1ctp Citations

Structure of the mammalian catalytic subunit of cAMP-dependent protein kinase and an inhibitor peptide displays an open conformation.

Acta Crystallogr. D Biol. Crystallogr. 49 381-8 (1993)
Cited: 38 times
EuropePMC logo PMID: 15299513

Abstract

The crystal structure of a binary complex of the porcine heart catalytic (C) subunit of cAMP-dependent protein kinase (space group P4(1)32; a = 171.5 A) complexed with a di-iodinated peptide inhibitor, PKI(5-24), has been solved and refined to 2.9 A resolution with an overall R of 21.1%. The r.m.s. deviations from ideal bond lengths and angles are 0.022 A and 4.3 degrees. A single isotropic B of 17 A(2) was used for all atoms. The structure solution was carried out initially by molecular replacement of electron density followed by refinement against atomic coordinates from orthorhombic crystals of a binary complex of the mouse recombinant enzyme previously described [Knighton, Zheng, Ten Eyck, Ashford, Xuong, Taylor & Sowadski (1991). Science, 253, 407-414]. The most striking difference between the two crystal structures is a large displacement of the small lobe of the enzyme. In the cubic crystal, the beta-sheet of the small lobe is rotated by 15 degrees and translated by 1.9 A with respect to the orthorhombic crystal. Possible explanations for why this binary complex crystallized in an open conformation in contrast to a similar binary complex of the recombinant enzyme are discussed. This study demonstrates that considerable information about parts of a crystal structure can be obtained without a complete crystal structure analysis. Specifically, the six rigid-group parameters of a poly alanine model of the beta-structure were obtained satisfactorily from a crystal structure by refinement of difference Fourier coefficients based on an approximate partial structure model.

Reviews - 1ctp mentioned but not cited (1)

  1. Solution NMR Spectroscopy for the Study of Enzyme Allostery. Lisi GP, Loria JP. Chem. Rev. 116 6323-6369 (2016)

Articles - 1ctp mentioned but not cited (6)

  1. Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. Biondi RM, Cheung PC, Casamayor A, Deak M, Currie RA, Alessi DR. EMBO J. 19 979-988 (2000)
  2. FlexOracle: predicting flexible hinges by identification of stable domains. Flores SC, Gerstein MB. BMC Bioinformatics 8 215 (2007)
  3. Crystal structure of the E230Q mutant of cAMP-dependent protein kinase reveals an unexpected apoenzyme conformation and an extended N-terminal A helix. Wu J, Yang J, Kannan N, Madhusudan, Xuong NH, Ten Eyck LF, Taylor SS. Protein Sci. 14 2871-2879 (2005)
  4. Release of ADP from the catalytic subunit of protein kinase A: a molecular dynamics simulation study. Lu B, Wong CF, McCammon JA. Protein Sci. 14 159-168 (2005)
  5. Structural analysis of Staphylococcus aureus serine/threonine kinase PknB. Rakette S, Donat S, Ohlsen K, Stehle T. PLoS ONE 7 e39136 (2012)
  6. SCEDS: protein fragments for molecular replacement in Phaser. McCoy AJ, Nicholls RA, Schneider TR. Acta Crystallogr. D Biol. Crystallogr. 69 2216-2225 (2013)


Reviews citing this publication (6)

  1. α-Synuclein, leucine-rich repeat kinase-2, and manganese in the pathogenesis of Parkinson disease. Covy JP, Giasson BI. Neurotoxicology 32 622-629 (2011)
  2. Conformational diversity of catalytic cores of protein kinases. Sowadski JM, Epstein LF, Lankiewicz L, Karlsson R. Pharmacol. Ther. 82 157-164 (1999)
  3. Protein kinase regulation: insights from crystal structure analysis. Morgan DO, De Bondt HL. Curr. Opin. Cell Biol. 6 239-246 (1994)
  4. Protein kinases. Goldsmith EJ, Cobb MH. Curr. Opin. Struct. Biol. 4 833-840 (1994)
  5. Domain movements in protein kinases. Cox S, Radzio-Andzelm E, Taylor SS. Curr. Opin. Struct. Biol. 4 893-901 (1994)
  6. Three protein kinase structures define a common motif. Taylor SS, Radzio-Andzelm E. Structure 2 345-355 (1994)

Articles citing this publication (25)

  1. A Src-like inactive conformation in the abl tyrosine kinase domain. Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M, Karplus M, Cole PA, Kuriyan J. PLoS Biol. 4 e144 (2006)
  2. cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer. Madhusudan, Trafny EA, Xuong NH, Adams JA, Ten Eyck LF, Taylor SS, Sowadski JM. Protein Sci. 3 176-187 (1994)
  3. Crystal structure of casein kinase-1, a phosphate-directed protein kinase. Xu RM, Carmel G, Sweet RM, Kuret J, Cheng X. EMBO J. 14 1015-1023 (1995)
  4. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Fröhling S, Scholl C, Levine RL, Loriaux M, Boggon TJ, Bernard OA, Berger R, Döhner H, Döhner K, Ebert BL, Teckie S, Golub TR, Jiang J, Schittenhelm MM, Lee BH, Griffin JD, Stone RM, Heinrich MC, Deininger MW, Druker BJ, Gilliland DG. Cancer Cell 12 501-513 (2007)
  5. Staurosporine-induced conformational changes of cAMP-dependent protein kinase catalytic subunit explain inhibitory potential. Prade L, Engh RA, Girod A, Kinzel V, Huber R, Bossemeyer D. Structure 5 1627-1637 (1997)
  6. Dynamic features of cAMP-dependent protein kinase revealed by apoenzyme crystal structure. Akamine P, Madhusudan, Wu J, Xuong NH, Ten Eyck LF, Taylor SS. J. Mol. Biol. 327 159-171 (2003)
  7. Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. Owen DJ, Noble ME, Garman EF, Papageorgiou AC, Johnson LN. Structure 3 467-482 (1995)
  8. A binary complex of the catalytic subunit of cAMP-dependent protein kinase and adenosine further defines conformational flexibility. Narayana N, Cox S, Nguyen-huu X, Ten Eyck LF, Taylor SS. Structure 5 921-935 (1997)
  9. Crystal structure of the catalytic domain of human atypical protein kinase C-iota reveals interaction mode of phosphorylation site in turn motif. Messerschmidt A, Macieira S, Velarde M, Bädeker M, Benda C, Jestel A, Brandstetter H, Neuefeind T, Blaesse M. J. Mol. Biol. 352 918-931 (2005)
  10. Structural principles governing domain motions in proteins. Hayward S. Proteins 36 425-435 (1999)
  11. Induced fit in guanidino kinases--comparison of substrate-free and transition state analog structures of arginine kinase. Yousef MS, Clark SA, Pruett PK, Somasundaram T, Ellington WR, Chapman MS. Protein Sci. 12 103-111 (2003)
  12. Structural basis for chromosome X-linked agammaglobulinemia: a tyrosine kinase disease. Vihinen M, Vetrie D, Maniar HS, Ochs HD, Zhu Q, Vorechovský I, Webster AD, Notarangelo LD, Nilsson L, Sowadski JM. Proc. Natl. Acad. Sci. U.S.A. 91 12803-12807 (1994)
  13. Mobilization of the A-kinase N-myristate through an isoform-specific intermolecular switch. Gangal M, Clifford T, Deich J, Cheng X, Taylor SS, Johnson DA. Proc. Natl. Acad. Sci. U.S.A. 96 12394-12399 (1999)
  14. Conserved water molecules contribute to the extensive network of interactions at the active site of protein kinase A. Shaltiel S, Cox S, Taylor SS. Proc. Natl. Acad. Sci. U.S.A. 95 484-491 (1998)
  15. Spermiogenesis initiation in Caenorhabditis elegans involves a casein kinase 1 encoded by the spe-6 gene. Muhlrad PJ, Ward S. Genetics 161 143-155 (2002)
  16. Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck. Banavali NK, Roux B. Proteins 67 1096-1112 (2007)
  17. StoneHinge: hinge prediction by network analysis of individual protein structures. Keating KS, Flores SC, Gerstein MB, Kuhn LA. Protein Sci. 18 359-371 (2009)
  18. Role of N-terminal myristylation in the structure and regulation of cAMP-dependent protein kinase. Bastidas AC, Deal MS, Steichen JM, Keshwani MM, Guo Y, Taylor SS. J. Mol. Biol. 422 215-229 (2012)
  19. Insights into the inhibition of the p90 ribosomal S6 kinase (RSK) by the flavonol glycoside SL0101 from the 1.5 Å crystal structure of the N-terminal domain of RSK2 with bound inhibitor. Utepbergenov D, Derewenda U, Olekhnovich N, Szukalska G, Banerjee B, Hilinski MK, Lannigan DA, Stukenberg PT, Derewenda ZS. Biochemistry 51 6499-6510 (2012)
  20. The G2019S pathogenic mutation disrupts sensitivity of leucine-rich repeat kinase 2 to manganese kinase inhibition. Covy JP, Giasson BI. J. Neurochem. 115 36-46 (2010)
  21. An investigation of the role of Glu-842, Glu-844 and His-846 in the function of the cytoplasmic domain of the epidermal growth factor receptor. Timms JF, Noble ME, Gregoriou M. Biochem. J. 308 ( Pt 1) 219-229 (1995)
  22. E230Q mutation of the catalytic subunit of cAMP-dependent protein kinase affects local structure and the binding of peptide inhibitor. Ung MU, Lu B, McCammon JA. Biopolymers 81 428-439 (2006)
  23. MgATP-induced conformational change of the catalytic subunit of cAMP-dependent protein kinase. Yang S, Rogers KM, Johnson DA. Biophys. Chem. 113 193-199 (2005)
  24. Reciprocally coupled residues crucial for protein kinase Pak2 activity calculated by statistical coupling analysis. Hsu YH, Traugh JA. PLoS ONE 5 e9455 (2010)
  25. The negative charge of Glu-127 in protein kinase A and its biorecognition. Batkin M, Shaltiel S. FEBS Lett. 452 395-399 (1999)


Related citations provided by authors (6)

  1. Crystal-Structure of the Catalytic Subunit of Camp-Dependent Protein-Kinase Complexed with a Mgatp and Peptide Inhibitor. Zheng J, Knighton DR, Xuong N-H, Eyck LFT, Karlsson R, Taylor SS, Sowadski JM Biochemistry 32 2154- (1993)
  2. 2.0 Angstroms Refined Crystal Structure of the Catalytic Subunit of Camp-Dependent Protein Kinase Complexed with a Peptide Inhibitor and Detergent. Knighton DR, Bell SM, Zheng J, Eyck LFT, Xuong N-H, Taylor SS, Sowadski JM Acta Crystallogr. D Biol. Crystallogr. 49 357- (1993)
  3. 2.2 Angstroms Refined Crystal-Structure of the Catalytic Subunit of Camp-Dependent Protein-Kinase Complexed with Mnatp and a Peptide Inhibitor. Zheng JH, Trafny EA, Knighton DR, Xuong N-H, Taylor SS, Eyck LFT, Sowadski JM Acta Crystallogr. D Biol. Crystallogr. 49 362- (1993)
  4. Crystal Structure of the Catalytic Subunit of Cyclic Adenosine Monophosphate-Dependent Protein Kinase. Knighton DR, Zheng J, Eyck LFT, Ashford VA, Xuong N-H, Taylor SS, Sowadski JM Science 253 407- (1991)
  5. Structure of a Peptide Inhibitor Bound to the Catalytic Subunit of Cyclic Adenosine Monophosphate-Dependent Protein Kinase. Knighton DR, Zheng J, Eyck LFT, Xuong N-H, Taylor SS, Sowadski JM Science 253 414- (1991)
  6. Expression of the Catalytic Subunit of Camp-Dependent Protein Kinase in Escherichia Coli. Slice LW, Taylor SS J. Biol. Chem. 264 20940- (1989)