozharski E, Drohat AC. J Mol Biol 433 167097 (2021)
  75. Structural basis of Qng1-mediated salvage of the micronutrient queuine from queuosine-5'-monophosphate as the biological substrate. Hung SH, Elliott GI, Ramkumar TR, Burtnyak L, McGrenaghan CJ, Alkuzweny S, Quaiyum S, Iwata-Reuyl D, Pan X, Green BD, Kelly VP, de Crécy-Lagard V, Swairjo MA. Nucleic Acids Res 51 935-951 (2023)
  76. Catalytic mechanism of the mismatch-specific DNA glycosylase methyl-CpG-binding domain 4. Ouzon-Shubeita H, Jung H, Lee MH, Koag MC, Lee S. Biochem J 477 1601-1612 (2020)
  77. Key Amino Acid Residues of Mitochondrial Transcription Factor A Synergize with Abasic (AP) Site Dynamics To Facilitate AP-Lyase Reactions. Zhao W, Xu W, Tang J, Kaushik S, Chang CA, Zhao L. ACS Chem Biol 18 1168-1179 (2023)
  78. Molecular dynamics study on conformational differences between dGMP and 8-oxo-dGMP: Effects of metal ions. Fujiwara S, Sawada K, Amisaki T. J Mol Graph Model 51 158-167 (2014)
  79. The Escherichia coli alkA Gene Is Activated to Alleviate Mutagenesis by an Oxidized Deoxynucleoside. Grøsvik K, Tesfahun AN, Muruzábal-Lecumberri I, Haugland GT, Leiros I, Ruoff P, Kvaløy JT, Knævelsrud I, Ånensen H, Alexeeva M, Sato K, Matsuda A, Alseth I, Klungland A, Bjelland S. Front Microbiol 11 263 (2020)
  80. The impact of protonation and deprotonation of 3-methyl-2'-deoxyadenosine on N-glycosidic bond cleavage. Ebrahimi A, Habibi-Khorassani M, Bazzi S. Phys Chem Chem Phys 13 3334-3343 (2011)
  81. Energy Landscapes for Base-Flipping in a Model DNA Duplex. Nicy, Chakraborty D, Wales DJ. J Phys Chem B 126 3012-3028 (2022)
  82. Genetic features shared by Mycobacterium tuberculosis strains involved in microevolution events. Pérez-Lago L, Navarro Y, Herranz M, Bouza E, García-de-Viedma D. Infect Genet Evol 16 326-329 (2013)
  83. Structural basis of sequence-specific cytosine deamination by double-stranded DNA deaminase toxin DddA. Yin L, Shi K, Aihara H. Nat Struct Mol Biol 30 1153-1159 (2023)
  84. Targeting Base Excision Repair Glycosylases with DNA Containing Transition State Mimics Prepared via Click Chemistry. Yuen PK, Green SA, Ashby J, Lay KT, Santra A, Chen X, Horvath MP, David SS. ACS Chem Biol 14 27-36 (2019)
  85. Insights into the substrate discrimination mechanisms of methyl-CpG-binding domain 4. Ouzon-Shubeita H, Schmaltz LF, Lee S. Biochem J 478 1985-1997 (2021)
  86. Molecular simulation investigation on the interaction between barrier-to-autointegration factor or its Gly25Glu mutant and DNA. Shang YD, Zhang JL, Zhang HX, Zheng QC. J Mol Model 20 2246 (2014)