1d2v Citations

X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 A resolution.

J Biol Chem 275 11964-71 (2000)
Related entries: 1cxp, 1mhl

Cited: 174 times
EuropePMC logo PMID: 10766826

Abstract

The x-ray crystal structure of human myeloperoxidase has been extended to 1.8 A resolution, using x-ray data recorded at -180 degrees C (r = 0.197, free r = 0.239). Results confirm that the heme is covalently attached to the protein via two ester linkages between the carboxyl groups of Glu(242) and Asp(94) and modified methyl groups on pyrrole rings A and C of the heme as well as a sulfonium ion linkage between the sulfur atom of Met(243) and the beta-carbon of the vinyl group on pyrrole ring A. In the native enzyme a bound chloride ion has been identified at the amino terminus of the helix containing the proximal His(336). Determination of the x-ray crystal structure of a myeloperoxidase-bromide complex (r = 0.243, free r = 0.296) has shown that this chloride ion can be replaced by bromide. Bromide is also seen to bind, at partial occupancy, in the distal heme cavity, in close proximity to the distal His(95), where it replaces the water molecule hydrogen bonded to Gln(91). The bromide-binding site in the distal cavity appears to be the halide-binding site responsible for shifts in the Soret band of the absorption spectrum of myeloperoxidase. It is proposed that halide binding to this site inhibits the enzyme by effectively competing with H(2)O(2) for access to the distal histidine, whereas in compound I, the same site may be the halide substrate-binding site.

Reviews - 1d2v mentioned but not cited (3)

  1. Myeloperoxidase: a target for new drug development? Malle E, Furtmüller PG, Sattler W, Obinger C. Br. J. Pharmacol. 152 838-854 (2007)
  2. Eosinophil granule proteins: form and function. Acharya KR, Ackerman SJ. J. Biol. Chem. 289 17406-17415 (2014)
  3. Structural perspective on enzymatic halogenation. Blasiak LC, Drennan CL. Acc. Chem. Res. 42 147-155 (2009)

Articles - 1d2v mentioned but not cited (9)

  1. Interaction preferences across protein-protein interfaces of obligatory and non-obligatory components are different. De S, Krishnadev O, Srinivasan N, Rekha N. BMC Struct Biol 5 15 (2005)
  2. Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome--clozapine-induced agranulocytosis as a case study. Yang L, Wang K, Chen J, Jegga AG, Luo H, Shi L, Wan C, Guo X, Qin S, He G, Feng G, He L. PLoS Comput. Biol. 7 e1002016 (2011)
  3. Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Andón FT, Kapralov AA, Yanamala N, Feng W, Baygan A, Chambers BJ, Hultenby K, Ye F, Toprak MS, Brandner BD, Fornara A, Klein-Seetharaman J, Kotchey GP, Star A, Shvedova AA, Fadeel B, Kagan VE. Small 9 2721-9, 2720 (2013)
  4. Homozygous mutations in PXDN cause congenital cataract, corneal opacity, and developmental glaucoma. Khan K, Rudkin A, Parry DA, Burdon KP, McKibbin M, Logan CV, Abdelhamed ZI, Muecke JS, Fernandez-Fuentes N, Laurie KJ, Shires M, Fogarty R, Carr IM, Poulter JA, Morgan JE, Mohamed MD, Jafri H, Raashid Y, Meng N, Piseth H, Toomes C, Casson RJ, Taylor GR, Hammerton M, Sheridan E, Johnson CA, Inglehearn CF, Craig JE, Ali M. Am. J. Hum. Genet. 89 464-473 (2011)
  5. Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. Tjondro HC, Ugonotti J, Kawahara R, Chatterjee S, Loke I, Chen S, Soltermann F, Hinneburg H, Parker BL, Venkatakrishnan V, Dieckmann R, Grant OC, Bylund J, Rodger A, Woods RJ, Karlsson-Bengtsson A, Struwe WB, Thaysen-Andersen M. J Biol Chem 296 100144 (2021)
  6. Concerted simulations reveal how peroxidase compound III formation results in cellular oscillations. Gabdoulline RR, Kummer U, Olsen LF, Wade RC. Biophys. J. 85 1421-1428 (2003)
  7. FUT8-Directed Core Fucosylation of N-glycans Is Regulated by the Glycan Structure and Protein Environment. García-García A, Serna S, Yang Z, Delso I, Taleb V, Hicks T, Artschwager R, Vakhrushev SY, Clausen H, Angulo J, Corzana F, Reichardt NC, Hurtado-Guerrero R. ACS Catal 11 9052-9065 (2021)
  8. Network pharmacology combined with GEO database identifying the mechanisms and molecular targets of Polygoni Cuspidati Rhizoma on Peri-implants. Shan C, Ji X, Wu Z, Zhao J. Sci Rep 12 8227 (2022)
  9. Posttranslational modification and heme cavity architecture of human eosinophil peroxidase-insights from first crystal structure and biochemical characterization. Pfanzagl V, Gruber-Grünwald C, Leitgeb U, Furtmüller PG, Obinger C. J Biol Chem 299 105402 (2023)


Reviews citing this publication (40)

  1. How neutrophils kill microbes. Segal AW. Annu. Rev. Immunol. 23 197-223 (2005)
  2. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Cross AR, Segal AW. Biochim. Biophys. Acta 1657 1-22 (2004)
  3. Mammalian heme peroxidases: from molecular mechanisms to health implications. Davies MJ, Hawkins CL, Pattison DI, Rees MD. Antioxid. Redox Signal. 10 1199-1234 (2008)
  4. Biological roles for the NOX family NADPH oxidases. Nauseef WM. J. Biol. Chem. 283 16961-16965 (2008)
  5. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. van der Veen BS, de Winther MP, Heeringa P. Antioxid. Redox Signal. 11 2899-2937 (2009)
  6. Active site structure and catalytic mechanisms of human peroxidases. Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Arch. Biochem. Biophys. 445 199-213 (2006)
  7. Redox reactions and microbial killing in the neutrophil phagosome. Winterbourn CC, Kettle AJ. Antioxid. Redox Signal. 18 642-660 (2013)
  8. Biosynthesis, processing, and sorting of human myeloperoxidase. Hansson M, Olsson I, Nauseef WM. Arch. Biochem. Biophys. 445 214-224 (2006)
  9. Origin, structure, and biological activities of peroxidases in human saliva. Ihalin R, Loimaranta V, Tenovuo J. Arch. Biochem. Biophys. 445 261-268 (2006)
  10. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Antioxid. Redox Signal. 18 692-713 (2013)
  11. Lactoperoxidase: structural insights into the function,ligand binding and inhibition. Sharma S, Singh AK, Kaushik S, Sinha M, Singh RP, Sharma P, Sirohi H, Kaur P, Singh TP. Int J Biochem Mol Biol 4 108-128 (2013)
  12. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Teng N, Maghzal GJ, Talib J, Rashid I, Lau AK, Stocker R. Redox Rep 22 51-73 (2017)
  13. Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Zederbauer M, Furtmüller PG, Brogioni S, Jakopitsch C, Smulevich G, Obinger C. Nat Prod Rep 24 571-584 (2007)
  14. Contributions of myeloperoxidase to proinflammatory events: more than an antimicrobial system. Nauseef WM. Int. J. Hematol. 74 125-133 (2001)
  15. Hydrogen sulfide activation in hemeproteins: the sulfheme scenario. Ríos-González BB, Román-Morales EM, Pietri R, López-Garriga J. J. Inorg. Biochem. 133 78-86 (2014)
  16. Redox properties of myeloperoxidase. Arnhold J, Furtmüller PG, Obinger C. Redox Rep. 8 179-186 (2003)
  17. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nakazawa D, Masuda S, Tomaru U, Ishizu A. Nat Rev Rheumatol 15 91-101 (2019)
  18. Chemistry and Biology in the Biosynthesis and Action of Thyroid Hormones. Mondal S, Raja K, Schweizer U, Mugesh G. Angew. Chem. Int. Ed. Engl. 55 7606-7630 (2016)
  19. Meta-heterogeneity: Evaluating and Describing the Diversity in Glycosylation Between Sites on the Same Glycoprotein. Čaval T, Heck AJR, Reiding KR. Mol Cell Proteomics 20 100010 (2021)
  20. Oxidases and oxygenases in regulation of vascular nitric oxide signaling and inflammatory responses. Aslan M, Freeman BA. Immunol. Res. 26 107-118 (2002)
  21. Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies. Delporte C, Van Antwerpen P, Vanhamme L, Roumeguère T, Zouaoui Boudjeltia K. Mediators Inflamm. 2013 971579 (2013)
  22. The Dual Role of Myeloperoxidase in Immune Response. Arnhold J. Int J Mol Sci 21 E8057 (2020)
  23. Inflammatory bowel disease biomarkers. Liu D, Saikam V, Skrada KA, Merlin D, Iyer SS. Med Res Rev 42 1856-1887 (2022)
  24. Understanding molecular enzymology of porphyrin-binding α + β barrel proteins - One fold, multiple functions. Hofbauer S, Pfanzagl V, Michlits H, Schmidt D, Obinger C, Furtmüller PG. Biochim Biophys Acta Proteins Proteom 1869 140536 (2021)
  25. Impact of missense mutations on biosynthesis of myeloperoxidase. Nauseef WM, McCormick S, Goedken M. Redox Rep. 5 197-206 (2000)
  26. Lactoperoxidase as a potential drug target. Flemmig J, Gau J, Schlorke D, Arnhold J. Expert Opin. Ther. Targets 20 447-461 (2016)
  27. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems. Huang J, Milton A, Arnold RD, Huang H, Smith F, Panizzi JR, Panizzi P. J. Leukoc. Biol. 99 541-548 (2016)
  28. Rational drug design applied to myeloperoxidase inhibition. Van Antwerpen P, Zouaoui Boudjeltia K. Free Radic. Res. 49 711-720 (2015)
  29. Halogenation Activity of Mammalian Heme Peroxidases. Arnhold J, Malle E. Antioxidants (Basel) 11 890 (2022)
  30. Biochemical basis and metabolic interplay of redox regulation. Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X, Wang H. Redox Biol 26 101284 (2019)
  31. Biosynthesis of human myeloperoxidase. Nauseef WM. Arch. Biochem. Biophys. 642 1-9 (2018)
  32. Iron transitions during activation of allosteric heme proteins in cell signaling. Négrerie M. Metallomics 11 868-893 (2019)
  33. Monotopic Membrane Proteins Join the Fold. Allen KN, Entova S, Ray LC, Imperiali B. Trends Biochem. Sci. 44 7-20 (2019)
  34. The Role of Thiocyanate in Modulating Myeloperoxidase Activity during Disease. San Gabriel PT, Liu Y, Schroder AL, Zoellner H, Chami B. Int J Mol Sci 21 E6450 (2020)
  35. The many roles of myeloperoxidase: From inflammation and immunity to biomarkers, drug metabolism and drug discovery. Siraki AG. Redox Biol 46 102109 (2021)
  36. Heme Peroxidases at Unperturbed and Inflamed Mucous Surfaces. Arnhold J. Antioxidants (Basel) 10 1805 (2021)
  37. Myeloperoxidase: Regulation of Neutrophil Function and Target for Therapy. Rizo-Téllez SA, Sekheri M, Filep JG. Antioxidants (Basel) 11 2302 (2022)
  38. Neutrophil degranulation and myocardial infarction. Zhang N, Aiyasiding X, Li WJ, Liao HH, Tang QZ. Cell Commun Signal 20 50 (2022)
  39. Potential roles of myeloperoxidase and hypochlorous acid in metabolism and toxicity of alkene hydrocarbons and drug molecules containing olefinic moieties. Zhang XY, Elfarra AA. Expert Opin Drug Metab Toxicol 13 513-524 (2017)
  40. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Ulfig A, Leichert LI. Cell Mol Life Sci 78 385-414 (2021)

Articles citing this publication (122)

  1. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. J. Mol. Biol. 319 1097-1113 (2002)
  2. Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. Davies MJ. J Clin Biochem Nutr 48 8-19 (2011)
  3. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. Huang Y, Wu Z, Riwanto M, Gao S, Levison BS, Gu X, Fu X, Wagner MA, Besler C, Gerstenecker G, Zhang R, Li XM, DiDonato AJ, Gogonea V, Tang WH, Smith JD, Plow EF, Fox PL, Shih DM, Lusis AJ, Fisher EA, DiDonato JA, Landmesser U, Hazen SL. J. Clin. Invest. 123 3815-3828 (2013)
  4. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Salsbury FR, Knutson ST, Poole LB, Fetrow JS. Protein Sci. 17 299-312 (2008)
  5. Oxazine conjugated nanoparticle detects in vivo hypochlorous acid and peroxynitrite generation. Panizzi P, Nahrendorf M, Wildgruber M, Waterman P, Figueiredo JL, Aikawa E, McCarthy J, Weissleder R, Hilderbrand SA. J. Am. Chem. Soc. 131 15739-15744 (2009)
  6. The peroxidase-cyclooxygenase superfamily: Reconstructed evolution of critical enzymes of the innate immune system. Zamocky M, Jakopitsch C, Furtmüller PG, Dunand C, Obinger C. Proteins 72 589-605 (2008)
  7. Heme proteins--diversity in structural characteristics, function, and folding. Smith LJ, Kahraman A, Thornton JM. Proteins 78 2349-2368 (2010)
  8. 2-thioxanthines are mechanism-based inactivators of myeloperoxidase that block oxidative stress during inflammation. Tidén AK, Sjögren T, Svensson M, Bernlind A, Senthilmohan R, Auchère F, Norman H, Markgren PO, Gustavsson S, Schmidt S, Lundquist S, Forbes LV, Magon NJ, Paton LN, Jameson GN, Eriksson H, Kettle AJ. J. Biol. Chem. 286 37578-37589 (2011)
  9. Identification and characterization of VPO1, a new animal heme-containing peroxidase. Cheng G, Salerno JC, Cao Z, Pagano PJ, Lambeth JD. Free Radic. Biol. Med. 45 1682-1694 (2008)
  10. Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase. Arnhold J, Furtmüller PG, Regelsberger G, Obinger C. Eur. J. Biochem. 268 5142-5148 (2001)
  11. Redox intermediates of plant and mammalian peroxidases: a comparative transient-kinetic study of their reactivity toward indole derivatives. Jantschko W, Furtmüller PG, Allegra M, Livrea MA, Jakopitsch C, Regelsberger G, Obinger C. Arch. Biochem. Biophys. 398 12-22 (2002)
  12. The 2.0 A resolution crystal structure of prostaglandin H2 synthase-1: structural insights into an unusual peroxidase. Gupta K, Selinsky BS, Kaub CJ, Katz AK, Loll PJ. J. Mol. Biol. 335 503-518 (2004)
  13. Redox properties of the couples compound I/compound II and compound II/native enzyme of human myeloperoxidase. Furtmüller PG, Arnhold J, Jantschko W, Pichler H, Obinger C. Biochem. Biophys. Res. Commun. 301 551-557 (2003)
  14. RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Bakhetia M, Charlton W, Atkinson HJ, McPherson MJ. Mol. Plant Microbe Interact. 18 1099-1106 (2005)
  15. Caenorhabditis elegans and human dual oxidase 1 (DUOX1) "peroxidase" domains: insights into heme binding and catalytic activity. Meitzler JL, Ortiz de Montellano PR. J. Biol. Chem. 284 18634-18643 (2009)
  16. Two-electron reduction and one-electron oxidation of organic hydroperoxides by human myeloperoxidase. Furtmüller PG, Burner U, Jantschko W, Regelsberger G, Obinger C. FEBS Lett. 484 139-143 (2000)
  17. Crystal structure of lactoperoxidase at 2.4 A resolution. Singh AK, Singh N, Sharma S, Singh SB, Kaur P, Bhushan A, Srinivasan A, Singh TP. J. Mol. Biol. 376 1060-1075 (2008)
  18. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase. Spalteholz H, Panasenko OM, Arnhold J. Arch. Biochem. Biophys. 445 225-234 (2006)
  19. Identification of epithelial Na+ channel (ENaC) intersubunit Cl- inhibitory residues suggests a trimeric alpha gamma beta channel architecture. Collier DM, Snyder PM. J. Biol. Chem. 286 6027-6032 (2011)
  20. Standard reduction potentials of all couples of the peroxidase cycle of lactoperoxidase. Furtmüller PG, Arnhold J, Jantschko W, Zederbauer M, Jakopitsch C, Obinger C. J. Inorg. Biochem. 99 1220-1229 (2005)
  21. Essential role of proximal histidine-asparagine interaction in mammalian peroxidases. Carpena X, Vidossich P, Schroettner K, Calisto BM, Banerjee S, Stampler J, Soudi M, Furtmüller PG, Rovira C, Fita I, Obinger C. J. Biol. Chem. 284 25929-25937 (2009)
  22. Inhibition of lactoperoxidase by its own catalytic product: crystal structure of the hypothiocyanate-inhibited bovine lactoperoxidase at 2.3-A resolution. Singh AK, Singh N, Sharma S, Shin K, Takase M, Kaur P, Srinivasan A, Singh TP. Biophys. J. 96 646-654 (2009)
  23. Myeloperoxidase Modulates Inflammation in Generalized Pustular Psoriasis and Additional Rare Pustular Skin Diseases. Haskamp S, Bruns H, Hahn M, Hoffmann M, Gregor A, Löhr S, Hahn J, Schauer C, Ringer M, Flamann C, Frey B, Lesner A, Thiel CT, Ekici AB, von Hörsten S, Aßmann G, Riepe C, Euler M, Schäkel K, Philipp S, Prinz JC, Mößner R, Kersting F, Sticherling M, Sefiani A, Lyahyai J, Sondermann W, Oji V, Schulz P, Wilsmann-Theis D, Sticht H, Schett G, Reis A, Reis A, Uebe S, Frey S, Hüffmeier U. Am J Hum Genet 107 527-538 (2020)
  24. The reactivity of myeloperoxidase compound I formed with hypochlorous acid. Furtmüller PG, Burner U, Jantschko W, Regelsberger G, Obinger C. Redox Rep. 5 173-178 (2000)
  25. Early protein evolution: building domains from ligand-binding polypeptide segments. Riechmann L, Winter G. J. Mol. Biol. 363 460-468 (2006)
  26. Expression of myeloperoxidase (MPO) by neutrophils is necessary for their activation by anti-neutrophil cytoplasm autoantibodies (ANCA) against MPO. Reumaux D, de Boer M, Meijer AB, Duthilleul P, Roos D. J. Leukoc. Biol. 73 841-849 (2003)
  27. Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates. Forbes LV, Sjögren T, Auchère F, Jenkins DW, Thong B, Laughton D, Hemsley P, Pairaudeau G, Turner R, Eriksson H, Unitt JF, Kettle AJ. J. Biol. Chem. 288 36636-36647 (2013)
  28. Thiol-containing molecules interact with the myeloperoxidase/H2O2/chloride system to inhibit LDL oxidation. Van Antwerpen P, Boudjeltia KZ, Babar S, Legssyer I, Moreau P, Moguilevsky N, Vanhaeverbeek M, Ducobu J, Nève J. Biochem. Biophys. Res. Commun. 337 82-88 (2005)
  29. Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases. Colin C, Leblanc C, Michel G, Wagner E, Leize-Wagner E, Van Dorsselaer A, Potin P. J. Biol. Inorg. Chem. 10 156-166 (2005)
  30. Structural evidence of substrate specificity in mammalian peroxidases: structure of the thiocyanate complex with lactoperoxidase and its interactions at 2.4 A resolution. Sheikh IA, Singh AK, Singh N, Sinha M, Singh SB, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP. J. Biol. Chem. 284 14849-14856 (2009)
  31. Post-translational tyrosine nitration of eosinophil granule toxins mediated by eosinophil peroxidase. Ulrich M, Petre A, Youhnovski N, Prömm F, Schirle M, Schumm M, Pero RS, Doyle A, Checkel J, Kita H, Thiyagarajan N, Acharya KR, Schmid-Grendelmeier P, Simon HU, Schwarz H, Tsutsui M, Shimokawa H, Bellon G, Lee JJ, Przybylski M, Döring G. J. Biol. Chem. 283 28629-28640 (2008)
  32. Glycosylation pattern of mature dimeric leukocyte and recombinant monomeric myeloperoxidase: glycosylation is required for optimal enzymatic activity. Van Antwerpen P, Slomianny MC, Boudjeltia KZ, Delporte C, Faid V, Calay D, Rousseau A, Moguilevsky N, Raes M, Vanhamme L, Furtmüller PG, Obinger C, Vanhaeverbeek M, Nève J, Michalski JC. J. Biol. Chem. 285 16351-16359 (2010)
  33. Hypochlorous acid-induced heme degradation from lactoperoxidase as a novel mechanism of free iron release and tissue injury in inflammatory diseases. Souza CE, Maitra D, Saed GM, Diamond MP, Moura AA, Pennathur S, Abu-Soud HM. PLoS ONE 6 e27641 (2011)
  34. A transient kinetic study on the reactivity of recombinant unprocessed monomeric myeloperoxidase. Furtmüller PG, Jantschko W, Regelsberger G, Jakopitsch C, Moguilevsky N, Obinger C. FEBS Lett. 503 147-150 (2001)
  35. Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications: crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid. Singh AK, Singh N, Sinha M, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP. J. Biol. Chem. 284 20311-20318 (2009)
  36. Molecular dynamics simulations of arachidonic acid complexes with COX-1 and COX-2: insights into equilibrium behavior. Furse KE, Pratt DA, Porter NA, Lybrand TP. Biochemistry 45 3189-3205 (2006)
  37. The structure of apo protein-tyrosine phosphatase 1B C215S mutant: more than just an S --> O change. Scapin G, Patel S, Patel V, Kennedy B, Asante-Appiah E. Protein Sci. 10 1596-1605 (2001)
  38. Inactivation of human myeloperoxidase by hydrogen peroxide. Paumann-Page M, Furtmüller PG, Hofbauer S, Paton LN, Obinger C, Kettle AJ. Arch. Biochem. Biophys. 539 51-62 (2013)
  39. Myeloperoxidase interaction with peroxynitrite: chloride deficiency and heme depletion. Galijasevic S, Maitra D, Lu T, Sliskovic I, Abdulhamid I, Abu-Soud HM. Free Radic. Biol. Med. 47 431-439 (2009)
  40. Reaction of ferrous lactoperoxidase with hydrogen peroxide and dioxygen: an anaerobic stopped-flow study. Jantschko W, Furtmüller PG, Zederbauer M, Neugschwandtner K, Jakopitsch C, Obinger C. Arch. Biochem. Biophys. 434 51-59 (2005)
  41. Vascular peroxidase-1 is rapidly secreted, circulates in plasma, and supports dityrosine cross-linking reactions. Cheng G, Li H, Cao Z, Qiu X, McCormick S, Thannickal VJ, Nauseef WM. Free Radic. Biol. Med. 51 1445-1453 (2011)
  42. Curcumin attenuates cardiopulmonary bypass-induced lung oxidative damage in rats. Liu K, Chen HL, Huang H, Jing H, Dong GH, Wu HW, You QS. J. Cardiovasc. Pharmacol. Ther. 17 395-402 (2012)
  43. Immune evasion by a staphylococcal inhibitor of myeloperoxidase. de Jong NWM, Ramyar KX, Guerra FE, Nijland R, Fevre C, Voyich JM, McCarthy AJ, Garcia BL, van Kessel KPM, van Strijp JAG, Geisbrecht BV, Haas PA. Proc. Natl. Acad. Sci. U.S.A. 114 9439-9444 (2017)
  44. Preparation and reactivity studies of synthetic microperoxidases containing b-type heme. Ryabova ES, Dikiy A, Hesslein AE, Bjerrum MJ, Ciurli S, Nordlander E. J. Biol. Inorg. Chem. 9 385-395 (2004)
  45. A model for the misfolded bis-His intermediate of cytochrome c: the 1-56 N-fragment. Santoni E, Scatragli S, Sinibaldi F, Fiorucci L, Santucci R, Smulevich G. J. Inorg. Biochem. 98 1067-1077 (2004)
  46. Mechanism of reaction of chlorite with mammalian heme peroxidases. Jakopitsch C, Pirker KF, Flemmig J, Hofbauer S, Schlorke D, Furtmüller PG, Arnhold J, Obinger C. J. Inorg. Biochem. 135 10-19 (2014)
  47. Redox thermodynamics of lactoperoxidase and eosinophil peroxidase. Battistuzzi G, Bellei M, Vlasits J, Banerjee S, Furtmüller PG, Sola M, Obinger C. Arch. Biochem. Biophys. 494 72-77 (2010)
  48. The vinyl-sulfonium bond in human myeloperoxidase: impact on compound I formation and reduction by halides and thiocyanate. Zederbauer M, Furtmüller PG, Ganster B, Moguilevsky N, Obinger C. Biochem. Biophys. Res. Commun. 356 450-456 (2007)
  49. pH-dependent regulation of myeloperoxidase activity. Vlasova II, Arnhold J, Osipov AN, Panasenko OM. Biochemistry Mosc. 71 667-677 (2006)
  50. A stable bacterial peroxidase with novel halogenating activity and an autocatalytically linked heme prosthetic group. Auer M, Gruber C, Bellei M, Pirker KF, Zamocky M, Kroiss D, Teufer SA, Hofbauer S, Soudi M, Battistuzzi G, Furtmüller PG, Obinger C. J. Biol. Chem. 288 27181-27199 (2013)
  51. A turn-on fluorescent probe for hypochlorous acid based on the oxidation of diphenyl telluride. Venkatesan P, Wu SP. Analyst 140 1349-1355 (2015)
  52. Determination of hemin-binding characteristics of proteins by a combinatorial peptide library approach. Kühl T, Sahoo N, Nikolajski M, Schlott B, Heinemann SH, Imhof D. Chembiochem 12 2846-2855 (2011)
  53. Epitope specificity of myeloperoxidase antibodies: identification of candidate human immunodominant epitopes. Bruner BF, Vista ES, Wynn DM, James JA. Clin. Exp. Immunol. 164 330-336 (2011)
  54. Heme-protein covalent bonds in peroxidases and resistance to heme modification during halide oxidation. Huang L, Ortiz de Montellano PR. Arch. Biochem. Biophys. 446 77-83 (2006)
  55. Myeloperoxidase-catalyzed taurine chlorination: initial versus equilibrium rate. Ramos DR, Victoria García M, Canle L M, Arturo Santaballa J, Furtmüller PG, Obinger C. Arch. Biochem. Biophys. 466 221-233 (2007)
  56. Thyroid peroxidase forms thionamide-sensitive homodimers: relevance for immunomodulation of thyroid autoimmunity. McDonald DO, Pearce SH. J. Mol. Med. 87 971-980 (2009)
  57. A novel tyrosine-heme C−O covalent linkage in F43Y myoglobin: a new post-translational modification of heme proteins. Yan DJ, Li W, Xiang Y, Wen GB, Lin YW, Tan X. Chembiochem 16 47-50 (2015)
  58. Genetic characterization of myeloperoxidase deficiency in Italy. Marchetti C, Patriarca P, Solero GP, Baralle FE, Romano M. Hum. Mutat. 23 496-505 (2004)
  59. Glu375Gln and Asp225Val mutants: about the nature of the covalent linkages between heme group and apo-Protein in bovine lactoperoxidase. Suriano G, Watanabe S, Ghibaudi EM, Bollen A, Ferrari RP, Moguilevsky N. Bioorg. Med. Chem. Lett. 11 2827-2831 (2001)
  60. Myeloperoxidase-catalyzed chlorination: the quest for the active species. Ramos DR, García MV, Canle L M, Santaballa JA, Furtmüller PG, Obinger C. J. Inorg. Biochem. 102 1300-1311 (2008)
  61. Pseudodominant inheritance of goitrous congenital hypothyroidism caused by TPO mutations: molecular and in silico studies. Deladoëy J, Pfarr N, Vuissoz JM, Parma J, Vassart G, Biesterfeld S, Pohlenz J, Van Vliet G. J Clin Endocrinol Metab 93 627-633 (2008)
  62. Structure-function analysis of peroxidasin provides insight into the mechanism of collagen IV crosslinking. Lázár E, Péterfi Z, Sirokmány G, Kovács HA, Klement E, Medzihradszky KF, Geiszt M. Free Radic. Biol. Med. 83 273-282 (2015)
  63. A highly selective turn-on fluorescent probe for hypochlorous acid based on hypochlorous acid-induced oxidative intramolecular cyclization of boron dipyrromethene-hydrazone. Chen WC, Venkatesan P, Wu SP. Anal. Chim. Acta 882 68-75 (2015)
  64. Apo and calcium-bound crystal structures of cytoskeletal protein alpha-14 giardin (annexin E1) from the intestinal protozoan parasite Giardia lamblia. Pathuri P, Nguyen ET, Ozorowski G, Svärd SG, Luecke H. J. Mol. Biol. 385 1098-1112 (2009)
  65. Covalent attachment of heme to the protein moiety in an insect E75 nitric oxide sensor. Aicart-Ramos C, Valhondo Falcón M, Ortiz de Montellano PR, Rodriguez-Crespo I. Biochemistry 51 7403-7416 (2012)
  66. Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity. Le SN, Porebski BT, McCoey J, Fodor J, Riley B, Godlewska M, Góra M, Czarnocka B, Banga JP, Hoke DE, Kass I, Buckle AM. PLoS ONE 10 e0142615 (2015)
  67. Ordered cleavage of myeloperoxidase ester bonds releases active site heme leading to inactivation of myeloperoxidase by benzoic acid hydrazide analogs. Huang J, Smith F, Panizzi P. Arch. Biochem. Biophys. 548 74-85 (2014)
  68. A ratiometric fluorescent probe based on boron dipyrromethene and rhodamine Förster resonance energy transfer platform for hypochlorous acid and its application in living cells. Liu Y, Zhao ZM, Miao JY, Zhao BX. Anal. Chim. Acta 921 77-83 (2016)
  69. CO binding and ligand discrimination in human myeloperoxidase. Murphy EJ, Maréchal A, Segal AW, Rich PR. Biochemistry 49 2150-2158 (2010)
  70. How covalent heme to protein bonds influence the formation and reactivity of redox intermediates of a bacterial peroxidase. Auer M, Nicolussi A, Schütz G, Furtmüller PG, Obinger C. J. Biol. Chem. 289 31480-31491 (2014)
  71. Organic and inorganic substrates as probes for comparing native bovine lactoperoxidase and recombinant human myeloperoxidase. Ghibaudi E, Laurenti E, Pacchiardo C, Suriano G, Moguilevsky N, Pia Ferrari R. J. Inorg. Biochem. 94 146-154 (2003)
  72. Oxidation of chloride and subsequent chlorination of organic compounds by oxoiron(IV) porphyrin π-cation radicals. Cong Z, Kurahashi T, Fujii H. Angew. Chem. Int. Ed. Engl. 50 9935-9939 (2011)
  73. Proconvertase proteolytic processing of an enzymatically active myeloperoxidase precursor. McCormick S, Nelson A, Nauseef WM. Arch. Biochem. Biophys. 527 31-36 (2012)
  74. Structural evidence for the order of preference of inorganic substrates in mammalian heme peroxidases: crystal structure of the complex of lactoperoxidase with four inorganic substrates, SCN, I, Br and Cl. Singh AK, Pandey N, Sinha M, Kaur P, Sharma S, Singh TP. Int J Biochem Mol Biol 2 328-339 (2011)
  75. Flavonoids as promoters of the (pseudo-)halogenating activity of lactoperoxidase and myeloperoxidase. Gau J, Furtmüller PG, Obinger C, Prévost M, Van Antwerpen P, Arnhold J, Flemmig J. Free Radic. Biol. Med. 97 307-319 (2016)
  76. Independent Evolution of Six Families of Halogenating Enzymes. Xu G, Wang BG. PLoS ONE 11 e0154619 (2016)
  77. Nitric oxide releases Cl(-) from acidic organelles in retinal amacrine cells. Krishnan V, Gleason E. Front Cell Neurosci 9 213 (2015)
  78. Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. Chaloupkova R, Prudnikova T, Rezacova P, Prokop Z, Koudelakova T, Daniel L, Brezovsky J, Ikeda-Ohtsubo W, Sato Y, Kuty M, Nagata Y, Kuta Smatanova I, Damborsky J. Acta Crystallogr. D Biol. Crystallogr. 70 1884-1897 (2014)
  79. Development of a BODIPY-based ratiometric fluorescent probe for hypochlorous acid and its application in living cells. Wang X, Zhou L, Qiang F, Wang F, Wang R, Zhao C. Anal. Chim. Acta 911 114-120 (2016)
  80. Disruption of heme-peptide covalent cross-linking in mammalian peroxidases by hypochlorous acid. Abu-Soud HM, Maitra D, Shaeib F, Khan SN, Byun J, Abdulhamid I, Yang Z, Saed GM, Diamond MP, Andreana PR, Pennathur S. J. Inorg. Biochem. 140 245-254 (2014)
  81. Dual binding mode of antithyroid drug methimazole to mammalian heme peroxidases - structural determination of the lactoperoxidase-methimazole complex at 1.97 Å resolution. Singh RP, Singh A, Sirohi HV, Singh AK, Kaur P, Sharma S, Singh TP. FEBS Open Bio 6 640-650 (2016)
  82. MPO Inhibitors Selected by Virtual Screening. Malvezzi A, Queiroz RF, de Rezende L, Augusto O, Amaral AT. Mol Inform 30 605-613 (2011)
  83. Water and hydrogen halides serve the same structural role in a series of 2+2 hydrogen-bonded dimers based on 2,6-bis(2-anilinoethynyl)pyridine sulfonamide receptors. Berryman OB, Johnson CA, Zakharov LN, Haley MM, Johnson DW. Angew. Chem. Int. Ed. Engl. 47 117-120 (2008)
  84. Active Sites of O2-Evolving Chlorite Dismutases Probed by Halides and Hydroxides and New Iron-Ligand Vibrational Correlations. Geeraerts Z, Rodgers KR, DuBois JL, Lukat-Rodgers GS. Biochemistry 56 4509-4524 (2017)
  85. Human myeloperoxidase catalyzes an oscillating peroxidase-oxidase reaction. Brasen JC, Lunding A, Olsen LF. Arch. Biochem. Biophys. 431 55-62 (2004)
  86. Insights into the Active Site of Coproheme Decarboxylase from Listeria monocytogenes. Milazzo L, Hofbauer S, Howes BD, Gabler T, Furtmüller PG, Obinger C, Smulevich G. Biochemistry 57 2044-2057 (2018)
  87. Mechanism of formation of the ester linkage between heme and Glu310 of CYP4B1: 18O protein labeling studies. Baer BR, Kunze KL, Rettie AE. Biochemistry 46 11598-11605 (2007)
  88. Mode of binding of the antithyroid drug propylthiouracil to mammalian haem peroxidases. Singh RP, Singh A, Kushwaha GS, Singh AK, Kaur P, Sharma S, Singh TP. Acta Crystallogr F Struct Biol Commun 71 304-310 (2015)
  89. Structure of human promyeloperoxidase (proMPO) and the role of the propeptide in processing and maturation. Grishkovskaya I, Paumann-Page M, Tscheliessnig R, Stampler J, Hofbauer S, Soudi M, Sevcnikar B, Oostenbrink C, Furtmüller PG, Djinović-Carugo K, Nauseef WM, Obinger C. J. Biol. Chem. 292 8244-8261 (2017)
  90. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation. Laura RP, Dong D, Reynolds WF, Maki RA. PLoS ONE 11 e0149391 (2016)
  91. A1M/α1-microglobulin is proteolytically activated by myeloperoxidase, binds its heme group and inhibits low density lipoprotein oxidation. Cederlund M, Deronic A, Pallon J, Sørensen OE, Åkerström B. Front Physiol 6 11 (2015)
  92. In vivo examination of 111In-bis-5HT-DTPA to target myeloperoxidase in atherosclerotic ApoE knockout mice. Wu MC, Ho HI, Lee TW, Wu HL, Lo JM. J Drug Target 20 605-614 (2012)
  93. Myeloperoxidase: a new twist to an old tale. Anand U, Anand CV. Indian J Clin Biochem 27 107-109 (2012)
  94. A structurally dynamic N-terminal region drives function of the staphylococcal peroxidase inhibitor (SPIN). de Jong NWM, Ploscariu NT, Ramyar KX, Garcia BL, Herrera AI, Prakash O, Katz BB, Leidal KG, Nauseef WM, van Kessel KPM, van Strijp JAG, Geisbrecht BV. J. Biol. Chem. 293 2260-2271 (2018)
  95. ESR and X-ray Structure Investigations on the Binding and Mechanism of Inhibition of the Native State of Myeloperoxidase with Low Molecular Weight Fragments. Chavali B, Masquelin T, Nilges MJ, Timm DE, Stout SL, Matter WF, Jin N, Jadhav PK, Deng GG. Appl Magn Reson 46 853-873 (2015)
  96. Effect of covalent links on the structure, spectra, and redox properties of myeloperoxidase--a density functional study. Devarajan A, Gaenko AV, Ryde U. J. Inorg. Biochem. 102 1549-1557 (2008)
  97. A BODIPY Based Fluorescent Probe for the Rapid Detection of Hypochlorite. Wang L, Li B, Jiang C, Sun R, Hu P, Chen S, Wu W. J Fluoresc 28 933-941 (2018)
  98. A Bacterial Myeloperoxidase with Antimicrobial Properties. Céré C, Delord B, Kenfack Ymbe P, Vimbert L, Chapel JP, Stines-Chaumeil C. BioTech (Basel) 12 33 (2023)
  99. A Carbazole-Fused-RhodamineProbe for Detection of HOCl in Living Cells. Guo R, Wang Q, Lin W. J Fluoresc 27 1969-1974 (2017)
  100. A Novel Homozygous Mutation of Thyroid Peroxidase Gene Abolishes a Disulfide Bond Leading to Congenital Hypothyroidism. Yakou F, Suwanai H, Ishikawa T, Itou M, Shikuma J, Miwa T, Sakai H, Kanekura K, Narumi S, Suzuki R, Odawara M. Int J Endocrinol 2020 9132372 (2020)
  101. Activation of lactoperoxidase by heme-linked protonation and heme-independent iodide binding. Toyama A, Tominaga A, Inoue T, Takeuchi H. Biopolymers 93 113-120 (2010)
  102. Antioxidative Peptides from Proteolytic Hydrolysates of False Abalone (Volutharpa ampullacea perryi): Characterization, Identification, and Molecular Docking. He S, Zhang Y, Sun H, Du M, Qiu J, Tang M, Sun X, Zhu B. Mar Drugs 17 (2019)
  103. Common Reactivity and Properties of Heme Peroxidases: A DFT Study of Their Origin. Ramos DR, Furtmüller PG, Obinger C, Peña-Gallego Á, Pérez-Juste I, Santaballa JA. Antioxidants (Basel) 12 303 (2023)
  104. Conformational changes in myeloperoxidase induced by ubiquitin and NETs containing free ISG15 from systemic lupus erythematosus patients promote a pro-inflammatory cytokine response in CD4+ T cells. Carrillo-Vázquez DA, Jardón-Valadez E, Torres-Ruiz J, Juárez-Vega G, Maravillas-Montero JL, Meza-Sánchez DE, Domínguez-López ML, Varela JCA, Gómez-Martín D. J Transl Med 18 429 (2020)
  105. Cryo-electron microscopy structures of human thyroid peroxidase (TPO) in complex with TPO antibodies. Baker S, Miguel RN, Thomas D, Powell M, Furmaniak J, Smith BR. J Mol Endocrinol 70 e220149 (2023)
  106. Design of anti-thyroid drugs: Binding studies and structure determination of the complex of lactoperoxidase with 2-mercaptoimidazole at 2.30 Å resolution. Sirohi HV, Singh PK, Iqbal N, Sharma P, Singh AK, Kaur P, Sharma S, Singh TP. Proteins 85 1882-1890 (2017)
  107. Design, Synthesis, Molecular Modeling, and Biological Evaluation of Novel Thiouracil Derivatives as Potential Antithyroid Agents. Awad SM, Zohny YM, Ali SA, Mahgoub S, Said AM. Molecules 23 (2018)
  108. Enzymatic and bactericidal activity of myeloperoxidase in conditions of halogenative stress. Vakhrusheva TV, Grigorieva DV, Gorudko IV, Sokolov AV, Kostevich VA, Lazarev VN, Vasilyev VB, Cherenkevich SN, Panasenko OM. Biochem. Cell Biol. 96 580-591 (2018)
  109. Mesna (2-mercaptoethane sodium sulfonate) functions as a regulator of myeloperoxidase. Jeelani R, Jahanbakhsh S, Kohan-Ghadr HR, Thakur M, Khan S, Aldhaheri SR, Yang Z, Andreana P, Morris R, Abu-Soud HM. Free Radic. Biol. Med. 110 54-62 (2017)
  110. Multi-Oxidant Environment as a Suicidal Inhibitor of Myeloperoxidase. Clemen R, Minkus L, Singer D, Schulan P, von Woedtke T, Wende K, Bekeschus S. Antioxidants (Basel) 12 1936 (2023)
  111. Mutation Spectrum in TPO Gene of Bangladeshi Patients with Thyroid Dyshormonogenesis and Analysis of the Effects of Different Mutations on the Structural Features and Functions of TPO Protein through In Silico Approach. Begum MN, Islam MT, Hossain SR, Bhuyan GS, Halim MA, Shahriar I, Sarker SK, Haque S, Konika TK, Islam MS, Rahat A, Qadri SK, Sultana R, Begum S, Sultana S, Saha N, Hasan M, Hasanat MA, Banu H, Shekhar HU, Chowdhury EK, Sajib AA, Islam ABMMK, Qadri SS, Qadri F, Akhteruzzaman S, Mannoor K. Biomed Res Int 2019 9218903 (2019)
  112. Native glycosylation and binding of the antidepressant paroxetine in a low-resolution crystal structure of human myeloperoxidase. Krawczyk L, Semwal S, Soubhye J, Lemri Ouadriri S, Prévost M, Van Antwerpen P, Roos G, Bouckaert J. Acta Crystallogr D Struct Biol 78 1099-1109 (2022)
  113. Letter Native myeloperoxidase is required to make the experimental vasculitis model. Nonokawa M, Suzuki K, Hayashi H, Nishibata Y, Masuda S, Nakazawa D, Tanaka S, Tomaru U, Ishizu A. Arthritis Res. Ther. 21 296 (2019)
  114. Neutrophil myeloperoxidase harbors distinct site-specific peculiarities in its glycosylation. Reiding KR, Franc V, Huitema MG, Brouwer E, Heeringa P, Heck AJR. J. Biol. Chem. 294 20233-20245 (2019)
  115. Novel bis-arylalkylamines as myeloperoxidase inhibitors: Design, synthesis, and structure-activity relationship study. Aldib I, Gelbcke M, Soubhye J, Prévost M, Furtmüller PG, Obinger C, Elfving B, Alard IC, Roos G, Delporte C, Berger G, Dufour D, Zouaoui Boudjeltia K, Nève J, Dufrasne F, Van Antwerpen P. Eur J Med Chem 123 746-762 (2016)
  116. Optimization of methods for the accurate characterization of whole blood neutrophils. Connelly AN, Huijbregts RPH, Pal HC, Kuznetsova V, Davis MD, Ong KL, Fay CX, Greene ME, Overton ET, Hel Z. Sci Rep 12 3667 (2022)
  117. Prediction of the Effects of Missense Mutations on Human Myeloperoxidase Protein Stability Using In Silico Saturation Mutagenesis. Sobitan A, Edwards W, Jalal MS, Kolawole A, Ullah H, Duttaroy A, Li J, Teng S. Genes (Basel) 13 1412 (2022)
  118. Structural Insights into Ceftobiprole Inhibition of Pseudomonas aeruginosa Penicillin-Binding Protein 3. Kumar V, Tang C, Bethel CR, Papp-Wallace KM, Wyatt J, Desarbre E, Bonomo RA, van den Akker F. Antimicrob Agents Chemother 64 (2020)
  119. Structure of Yak Lactoperoxidase at 1.55 Å Resolution. Viswanathan V, Rani C, Ahmad N, Singh PK, Sharma P, Kaur P, Sharma S, Singh TP. Protein J 40 8-18 (2021)
  120. The inhibitory effect of dinitrosyl iron complexes (NO donors) on myeloperoxidase activity. Akentieva NP, Sanina NA, Gizatullin AR, Shmatko NY, Goryachev NS, Shkondina NI, Prikhodchenko TR, Aldoshin SM. Dokl. Biochem. Biophys. 477 389-393 (2017)
  121. The staphylococcal inhibitory protein SPIN binds to human myeloperoxidase with picomolar affinity but only dampens halide oxidation. Leitgeb U, Furtmüller PG, Hofbauer S, Brito JA, Obinger C, Pfanzagl V. J Biol Chem 298 102514 (2022)
  122. Thyroid Peroxidase Activity is Inhibited by Phenolic Compounds-Impact of Interaction. Habza-Kowalska E, Kaczor AA, Żuk J, Matosiuk D, Gawlik-Dziki U. Molecules 24 (2019)


Related citations provided by authors (4)