1di1 Citations

Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti.

J. Biol. Chem. 275 25533-9 (2000)
Cited: 68 times
EuropePMC logo PMID: 10825154


The 2.5-A resolution crystal structure of recombinant aristolochene synthase from the blue cheese mold, Penicillium roqueforti, is the first of a fungal terpenoid cyclase. The structure of the enzyme reveals active site features that participate in the cyclization of the universal sesquiterpene cyclase substrate, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. Metal-triggered carbocation formation initiates the cyclization cascade, which proceeds through multiple complex intermediates to yield one exclusive structural and stereochemical isomer of aristolochene. Structural homology of this fungal cyclase with plant and bacterial terpenoid cyclases, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of terpene biosynthesis.

Articles - 1di1 mentioned but not cited (1)

  1. An Algorithm for Protein Helix Assignment Using Helix Geometry. Cao C, Xu S, Wang L. PLoS ONE 10 e0129674 (2015)

Reviews citing this publication (15)

  1. Penicillium roqueforti: a multifunctional cell factory of high value-added molecules. Mioso R, Toledo Marante FJ, Herrera Bravo de Laguna I. J. Appl. Microbiol. 118 781-791 (2015)
  2. Biogenic volatile emissions from the soil. Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP. Plant Cell Environ. 37 1866-1891 (2014)
  3. Traversing the fungal terpenome. Quin MB, Flynn CM, Schmidt-Dannert C. Nat Prod Rep 31 1449-1473 (2014)
  4. Sesquiterpene synthases: passive catalysts or active players? Miller DJ, Allemann RK. Nat Prod Rep 29 60-71 (2012)
  5. Terpenoid synthase structures: a so far incomplete view of complex catalysis. Gao Y, Honzatko RB, Peters RJ. Nat Prod Rep 29 1153-1175 (2012)
  6. Dynamic dissociating homo-oligomers and the control of protein function. Selwood T, Jaffe EK. Arch. Biochem. Biophys. 519 131-143 (2012)
  7. Isoprenoids in three-dimensional space: the stereochemistry of terpene biosynthesis. Dickschat JS. Nat Prod Rep 28 1917-1936 (2011)
  8. Biosynthesis and engineering of isoprenoid small molecules. Withers ST, Keasling JD. Appl. Microbiol. Biotechnol. 73 980-990 (2007)
  9. Bacterial volatiles: the smell of small organisms. Schulz S, Dickschat JS. Nat Prod Rep 24 814-842 (2007)
  10. Pathway engineering by designed divergent evolution. Yoshikuni Y, Keasling JD. Curr Opin Chem Biol 11 233-239 (2007)
  11. What can a chemist learn from nature's macrocycles?--a brief, conceptual view. Wessjohann LA, Ruijter E, Garcia-Rivera D, Brandt W. Mol. Divers. 9 171-186 (2005)
  12. Fungal secondary metabolism - from biochemistry to genomics. Keller NP, Turner G, Bennett JW. Nat. Rev. Microbiol. 3 937-947 (2005)
  13. Biogenesis, molecular regulation and function of plant isoprenoids. Bouvier F, Rahier A, Camara B. Prog. Lipid Res. 44 357-429 (2005)
  14. Mutagenesis approaches to deduce structure-function relationships in terpene synthases. Segura MJ, Jackson BE, Matsuda SP. Nat Prod Rep 20 304-317 (2003)
  15. Molecular scaffolds for chemical wizardry: learning nature's rules for terpene cyclases. Greenhagen B, Chappell J. Proc. Natl. Acad. Sci. U.S.A. 98 13479-13481 (2001)

Articles citing this publication (52)

  1. Designed divergent evolution of enzyme function. Yoshikuni Y, Ferrin TE, Keasling JD. Nature 440 1078-1082 (2006)
  2. Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Rynkiewicz MJ, Cane DE, Christianson DW. Proc. Natl. Acad. Sci. U.S.A. 98 13543-13548 (2001)
  3. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Whittington DA, Wise ML, Urbansky M, Coates RM, Croteau RB, Christianson DW. Proc. Natl. Acad. Sci. U.S.A. 99 15375-15380 (2002)
  4. Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Komatsu M, Tsuda M, Omura S, Oikawa H, Ikeda H. Proc. Natl. Acad. Sci. U.S.A. 105 7422-7427 (2008)
  5. X-ray crystal structure of aristolochene synthase from Aspergillus terreus and evolution of templates for the cyclization of farnesyl diphosphate. Shishova EY, Di Costanzo L, Cane DE, Christianson DW. Biochemistry 46 1941-1951 (2007)
  6. Expression and mechanistic analysis of a germacradienol synthase from Streptomyces coelicolor implicated in geosmin biosynthesis. Cane DE, Watt RM. Proc. Natl. Acad. Sci. U.S.A. 100 1547-1551 (2003)
  7. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chooi YH, Cacho R, Tang Y. Chem. Biol. 17 483-494 (2010)
  8. Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120. Agger SA, Lopez-Gallego F, Hoye TR, Schmidt-Dannert C. J. Bacteriol. 190 6084-6096 (2008)
  9. Conversion of squalene to the pentacarbocyclic hopene. Reinert DJ, Balliano G, Schulz GE. Chem. Biol. 11 121-126 (2004)
  10. Structure of epi-isozizaene synthase from Streptomyces coelicolor A3(2), a platform for new terpenoid cyclization templates. Aaron JA, Lin X, Cane DE, Christianson DW. Biochemistry 49 1787-1797 (2010)
  11. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Agger S, Lopez-Gallego F, Schmidt-Dannert C. Mol. Microbiol. 72 1181-1195 (2009)
  12. Crystal structure of (+)-delta-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis. Gennadios HA, Gonzalez V, Di Costanzo L, Li A, Yu F, Miller DJ, Allemann RK, Christianson DW. Biochemistry 48 6175-6183 (2009)
  13. Expression, purification, and characterization of recombinant amorpha-4,11-diene synthase from Artemisia annua L. Picaud S, Olofsson L, Brodelius M, Brodelius PE. Arch. Biochem. Biophys. 436 215-226 (2005)
  14. Engineering cotton (+)-delta-cadinene synthase to an altered function: germacrene D-4-ol synthase. Yoshikuni Y, Martin VJ, Ferrin TE, Keasling JD. Chem. Biol. 13 91-98 (2006)
  15. Cloning and heterologous expression of the cyclooctatin biosynthetic gene cluster afford a diterpene cyclase and two p450 hydroxylases. Kim SY, Zhao P, Igarashi M, Sawa R, Tomita T, Nishiyama M, Kuzuyama T. Chem. Biol. 16 736-743 (2009)
  16. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases. Aaron JA, Christianson DW. Pure Appl. Chem. 82 1585-1597 (2010)
  17. Enantiospecific (+)- and (-)-germacrene D synthases, cloned from goldenrod, reveal a functionally active variant of the universal isoprenoid-biosynthesis aspartate-rich motif. Prosser I, Altug IG, Phillips AL, König WA, Bouwmeester HJ, Beale MH. Arch. Biochem. Biophys. 432 136-144 (2004)
  18. Crystal structure of albaflavenone monooxygenase containing a moonlighting terpene synthase active site. Zhao B, Lei L, Vassylyev DG, Lin X, Cane DE, Kelly SL, Yuan H, Lamb DC, Waterman MR. J. Biol. Chem. 284 36711-36719 (2009)
  19. Characterization of delta-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Kumeta Y, Ito M. Plant Physiol. 154 1998-2007 (2010)
  20. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. Lopez-Gallego F, Agger SA, Abate-Pella D, Distefano MD, Schmidt-Dannert C. Chembiochem 11 1093-1106 (2010)
  21. Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis. Zhou K, Gao Y, Hoy JA, Mann FM, Honzatko RB, Peters RJ. J. Biol. Chem. 287 6840-6850 (2012)
  22. Altering product outcome in Abies grandis (-)-limonene synthase and (-)-limonene/(-)-alpha-pinene synthase by domain swapping and directed mutagenesis. Katoh S, Hyatt D, Croteau R. Arch. Biochem. Biophys. 425 65-76 (2004)
  23. Induced-fit mechanism in class I terpene cyclases. Baer P, Rabe P, Fischer K, Citron CA, Klapschinski TA, Groll M, Dickschat JS. Angew. Chem. Int. Ed. Engl. 53 7652-7656 (2014)
  24. Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1,8-cineole, and sabinene synthases. Peters RJ, Croteau RB. Arch. Biochem. Biophys. 417 203-211 (2003)
  25. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis. Hyatt DC, Croteau R. Arch. Biochem. Biophys. 439 222-233 (2005)
  26. Aristolochene synthase-catalyzed cyclization of 2-fluorofarnesyl-diphosphate to 2-fluorogermacrene A. Miller DJ, Yu F, Allemann RK. Chembiochem 8 1819-1825 (2007)
  27. Stereochemistry of eudesmane cation formation during catalysis by aristolochene synthase from Penicillium roqueforti. Miller DJ, Gao J, Truhlar DG, Young NJ, Gonzalez V, Allemann RK. Org. Biomol. Chem. 6 2346-2354 (2008)
  28. Stabilisation of transition states prior to and following eudesmane cation in aristolochene synthase. Forcat S, Allemann RK. Org. Biomol. Chem. 4 2563-2567 (2006)
  29. Mechanistic insights from the binding of substrate and carbocation intermediate analogues to aristolochene synthase. Chen M, Al-lami N, Janvier M, D'Antonio EL, Faraldos JA, Cane DE, Allemann RK, Christianson DW. Biochemistry 52 5441-5453 (2013)
  30. Defining the potassium binding region in an apple terpene synthase. Green S, Squire CJ, Nieuwenhuizen NJ, Baker EN, Laing W. J. Biol. Chem. 284 8661-8669 (2009)
  31. Synthetic efficiency in enzyme mechanisms involving carbocations: aristolochene synthase. Allemann RK, Young NJ, Ma S, Truhlar DG, Gao J. J. Am. Chem. Soc. 129 13008-13013 (2007)
  32. Improved conditions for production of recombinant plant sesquiterpene synthases in Escherichia coli. Picaud S, Olsson ME, Brodelius PE. Protein Expr. Purif. 51 71-79 (2007)
  33. Electrostatic effects on (di)terpene synthase product outcome. Zhou K, Peters RJ. Chem. Commun. (Camb.) 47 4074-4080 (2011)
  34. Structural basis for antibody catalysis of a cationic cyclization reaction. Zhu X, Heine A, Monnat F, Houk KN, Janda KD, Wilson IA. J. Mol. Biol. 329 69-83 (2003)
  35. Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Hidalgo PI, Ullán RV, Albillos SM, Montero O, Fernández-Bodega MÁ, García-Estrada C, Fernández-Aguado M, Martín JF. Fungal Genet. Biol. 62 11-24 (2014)
  36. Genetic dissection of sesquiterpene biosynthesis by Fusarium fujikuroi. Brock NL, Huss K, Tudzynski B, Dickschat JS. Chembiochem 14 311-315 (2013)
  37. Cloning and characterization of an Armillaria gallica cDNA encoding protoilludene synthase, which catalyzes the first committed step in the synthesis of antimicrobial melleolides. Engels B, Heinig U, Grothe T, Stadler M, Jennewein S. J. Biol. Chem. 286 6871-6878 (2011)
  38. De novo production of (+)-aristolochene by sporulated surface cultures of Penicillium roqueforti. Demyttenaere JC, Adams A, Van Belleghem K, De Kimpe N, König WA, Tkachev AV. Phytochemistry 59 597-602 (2002)
  39. PR toxin biosynthesis in Penicillium roqueforti. Brock NL, Dickschat JS. Chembiochem 14 1189-1193 (2013)
  40. Competitive inhibition of aristolochene synthase by phenyl-substituted farnesyl diphosphates: evidence of active site plasticity. Miller DJ, Yu F, Young NJ, Allemann RK. Org. Biomol. Chem. 5 3287-3298 (2007)
  41. Plasticity and evolution of (+)-3-carene synthase and (-)-sabinene synthase functions of a sitka spruce monoterpene synthase gene family associated with weevil resistance. Roach CR, Hall DE, Zerbe P, Bohlmann J. J. Biol. Chem. 289 23859-23869 (2014)
  42. Templating effects in aristolochene synthase catalysis: elimination versus cyclisation. Faraldos JA, González V, Senske M, Allemann RK. Org. Biomol. Chem. 9 6920-6923 (2011)
  43. Mushroom hunting by using bioinformatics: application of a predictive framework facilitates the selective identification of sesquiterpene synthases in basidiomycota. Quin MB, Flynn CM, Wawrzyn GT, Choudhary S, Schmidt-Dannert C. Chembiochem 14 2480-2491 (2013)
  44. A single amino acid determines the site of deprotonation in the active center of sesquiterpene synthases SbTPS1 and SbTPS2 from Sorghum bicolor. Garms S, Chen F, Boland W, Gershenzon J, Köllner TG. Phytochemistry 75 6-13 (2012)
  45. The role of aristolochene synthase in diphosphate activation. Faraldos JA, Gonzalez V, Allemann RK. Chem. Commun. (Camb.) 48 3230-3232 (2012)
  46. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture. Grundy DJ, Chen M, González V, Leoni S, Miller DJ, Christianson DW, Allemann RK. Biochemistry 55 2112-2121 (2016)
  47. Pogostol biosynthesis by the endophytic fungus Geniculosporium. Barra L, Schulz B, Dickschat JS. Chembiochem 15 2379-2383 (2014)
  48. Probing the reaction mechanism of aristolochene synthase with 12,13-difluorofarnesyl diphosphate. Yu F, Miller DJ, Allemann RK. Chem. Commun. (Camb.) 4155-4157 (2007)
  49. Improved selectivity of an engineered multi-product terpene synthase. Lauchli R, Pitzer J, Kitto RZ, Kalbarczyk KZ, Rabe KS. Org. Biomol. Chem. 12 4013-4020 (2014)
  50. Dual role for phenylalanine 178 during catalysis by aristolochene synthase. Forcat S, Allemann RK. Chem. Commun. (Camb.) 2094-2095 (2004)
  51. Chemical constituents of the fermentation broth of the marine-derived fungus Penicillium roqueforti. Mioso R, Marante FJ, Laguna IH. Rev Iberoam Micol 32 147-152 (2015)
  52. Carbocation-π interaction: evaluation of the stabilization by phenylalanine of a biochemical carbocation intermediate. Ditchfield R, Spencer TA. Org. Biomol. Chem. 14 9543-9548 (2016)