1dd8 Citations

The X-ray crystal structure of beta-ketoacyl [acyl carrier protein] synthase I.


The crystal structure of the fatty acid elongating enzyme beta-ketoacyl [acyl carrier protein] synthase I (KAS I) from Escherichia coli has been determined to 2.3 A resolution by molecular replacement using the recently solved crystal structure of KAS II as a search model. The crystal contains two independent dimers in the asymmetric unit. KAS I assumes the thiolase alpha(beta)alpha(beta)alpha fold. Electrostatic potential distribution reveals an acyl carrier protein docking site and a presumed substrate binding pocket was detected extending the active site. Both subunits contribute to each substrate binding site in the dimer.

Articles - 1dd8 mentioned but not cited (2)

  1. Elucidation of the protonation states of the catalytic residues in mtKasA: implications for inhibitor design. Lee W, Luckner SR, Kisker C, Tonge PJ, Engels B. Biochemistry 50 5743-5756 (2011)
  2. Crystallization and preliminary X-ray crystallographic analysis of β-ketoacyl-ACP synthase I (XoFabB) from Xanthomonas oryzae pv. oryzae. Doan TT, Kim JK, Mac QK, Chung C, Sampath N, Kim JG, Ahn YJ, Kang LW. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 1548-1550 (2011)

Reviews citing this publication (10)

  1. Glycerophospholipid synthesis and functions in Pseudomonas. Kondakova T, D'Heygère F, Feuilloley MJ, Orange N, Heipieper HJ, Duclairoir Poc C. Chem. Phys. Lipids 190 27-42 (2015)
  2. Recent advances in inhibitors of bacterial fatty acid synthesis type II (FASII) system enzymes as potential antibacterial agents. Wang Y, Ma S. ChemMedChem 8 1589-1608 (2013)
  3. The ubiquitous carrier protein--a window to metabolite biosynthesis. Mercer AC, Burkart MD. Nat Prod Rep 24 750-773 (2007)
  4. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Haapalainen AM, Meriläinen G, Wierenga RK. Trends Biochem. Sci. 31 64-71 (2006)
  5. The structural biology of type II fatty acid biosynthesis. White SW, Zheng J, Zhang YM, Rock. Annu. Rev. Biochem. 74 791-831 (2005)
  6. Structural and functional organization of the animal fatty acid synthase. Smith S, Witkowski A, Joshi AK. Prog. Lipid Res. 42 289-317 (2003)
  7. The enzymology of combinatorial biosynthesis. Reeves CD. Crit. Rev. Biotechnol. 23 95-147 (2003)
  8. Forty years of bacterial fatty acid synthesis. Rock CO, Jackowski S. Biochem. Biophys. Res. Commun. 292 1155-1166 (2002)
  9. Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Du L, Sánchez C, Shen B. Metab. Eng. 3 78-95 (2001)
  10. Lipid biosynthesis as a target for antibacterial agents. Heath RJ, White SW, Rock CO. Prog. Lipid Res. 40 467-497 (2001)

Articles citing this publication (43)

  1. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Campbell JW, Cronan JE. Annu. Rev. Microbiol. 55 305-332 (2001)
  2. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Du L, Sánchez C, Chen M, Edwards DJ, Shen B. Chem. Biol. 7 623-642 (2000)
  3. The 2.7-Angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Tang Y, Kim CY, Mathews II, Cane DE, Khosla C. Proc. Natl. Acad. Sci. U.S.A. 103 11124-11129 (2006)
  4. Structural control of polyketide formation in plant-specific polyketide synthases. Jez JM, Austin MB, Ferrer J, Bowman ME, Schröder J, Noel JP. Chem. Biol. 7 919-930 (2000)
  5. Leinamycin biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Tang GL, Cheng YQ, Shen B. Chem. Biol. 11 33-45 (2004)
  6. The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Lomakin IB, Xiong Y, Steitz TA. Cell 129 319-332 (2007)
  7. Structural and mechanistic analysis of protein interactions in module 3 of the 6-deoxyerythronolide B synthase. Tang Y, Chen AY, Kim CY, Cane DE, Khosla C. Chem. Biol. 14 931-943 (2007)
  8. Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain. Chakravarty B, Gu Z, Chirala SS, Wakil SJ, Quiocho FA. Proc. Natl. Acad. Sci. U.S.A. 101 15567-15572 (2004)
  9. Refined structures of beta-ketoacyl-acyl carrier protein synthase III. Qiu X, Janson CA, Smith WW, Head M, Lonsdale J, Konstantinidis AK. J. Mol. Biol. 307 341-356 (2001)
  10. Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Kremer L, Dover LG, Carrère S, Nampoothiri KM, Lesjean S, Brown AK, Brennan PJ, Minnikin DE, Locht C, Besra GS. Biochem. J. 364 423-430 (2002)
  11. Structures of beta-ketoacyl-acyl carrier protein synthase I complexed with fatty acids elucidate its catalytic machinery. Olsen JG, Kadziola A, von Wettstein-Knowles P, Siggaard-Andersen M, Larsen S. Structure 9 233-243 (2001)
  12. Response of Bacillus subtilis to cerulenin and acquisition of resistance. Schujman GE, Choi KH, Altabe S, Rock CO, de Mendoza D. J. Bacteriol. 183 3032-3040 (2001)
  13. Crystal structure of the priming beta-ketosynthase from the R1128 polyketide biosynthetic pathway. Pan H, Tsai Sc, Meadows ES, Miercke LJ, Keatinge-Clay AT, O'Connell J, Khosla C, Stroud RM. Structure 10 1559-1568 (2002)
  14. The crystal structure of beta-ketoacyl-acyl carrier protein synthase II from Synechocystis sp. at 1.54 A resolution and its relationship to other condensing enzymes. Moche M, Dehesh K, Edwards P, Lindqvist Y. J. Mol. Biol. 305 491-503 (2001)
  15. Mutations in the fatty acid elongation 1 gene are associated with a loss of beta-ketoacyl-CoA synthase activity in low erucic acid rapeseed. Roscoe TJ, Lessire R, Puyaubert J, Renard M, Delseny M. FEBS Lett. 492 107-111 (2001)
  16. Inhibition of the fungal fatty acid synthase type I multienzyme complex. Johansson P, Wiltschi B, Kumari P, Kessler B, Vonrhein C, Vonck J, Oesterhelt D, Grininger M. Proc. Natl. Acad. Sci. U.S.A. 105 12803-12808 (2008)
  17. Active-site residues of a plant membrane-bound fatty acid elongase beta-ketoacyl-CoA synthase, FAE1 KCS. Ghanevati M, Jaworski JG. Biochim. Biophys. Acta 1530 77-85 (2001)
  18. Fatty acid synthesis. Role of active site histidines and lysine in Cys-His-His-type beta-ketoacyl-acyl carrier protein synthases. von Wettstein-Knowles P, Olsen JG, McGuire KA, Henriksen A. FEBS J. 273 695-710 (2006)
  19. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Wu G, Wu Y, Xiao L, Li X, Lu C. Theor. Appl. Genet. 116 491-499 (2008)
  20. Oxazolomycin biosynthesis in Streptomyces albus JA3453 featuring an "acyltransferase-less" type I polyketide synthase that incorporates two distinct extender units. Zhao C, Coughlin JM, Ju J, Zhu D, Wendt-Pienkowski E, Zhou X, Wang Z, Shen B, Deng Z. J. Biol. Chem. 285 20097-20108 (2010)
  21. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket. Carlsson AS, LaBrie ST, Kinney AJ, von Wettstein-Knowles P, Browse J. Plant J. 29 761-770 (2002)
  22. High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I. Kursula P, Sikkilä H, Fukao T, Kondo N, Wierenga RK. J. Mol. Biol. 347 189-201 (2005)
  23. Crystal structures of Mycobacterium tuberculosis KasA show mode of action within cell wall biosynthesis and its inhibition by thiolactomycin. Luckner SR, Machutta CA, Tonge PJ, Kisker C. Structure 17 1004-1013 (2009)
  24. Studies into factors contributing to substrate specificity of membrane-bound 3-ketoacyl-CoA synthases. Blacklock BJ, Jaworski JG. Eur. J. Biochem. 269 4789-4798 (2002)
  25. Descriptor-based protein remote homology identification. Zhang Z, Kochhar S, Grigorov MG. Protein Sci. 14 431-444 (2005)
  26. X-ray crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase II (mtKasB). Sridharan S, Wang L, Brown AK, Dover LG, Kremer L, Besra GS, Sacchettini JC. J. Mol. Biol. 366 469-480 (2007)
  27. Probing the compatibility of type II ketosynthase-carrier protein partners. Worthington AS, Hur GH, Meier JL, Cheng Q, Moore BS, Burkart MD. Chembiochem 9 2096-2103 (2008)
  28. Structural enzymology of polyketide synthases. Tsai SC, Ames BD. Meth. Enzymol. 459 17-47 (2009)
  29. Identification and characterization of the pyridomycin biosynthetic gene cluster of Streptomyces pyridomyceticus NRRL B-2517. Huang T, Wang Y, Yin J, Du Y, Tao M, Xu J, Chen W, Lin S, Deng Z. J. Biol. Chem. 286 20648-20657 (2011)
  30. Biochemical and genetic insights into asukamycin biosynthesis. Rui Z, Petrícková K, Petrícková K, Skanta F, Pospísil S, Yang Y, Chen CY, Tsai SF, Floss HG, Petrícek M, Yu TW. J. Biol. Chem. 285 24915-24924 (2010)
  31. Multimeric options for the auto-activation of the Saccharomyces cerevisiae FAS type I megasynthase. Johansson P, Mulinacci B, Koestler C, Vollrath R, Oesterhelt D, Grininger M. Structure 17 1063-1074 (2009)
  32. Structure of the mitochondrial beta-ketoacyl-[acyl carrier protein] synthase from Arabidopsis and its role in fatty acid synthesis. Olsen JG, Rasmussen AV, von Wettstein-Knowles P, Henriksen A. FEBS Lett. 577 170-174 (2004)
  33. An orthogonal purification strategy for isolating crosslinked domains of modular synthases. Haushalter RW, Worthington AS, Hur GH, Burkart MD. Bioorg. Med. Chem. Lett. 18 3039-3042 (2008)
  34. Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. Li MJ, Li AQ, Xia H, Zhao CZ, Li CS, Wan SB, Bi YP, Wang XJ. J. Biosci. 34 227-238 (2009)
  35. Structural insights into bacterial resistance to cerulenin. Trajtenberg F, Altabe S, Larrieux N, Ficarra F, de Mendoza D, Buschiazzo A, Schujman GE. FEBS J. 281 2324-2338 (2014)
  36. A template search reveals mechanistic similarities and differences in beta-ketoacyl synthases (KAS) and related enzymes. Dawe JH, Porter CT, Thornton JM, Tabor AB. Proteins 52 427-435 (2003)
  37. Mammalian fatty acid synthase: closure on a textbook mechanism? Leadlay P, Baerga-Ortiz A. Chem. Biol. 10 101-103 (2003)
  38. Inter-domain movements in polyketide synthases: a molecular dynamics study. Anand S, Mohanty D. Mol Biosyst 8 1157-1171 (2012)
  39. Structural Characterisation of the Beta-Ketoacyl-Acyl Carrier Protein Synthases, FabF and FabH, of Yersinia pestis. Nanson JD, Himiari Z, Swarbrick CM, Forwood JK. Sci Rep 5 14797 (2015)
  40. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis. Cao W, Ma W, Zhang B, Wang X, Chen K, Li Y, Ouyang P. J. Ind. Microbiol. Biotechnol. 43 557-566 (2016)
  41. Structural basis of head to head polyketide fusion by CorB. Zocher G, Vilstrup J, Heine D, Hallab A, Goralski E, Hertweck C, Stahl M, Schäberle TF, Stehle T. Chem Sci 6 6525-6536 (2015)
  42. Structure of 3-oxoacyl-(acyl-carrier protein) synthase II from Thermus thermophilus HB8. Bagautdinov B, Ukita Y, Miyano M, Kunishima N. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 358-366 (2008)
  43. Structural characterisation of the fatty acid biosynthesis enzyme FabF from the pathogen Listeria monocytogenes. Soares da Costa TP, Nanson JD, Forwood JK. Sci Rep 7 39277 (2017)