1ctn Citations

Crystal structure of a bacterial chitinase at 2.3 A resolution.

Structure 2 1169-80 (1994)
Cited: 223 times
EuropePMC logo PMID: 7704527

Abstract

Background

Chitinases cleave the beta-1-4-glycosidic bond between the N-acetyl-D-glucosamine units of which chitin is comprised. Chitinases are present in plants, bacteria and fungi, but whereas structures are available for two prototypic plant enzymes, no structure is available for a bacterial or fungal chitinase.

Results

To redress this imbalance, the structure of native chitinase A from Serratia marcescens has been solved by multiple isomorphous replacement and refined at 2.3 A resolution, resulting in a crystallographic R-factor of 16.2%. The enzyme comprises three domains: an all beta-strand amino-terminal domain, a catalytic alpha/beta-barrel domain, and a small alpha+beta-fold domain. There are several residues with unusual geometries in the structure. Structure determination of chitinase A in complex with N,N',N",N"'-tetra-acetylo-chitotetraose, together with biochemical and sequence analysis data, enabled the positions of the active-site and catalytic residues to be proposed.

Conclusion

The reaction mechanism seems to be similar to that of lysozyme and most other glycosylhydrolases, i.e. general acid-base catalysis. The role of the amino-terminal domain could not be identified, but it has similarities to the fibronectin III domain. This domain may possibly facilitate the interaction of chitinase A with chitin.

Reviews - 1ctn mentioned but not cited (1)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1ctn mentioned but not cited (20)

  1. The chitinase PfCHT1 from the human malaria parasite Plasmodium falciparum lacks proenzyme and chitin-binding domains and displays unique substrate preferences. Vinetz JM, Dave SK, Specht CA, Brameld KA, Xu B, Hayward R, Fidock DA. Proc. Natl. Acad. Sci. U.S.A. 96 14061-14066 (1999)
  2. Role of hydrophobic clusters and long-range contact networks in the folding of (alpha/beta)8 barrel proteins. Selvaraj S, Gromiha MM. Biophys. J. 84 1919-1925 (2003)
  3. Improved prediction of critical residues for protein function based on network and phylogenetic analyses. Thibert B, Bredesen DE, del Rio G. BMC Bioinformatics 6 213 (2005)
  4. Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding. Li H, Greene LH. PLoS ONE 5 e8654 (2010)
  5. "Hidden" sequence periodicities and protein architecture. Rackovsky S. Proc. Natl. Acad. Sci. U.S.A. 95 8580-8584 (1998)
  6. Crystal structures of Bacillus cereus NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis: a chitinase without chitin binding and insertion domains. Hsieh YC, Wu YJ, Chiang TY, Kuo CY, Shrestha KL, Chao CF, Huang YC, Chuankhayan P, Wu WG, Li YK, Chen CJ. J. Biol. Chem. 285 31603-31615 (2010)
  7. Efficient identification of critical residues based only on protein structure by network analysis. Cusack MP, Thibert B, Bredesen DE, Del Rio G. PLoS ONE 2 e421 (2007)
  8. Identification of essential amino acids in the Azorhizobium caulinodans fucosyltransferase NodZ. Chazalet V, Uehara K, Geremia RA, Breton C. J. Bacteriol. 183 7067-7075 (2001)
  9. Structural characteristics of an insect group I chitinase, an enzyme indispensable to moulting. Chen L, Liu T, Zhou Y, Chen Q, Shen X, Yang Q. Acta Crystallogr. D Biol. Crystallogr. 70 932-942 (2014)
  10. Structure of chitinase D from Serratia proteamaculans reveals the structural basis of its dual action of hydrolysis and transglycosylation. Madhuprakash J, Singh A, Kumar S, Sinha M, Kaur P, Sharma S, Podile AR, Singh TP. Int J Biochem Mol Biol 4 166-178 (2013)
  11. Overexpression, purification and crystallization of the two C-terminal domains of the bifunctional cellulase ctCel9D-Cel44A from Clostridium thermocellum. Najmudin S, Guerreiro CI, Ferreira LM, Romão MJ, Fontes CM, Prates JA. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 1043-1045 (2005)
  12. Inverse relationship between chitobiase and transglycosylation activities of chitinase-D from Serratia proteamaculans revealed by mutational and biophysical analyses. Madhuprakash J, Bobbili KB, Moerschbacher BM, Singh TP, Swamy MJ, Podile AR. Sci Rep 5 15657 (2015)
  13. Determining protein similarity by comparing hydrophobic core structure. Gadzała M, Kalinowska B, Banach M, Konieczny L, Roterman I. Heliyon 3 e00235 (2017)
  14. Discovery of Kasugamycin as a Potent Inhibitor of Glycoside Hydrolase Family 18 Chitinases. Qi H, Jiang X, Ding Y, Liu T, Yang Q. Front Mol Biosci 8 640356 (2021)
  15. Expression, purification, crystallization and X-ray diffraction analysis of ChiL, a chitinase from Chitiniphilus shinanonensis. Ueda M, Shimosaka M, Arai R. Acta Crystallogr F Struct Biol Commun 71 1516-1520 (2015)
  16. Single-molecule imaging analysis reveals the mechanism of a high-catalytic-activity mutant of chitinase A from Serratia marcescens. Visootsat A, Nakamura A, Vignon P, Watanabe H, Uchihashi T, Iino R. J Biol Chem 295 1915-1925 (2020)
  17. Combined Approach to Engineer a Highly Active Mutant of Processive Chitinase Hydrolyzing Crystalline Chitin. Visootsat A, Nakamura A, Wang TW, Iino R. ACS Omega 5 26807-26816 (2020)
  18. Expression, purification, crystallization and preliminary crystallographic analysis of chitinase A from Vibrio carchariae. Songsiriritthigul C, Yuvaniyama J, Robinson RC, Vongsuwan A, Prinz H, Suginta W. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 895-898 (2005)
  19. Processive chitinase is Brownian monorail operated by fast catalysis after peeling rail from crystalline chitin. Nakamura A, Okazaki KI, Furuta T, Sakurai M, Iino R. Nat Commun 9 3814 (2018)
  20. The Crystal Structure of a Streptomyces thermoviolaceus Thermophilic Chitinase Known for Its Refolding Efficiency. Malecki PH, Bejger M, Rypniewski W, Vorgias CE. Int J Mol Sci 21 (2020)


Reviews citing this publication (17)

  1. Structures and mechanisms of glycosyl hydrolases. Davies G, Henrissat B. Structure 3 853-859 (1995)
  2. Hyaluronidases: their genomics, structures, and mechanisms of action. Stern R, Jedrzejas MJ. Chem. Rev. 106 818-839 (2006)
  3. Physiological aspects of chitin catabolism in marine bacteria. Keyhani NO, Roseman S. Biochim. Biophys. Acta 1473 108-122 (1999)
  4. The molecular biology of chitin digestion. Cohen-Kupiec R, Chet I. Curr. Opin. Biotechnol. 9 270-277 (1998)
  5. Insect chitinases: molecular biology and potential use as biopesticides. Kramer KJ, Muthukrishnan S. Insect Biochem. Mol. Biol. 27 887-900 (1997)
  6. Microbial hydrolysis of polysaccharides. Warren RA. Annu. Rev. Microbiol. 50 183-212 (1996)
  7. Insect chitinase and chitinase-like proteins. Arakane Y, Muthukrishnan S. Cell. Mol. Life Sci. 67 201-216 (2010)
  8. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides. Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VG. FEBS J. 280 3028-3049 (2013)
  9. alpha-Amylase family: molecular biology and evolution. Janecek S. Prog. Biophys. Mol. Biol. 67 67-97 (1997)
  10. Potential role of chitinase 3-like-1 in inflammation-associated carcinogenic changes of epithelial cells. Eurich K, Segawa M, Toei-Shimizu S, Mizoguchi E. World J. Gastroenterol. 15 5249-5259 (2009)
  11. Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. van der Holst PP, Schlaman HR, Spaink HP. Curr. Opin. Struct. Biol. 11 608-616 (2001)
  12. New structural insights into lectin-type proteins of the immune system. Kogelberg H, Feizi T. Curr. Opin. Struct. Biol. 11 635-643 (2001)
  13. Immunoglobulin domains in Escherichia coli and other enterobacteria: from pathogenesis to applications in antibody technologies. Bodelón G, Palomino C, Fernández LÁ. FEMS Microbiol. Rev. 37 204-250 (2013)
  14. Transgenic expression of plant chitinases to enhance disease resistance. Cletus J, Balasubramanian V, Vashisht D, Sakthivel N. Biotechnol. Lett. 35 1719-1732 (2013)
  15. Current overview of allergens of plant pathogenesis related protein families. Sinha M, Singh RP, Kushwaha GS, Iqbal N, Singh A, Kaushik S, Kaur P, Sharma S, Singh TP. ScientificWorldJournal 2014 543195 (2014)
  16. Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Agostoni M, Hangasky JA, Marletta MA. Microbiol. Mol. Biol. Rev. 81 (2017)
  17. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Oyeleye A, Normi YM. Biosci. Rep. 38 (2018)

Articles citing this publication (185)

  1. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Recklies AD, White C, Ling H. Biochem. J. 365 119-126 (2002)
  2. Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Lehti-Shiu MD, Zou C, Hanada K, Shiu SH. Plant Physiol. 150 12-26 (2009)
  3. Structural insights into the catalytic mechanism of a family 18 exo-chitinase. van Aalten DM, Komander D, Synstad B, Gåseidnes S, Peter MG, Eijsink VG. Proc. Natl. Acad. Sci. U.S.A. 98 8979-8984 (2001)
  4. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Tews I, Perrakis A, Oppenheim A, Dauter Z, Wilson KS, Vorgias CE. Nat. Struct. Biol. 3 638-648 (1996)
  5. Structure of a human lysosomal sulfatase. Bond CS, Clements PR, Ashby SJ, Collyer CA, Harrop SJ, Hopwood JJ, Guss JM. Structure 5 277-289 (1997)
  6. The chitinase 3-like protein human cartilage glycoprotein 39 inhibits cellular responses to the inflammatory cytokines interleukin-1 and tumour necrosis factor-alpha. Ling H, Recklies AD. Biochem. J. 380 651-659 (2004)
  7. Beta-glucosidase, beta-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold beta/alpha architecture and with two conserved glutamates near the carboxy-terminal ends of beta-strands four and seven. Jenkins J, Lo Leggio L, Harris G, Pickersgill R. FEBS Lett. 362 281-285 (1995)
  8. Crystal structure of hyaluronidase, a major allergen of bee venom. Marković-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Müller U, Schirmer T. Structure 8 1025-1035 (2000)
  9. Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-A resolution. van Aalten DM, Synstad B, Brurberg MB, Hough E, Riise BW, Eijsink VG, Wierenga RK. Proc. Natl. Acad. Sci. U.S.A. 97 5842-5847 (2000)
  10. Protein function prediction using local 3D templates. Laskowski RA, Watson JD, Thornton JM. J. Mol. Biol. 351 614-626 (2005)
  11. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. Horn SJ, Sørbotten A, Synstad B, Sikorski P, Sørlie M, Vårum KM, Eijsink VG. FEBS J. 273 491-503 (2006)
  12. Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Cannon JP, Haire RN, Litman GW. Nat. Immunol. 3 1200-1207 (2002)
  13. Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins. Fusetti F, von Moeller H, Houston D, Rozeboom HJ, Dijkstra BW, Boot RG, Aerts JM, van Aalten DM. J. Biol. Chem. 277 25537-25544 (2002)
  14. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. Seidl V, Huemer B, Seiboth B, Kubicek CP. FEBS J. 272 5923-5939 (2005)
  15. The crystal structure of a cyanogenic beta-glucosidase from white clover, a family 1 glycosyl hydrolase. Barrett T, Suresh CG, Tolley SP, Dodson EJ, Hughes MA. Structure 3 951-960 (1995)
  16. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. Ohno T, Armand S, Hata T, Nikaidou N, Henrissat B, Mitsutomi M, Watanabe T. J. Bacteriol. 178 5065-5070 (1996)
  17. The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Henrissat B, Watanabe T. Biochem. J. 343 Pt 3 587-596 (1999)
  18. Synthesis, sorting, and processing into distinct isoforms of human macrophage chitotriosidase. Renkema GH, Boot RG, Strijland A, Donker-Koopman WE, van den Berg M, Muijsers AO, Aerts JM. Eur. J. Biochem. 244 279-285 (1997)
  19. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Suzuki K, Sugawara N, Suzuki M, Uchiyama T, Katouno F, Nikaidou N, Watanabe T. Biosci. Biotechnol. Biochem. 66 1075-1083 (2002)
  20. A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Tanaka T, Fujiwara S, Nishikori S, Fukui T, Takagi M, Imanaka T. Appl. Environ. Microbiol. 65 5338-5344 (1999)
  21. Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Irwin DC, Zhang S, Wilson DB. Eur. J. Biochem. 267 4988-4997 (2000)
  22. Genetic analysis of the chitinase system of Serratia marcescens 2170. Watanabe T, Kimura K, Sumiya T, Nikaidou N, Suzuki K, Suzuki M, Taiyoji M, Ferrer S, Regue M. J. Bacteriol. 179 7111-7117 (1997)
  23. Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. Synstad B, Gåseidnes S, Van Aalten DM, Vriend G, Nielsen JE, Eijsink VG. Eur. J. Biochem. 271 253-262 (2004)
  24. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K. J. Bacteriol. 179 7306-7314 (1997)
  25. Knockout of the rodent malaria parasite chitinase pbCHT1 reduces infectivity to mosquitoes. Dessens JT, Mendoza J, Claudianos C, Vinetz JM, Khater E, Hassard S, Ranawaka GR, Sinden RE. Infect. Immun. 69 4041-4047 (2001)
  26. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Beier S, Bertilsson S. Front Microbiol 4 149 (2013)
  27. Solution structure of the chitin-binding domain of Bacillus circulans WL-12 chitinase A1. Ikegami T, Okada T, Hashimoto M, Seino S, Watanabe T, Shirakawa M. J. Biol. Chem. 275 13654-13661 (2000)
  28. The X-ray structure of a chitinase from the pathogenic fungus Coccidioides immitis. Hollis T, Monzingo AF, Bortone K, Ernst S, Cox R, Robertus JD. Protein Sci. 9 544-551 (2000)
  29. Family 19 chitinases of Streptomyces species: characterization and distribution. Watanabe T, Kanai R, Kawase T, Tanabe T, Mitsutomi M, Sakuda S, Miyashita K. Microbiology (Reading, Engl.) 145 ( Pt 12) 3353-3363 (1999)
  30. Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. Zakariassen H, Aam BB, Horn SJ, Vårum KM, Sørlie M, Eijsink VG. J. Biol. Chem. 284 10610-10617 (2009)
  31. Towards new enzymes for biofuels: lessons from chitinase research. Eijsink VG, Vaaje-Kolstad G, Vårum KM, Horn SJ. Trends Biotechnol. 26 228-235 (2008)
  32. Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin. Watanabe T, Ariga Y, Sato U, Toratani T, Hashimoto M, Nikaidou N, Kezuka Y, Nonaka T, Sugiyama J. Biochem. J. 376 237-244 (2003)
  33. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. Devillard E, Goodheart DB, Karnati SK, Bayer EA, Lamed R, Miron J, Nelson KE, Morrison M. J. Bacteriol. 186 136-145 (2004)
  34. Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases. Rao FV, Houston DR, Boot RG, Aerts JM, Hodkinson M, Adams DJ, Shiomi K, Omura S, van Aalten DM. Chem. Biol. 12 65-76 (2005)
  35. A Bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Daimon T, Hamada K, Mita K, Okano K, Suzuki MG, Kobayashi M, Shimada T. Insect Biochem. Mol. Biol. 33 749-759 (2003)
  36. The heme redox center of chloroplast cytochrome f is linked to a buried five-water chain. Martinez SE, Huang D, Ponomarev M, Cramer WA, Smith JL. Protein Sci. 5 1081-1092 (1996)
  37. Serratia marcescens chitobiase is a retaining glycosidase utilizing substrate acetamido group participation. Drouillard S, Armand S, Davies GJ, Vorgias CE, Henrissat B. Biochem. J. 328 ( Pt 3) 945-949 (1997)
  38. Cloning and expression of chitinases of Entamoebae. de la Vega H, Specht CA, Semino CE, Robbins PW, Eichinger D, Caplivski D, Ghosh S, Samuelson J. Mol. Biochem. Parasitol. 85 139-147 (1997)
  39. Family 18 chitinase-oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens chitinase A. Aronson NN, Halloran BA, Alexyev MF, Amable L, Madura JD, Pasupulati L, Worth C, Van Roey P. Biochem. J. 376 87-95 (2003)
  40. Plant chitinases use two different hydrolytic mechanisms. Iseli B, Armand S, Boller T, Neuhaus JM, Henrissat B. FEBS Lett. 382 186-188 (1996)
  41. Reaction mechanism of chitosanase from Streptomyces sp. N174. Fukamizo T, Honda Y, Goto S, Boucher I, Brzezinski R. Biochem. J. 311 ( Pt 2) 377-383 (1995)
  42. Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Chernin LS, De la Fuente L, Sobolev V, Haran S, Vorgias CE, Oppenheim AB, Chet I. Appl. Environ. Microbiol. 63 834-839 (1997)
  43. Characterization of chitinase C from a marine bacterium, Alteromonas sp. strain O-7, and its corresponding gene and domain structure. Tsujibo H, Orikoshi H, Shiotani K, Hayashi M, Umeda J, Miyamoto K, Imada C, Okami Y, Inamori Y. Appl. Environ. Microbiol. 64 472-478 (1998)
  44. Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors. Brameld KA, Shrader WD, Imperiali B, Goddard WA. J. Mol. Biol. 280 913-923 (1998)
  45. Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Kawase T, Saito A, Sato T, Kanai R, Fujii T, Nikaidou N, Miyashita K, Watanabe T. Appl. Environ. Microbiol. 70 1135-1144 (2004)
  46. Saccharomyces cerevisiae cell wall chitin, the Kluyveromyces lactis zymocin receptor. Jablonowski D, Fichtner L, Martin VJ, Klassen R, Meinhardt F, Stark MJ, Schaffrath R. Yeast 18 1285-1299 (2001)
  47. Crystal structure at 1.95 A resolution of the breast tumour-specific antibody SM3 complexed with its peptide epitope reveals novel hypervariable loop recognition. Dokurno P, Bates PA, Band HA, Stewart LM, Lally JM, Burchell JM, Taylor-Papadimitriou J, Snary D, Sternberg MJ, Freemont PS. J. Mol. Biol. 284 713-728 (1998)
  48. Growth of hyperthermophilic archaeon Pyrococcus furiosus on chitin involves two family 18 chitinases. Gao J, Bauer MW, Shockley KR, Pysz MA, Kelly RM. Appl. Environ. Microbiol. 69 3119-3128 (2003)
  49. Heterologous expression and characterization of wild-type and mutant forms of a 26 kDa endochitinase from barley (Hordeum vulgare L.). Andersen MD, Jensen A, Robertus JD, Leah R, Skriver K. Biochem. J. 322 ( Pt 3) 815-822 (1997)
  50. Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. Prag G, Papanikolau Y, Tavlas G, Vorgias CE, Petratos K, Oppenheim AB. J. Mol. Biol. 300 611-617 (2000)
  51. The structure of an allosamidin complex with the Coccidioides immitis chitinase defines a role for a second acid residue in substrate-assisted mechanism. Bortone K, Monzingo AF, Ernst S, Robertus JD. J. Mol. Biol. 320 293-302 (2002)
  52. Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. Kwon Y, Kim SH, Jung MS, Kim MS, Oh JE, Ju HW, Kim KI, Vierling E, Lee H, Hong SW. Plant J. 49 184-193 (2007)
  53. Localization of a baculovirus-induced chitinase in the insect cell endoplasmic reticulum. Thomas CJ, Brown HL, Hawes CR, Lee BY, Min MK, King LA, Possee RD. J. Virol. 72 10207-10212 (1998)
  54. Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes. Rao FV, Andersen OA, Vora KA, Demartino JA, van Aalten DM. Chem. Biol. 12 973-980 (2005)
  55. Crystal structure of a novel regulatory 40-kDa mammary gland protein (MGP-40) secreted during involution. Mohanty AK, Singh G, Paramasivam M, Saravanan K, Jabeen T, Sharma S, Yadav S, Kaur P, Kumar P, Srinivasan A, Singh TP. J. Biol. Chem. 278 14451-14460 (2003)
  56. N-Acetylglucosaminidase (chitobiase) from Serratia marcescens: gene sequence, and protein production and purification in Escherichia coli. Tews I, Vincentelli R, Vorgias CE. Gene 170 63-67 (1996)
  57. Cloning, sequences, and characterization of two chitinase genes from the Antarctic Arthrobacter sp. strain TAD20: isolation and partial characterization of the enzymes. Lonhienne T, Mavromatis K, Vorgias CE, Buchon L, Gerday C, Bouriotis V. J. Bacteriol. 183 1773-1779 (2001)
  58. Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases. Payne CM, Baban J, Horn SJ, Backe PH, Arvai AS, Dalhus B, Bjørås M, Eijsink VG, Sørlie M, Beckham GT, Vaaje-Kolstad G. J. Biol. Chem. 287 36322-36330 (2012)
  59. Hydrolysis of insoluble collagen by deseasin MCP-01 from deep-sea Pseudoalteromonas sp. SM9913: collagenolytic characters, collagen-binding ability of C-terminal polycystic kidney disease domain, and implication for its novel role in deep-sea sedimentary particulate organic nitrogen degradation. Zhao GY, Chen XL, Zhao HL, Xie BB, Zhou BC, Zhang YZ. J. Biol. Chem. 283 36100-36107 (2008)
  60. Cloning and primary structure of the chiA gene from Aeromonas caviae. Sitrit Y, Vorgias CE, Chet I, Oppenheim AB. J. Bacteriol. 177 4187-4189 (1995)
  61. Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. Driss F, Kallassy-Awad M, Zouari N, Jaoua S. J. Appl. Microbiol. 99 945-953 (2005)
  62. Molecular directionality in crystalline beta-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170. Hult EL, Katouno F, Uchiyama T, Watanabe T, Sugiyama J. Biochem. J. 388 851-856 (2005)
  63. Psammaplin A, a chitinase inhibitor isolated from the Fijian marine sponge Aplysinella rhax. Tabudravu JN, Eijsink VG, Gooday GW, Jaspars M, Komander D, Legg M, Synstad B, van Aalten DM. Bioorg. Med. Chem. 10 1123-1128 (2002)
  64. Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Lu Y, Zen KC, Muthukrishnan S, Kramer KJ. Insect Biochem. Mol. Biol. 32 1369-1382 (2002)
  65. Structural comparisons of TIM barrel proteins suggest functional and evolutionary relationships between beta-galactosidase and other glycohydrolases. Juers DH, Huber RE, Matthews BW. Protein Sci. 8 122-136 (1999)
  66. Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function. Itoh Y, Kawase T, Nikaidou N, Fukada H, Mitsutomi M, Watanabe T, Itoh Y. Biosci. Biotechnol. Biochem. 66 1084-1092 (2002)
  67. A novel family of carbohydrate-binding modules identified with Ruminococcus albus proteins. Xu Q, Morrison M, Nelson KE, Bayer EA, Atamna N, Lamed R. FEBS Lett. 566 11-16 (2004)
  68. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. Huang CJ, Wang TK, Chung SC, Chen CY. J. Biochem. Mol. Biol. 38 82-88 (2005)
  69. Barrel structures in proteins: automatic identification and classification including a sequence analysis of TIM barrels. Nagano N, Hutchinson EG, Thornton JM. Protein Sci. 8 2072-2084 (1999)
  70. Cloning and functional expression of a chitinase cDNA from the common cutworm, Spodoptera litura, using a recombinant baculovirus lacking the virus-encoded chitinase gene. Shinoda T, Kobayashi J, Matsui M, Chinzei Y. Insect Biochem. Mol. Biol. 31 521-532 (2001)
  71. Structure of Saccharomyces cerevisiae chitinase 1 and screening-based discovery of potent inhibitors. Hurtado-Guerrero R, van Aalten DM. Chem. Biol. 14 589-599 (2007)
  72. The (betaalpha)(8) glycosidases: sequence and structure analyses suggest distant evolutionary relationships. Nagano N, Porter CT, Thornton JM. Protein Eng. 14 845-855 (2001)
  73. An endochitinase A from Vibrio carchariae: cloning, expression, mass and sequence analyses, and chitin hydrolysis. Suginta W, Vongsuwan A, Songsiriritthigul C, Prinz H, Estibeiro P, Duncan RR, Svasti J, Fothergill-Gilmore LA. Arch. Biochem. Biophys. 424 171-180 (2004)
  74. Chitinases from Vibrio: activity screening and purification of chiA from Vibrio carchariae. Suginta W, Robertson PA, Austin B, Fry SC, Fothergill-Gilmore LA. J. Appl. Microbiol. 89 76-84 (2000)
  75. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer AH, Skriver K, Fukamizo T. Planta 234 123-137 (2011)
  76. Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Schimpl M, Rush CL, Betou M, Eggleston IM, Recklies AD, van Aalten DM. Biochem. J. 446 149-157 (2012)
  77. Role of the N-terminal polycystic kidney disease domain in chitin degradation by chitinase A from a marine bacterium, Alteromonas sp. strain O-7. Orikoshi H, Nakayama S, Hanato C, Miyamoto K, Tsujibo H. J. Appl. Microbiol. 99 551-557 (2005)
  78. Uptake of N,N'-diacetylchitobiose [(GlcNAc)2] via the phosphotransferase system is essential for chitinase production by Serratia marcescens 2170. Uchiyama T, Kaneko R, Yamaguchi J, Inoue A, Yanagida T, Nikaidou N, Regue M, Watanabe T. J. Bacteriol. 185 1776-1782 (2003)
  79. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Yasir M, Aslam Z, Kim SW, Lee SW, Jeon CO, Chung YR. Bioresour. Technol. 100 4396-4403 (2009)
  80. Mutation of a conserved tryptophan in the chitin-binding cleft of Serratia marcescens chitinase A enhances transglycosylation. Aronson NN, Halloran BA, Alexeyev MF, Zhou XE, Wang Y, Meehan EJ, Chen L. Biosci. Biotechnol. Biochem. 70 243-251 (2006)
  81. Site-directed mutagenesis of active site residues in a class I endochitinase from chestnut seeds. Garcia-Casado G, Collada C, Allona I, Casado R, Pacios LF, Aragoncillo C, Gomez L. Glycobiology 8 1021-1028 (1998)
  82. Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis. Jedrzejas MJ, Stern R. Proteins 61 227-238 (2005)
  83. Trp122 and Trp134 on the surface of the catalytic domain are essential for crystalline chitin hydrolysis by Bacillus circulans chitinase A1. Watanabe T, Ishibashi A, Ariga Y, Hashimoto M, Nikaidou N, Sugiyama J, Matsumoto T, Nonaka T. FEBS Lett. 494 74-78 (2001)
  84. Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Igarashi K, Uchihashi T, Uchiyama T, Sugimoto H, Wada M, Suzuki K, Sakuda S, Ando T, Watanabe T, Samejima M. Nat Commun 5 3975 (2014)
  85. Enzymatic properties of wild-type and active site mutants of chitinase A from Vibrio carchariae, as revealed by HPLC-MS. Suginta W, Vongsuwan A, Songsiriritthigul C, Svasti J, Prinz H. FEBS J. 272 3376-3386 (2005)
  86. Expression and characterization of endochitinase C from Serratia marcescens BJL200 and its purification by a one-step general chitinase purification method. Synstad B, Vaaje-Kolstad G, Cederkvist FH, Saua SF, Horn SJ, Eijsink VG, Sørlie M. Biosci. Biotechnol. Biochem. 72 715-723 (2008)
  87. Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to the fungal disease. Itoh Y, Takahashi K, Takizawa H, Nikaidou N, Tanaka H, Nishihashi H, Watanabe T, Nishizawa Y. Biosci. Biotechnol. Biochem. 67 847-855 (2003)
  88. Identification and characterization of the three chitin-binding domains within the multidomain chitinase Chi92 from Aeromonas hydrophila JP101. Wu ML, Chuang YC, Chen JP, Chen CS, Chang MC. Appl. Environ. Microbiol. 67 5100-5106 (2001)
  89. Mechanistic insight into the function of the C-terminal PKD domain of the collagenolytic serine protease deseasin MCP-01 from deep sea Pseudoalteromonas sp. SM9913: binding of the PKD domain to collagen results in collagen swelling but does not unwind the collagen triple helix. Wang YK, Zhao GY, Li Y, Chen XL, Xie BB, Su HN, Lv YH, He HL, Liu H, Hu J, Zhou BC, Zhang YZ. J. Biol. Chem. 285 14285-14291 (2010)
  90. Molecular analysis of the gene encoding a new chitinase from the marine psychrophilic bacterium Moritella marina and biochemical characterization of the recombinant enzyme. Stefanidi E, Vorgias CE. Extremophiles 12 541-552 (2008)
  91. Molecular characterization, expression, and in vivo analysis of LmexCht1: the chitinase of the human pathogen, Leishmania mexicana. Joshi MB, Rogers ME, Shakarian AM, Yamage M, Al-Harthi SA, Bates PA, Dwyer DM. J. Biol. Chem. 280 3847-3861 (2005)
  92. Purification and properties of a chitinase from Penicillium sp. LYG 0704. Lee YG, Chung KC, Wi SG, Lee JC, Bae HJ. Protein Expr. Purif. 65 244-250 (2009)
  93. Structure of full-length class I chitinase from rice revealed by X-ray crystallography and small-angle X-ray scattering. Kezuka Y, Kojima M, Mizuno R, Suzuki K, Watanabe T, Nonaka T. Proteins 78 2295-2305 (2010)
  94. Natural substrate assay for chitinases using high-performance liquid chromatography: a comparison with existing assays. Krokeide IM, Synstad B, Gåseidnes S, Horn SJ, Eijsink VG, Sørlie M. Anal. Biochem. 363 128-134 (2007)
  95. The RNA-binding protein Rrm4 is essential for efficient secretion of endochitinase Cts1. Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM, König J, Ule J, Kellner R, Begerow D, Feldbrügge M. Mol. Cell Proteomics 10 M111.011213 (2011)
  96. A novel type of family 19 chitinase from Aeromonas sp. No.10S-24. Cloning, sequence, expression, and the enzymatic properties. Ueda M, Kojima M, Yoshikawa T, Mitsuda N, Araki K, Kawaguchi T, Miyatake K, Arai M, Fukamizo T. Eur. J. Biochem. 270 2513-2520 (2003)
  97. Cloning and characterization of a novel chitinase gene (chi46) from Chaetomium globosum and identification of its biological activity. Liu ZH, Yang Q, Hu S, Zhang JD, Ma J. Appl. Microbiol. Biotechnol. 80 241-252 (2008)
  98. Purification and characterization of thermostable chitinase from Bacillus licheniformis SK-1. Kudan S, Pichyangkura R. Appl. Biochem. Biotechnol. 157 23-35 (2009)
  99. A putative double role of a chitinase in a cnidarian: pattern formation and immunity. Mali B, Möhrlen F, Frohme M, Frank U. Dev. Comp. Immunol. 28 973-981 (2004)
  100. Multiple chitinases of an endophytic Serratia proteamaculans 568 generate chitin oligomers. Purushotham P, Sarma PV, Podile AR. Bioresour. Technol. 112 261-269 (2012)
  101. Identification and characterization of a chitinase antigen from Pseudomonas aeruginosa strain 385. Thompson SE, Smith M, Wilkinson MC, Peek K. Appl. Environ. Microbiol. 67 4001-4008 (2001)
  102. Kinetic and crystallographic analyses of the catalytic domain of chitinase from Pyrococcus furiosus- the role of conserved residues in the active site. Tsuji H, Nishimura S, Inui T, Kado Y, Ishikawa K, Nakamura T, Uegaki K. FEBS J. 277 2683-2695 (2010)
  103. The crystal structure of Ym1 at 1.31 A resolution. Tsai ML, Liaw SH, Chang NC. J. Struct. Biol. 148 290-296 (2004)
  104. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes. Kuusk S, Sørlie M, Väljamäe P. J. Biol. Chem. 290 11678-11691 (2015)
  105. Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis: implication of necessity for enzyme properties. Chuang HH, Lin HY, Lin FP. FEBS J. 275 2240-2254 (2008)
  106. Purification, characterization, and molecular cloning of an extracellular chitinase from Bacillus licheniformis stain LHH100 isolated from wastewater samples in Algeria. Laribi-Habchi H, Bouanane-Darenfed A, Drouiche N, Pauss A, Mameri N. Int. J. Biol. Macromol. 72 1117-1128 (2015)
  107. Evolution of immunoglobulin-like modules in chitinases: their structural flexibility and functional implications. Perrakis A, Ouzounis C, Wilson KS. Fold Des 2 291-294 (1997)
  108. Homology modeling of the insect chitinase catalytic domain--oligosaccharide complex and the role of a putative active site tryptophan in catalysis. Huang X, Zhang H, Zen KC, Muthukrishnan S, Kramer KJ. Insect Biochem. Mol. Biol. 30 107-117 (2000)
  109. The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis. Wang FP, Li Q, Zhou Y, Li MG, Xiao X. Proteins 53 908-916 (2003)
  110. Characterization of a chitinolytic enzyme from Serratia sp. KCK isolated from kimchi juice. Kim HS, Timmis KN, Golyshin PN. Appl. Microbiol. Biotechnol. 75 1275-1283 (2007)
  111. Isolation, cloning, and overexpression of a chitinase gene fragment from the hyperthermophilic archaeon Thermococcus chitonophagus: semi-denaturing purification of the recombinant peptide and investigation of its relation with other chitinases. Andronopoulou E, Vorgias CE. Protein Expr. Purif. 35 264-271 (2004)
  112. Characterization and phylogenetic analysis of the chitinase gene from the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. Wang H, Wu D, Deng F, Peng H, Chen X, Lauzon H, Arif BM, Jehle JA, Hu Z. Virus Res. 100 179-189 (2004)
  113. Cloning and characterization of the constitutively expressed chitinase C gene from a marine bacterium, Salinivibrio costicola strain 5SM-1. Aunpad R, Panbangred W. J. Biosci. Bioeng. 96 529-536 (2003)
  114. Family 18 chitolectins: comparison of MGP40 and HUMGP39. Zaheer-ul-Haq, Dalal P, Aronson NN, Madura JD. Biochem. Biophys. Res. Commun. 359 221-226 (2007)
  115. Identification and characterization of a chitinase-coding gene from Lamprey (Lampetra japonica) with a role in gonadal development and innate immunity. Liu X, Li-Ling J, Hou L, Li Q, Ma F. Dev. Comp. Immunol. 33 257-263 (2009)
  116. Outer Membrane Vesicle-Mediated Export of Processed PrtV Protease from Vibrio cholerae. Rompikuntal PK, Vdovikova S, Duperthuy M, Johnson TL, Åhlund M, Lundmark R, Oscarsson J, Sandkvist M, Uhlin BE, Wai SN. PLoS ONE 10 e0134098 (2015)
  117. Structure of a complete four-domain chitinase from Moritella marina, a marine psychrophilic bacterium. Malecki PH, Raczynska JE, Vorgias CE, Rypniewski W. Acta Crystallogr. D Biol. Crystallogr. 69 821-829 (2013)
  118. Polycystic kidney disease-like domains of clostridial collagenases and their role in collagen recruitment. Eckhard U, Brandstetter H. Biol. Chem. 392 1039-1045 (2011)
  119. Purification, characterization, and gene cloning of 46 kDa chitinase (Chi46) from Trichoderma reesei PC-3-7 and its expression in Escherichia coli. Ike M, Nagamatsu K, Shioya A, Nogawa M, Ogasawara W, Okada H, Morikawa Y. Appl. Microbiol. Biotechnol. 71 294-303 (2006)
  120. Substrate binding modes and anomer selectivity of chitinase A from Vibrio harveyi. Suginta W, Pantoom S, Prinz H. J Chem Biol 2 191-202 (2009)
  121. Cloning, expression, and characterization of a chitinase from the chitinolytic bacterium Aeromonas hydrophila strain SUWA-9. Lan X, Zhang X, Hu J, Shimosaka M. Biosci. Biotechnol. Biochem. 70 2437-2442 (2006)
  122. Invariant glycines and prolines flanking in loops the strand beta 2 of various (alpha/beta)8-barrel enzymes: a hidden homology? Janecek S. Protein Sci. 5 1136-1143 (1996)
  123. New role of C-terminal 30 amino acids on the insoluble chitin hydrolysis in actively engineered chitinase from Vibrio parahaemolyticus. Chuang HH, Lin FP. Appl. Microbiol. Biotechnol. 76 123-133 (2007)
  124. Overexpression, purification, and characterization of a thermostable chitinase (Chi40) from Streptomyces thermoviolaceus OPC-520. Christodoulou E, Duffner F, Vorgias CE. Protein Expr. Purif. 23 97-105 (2001)
  125. Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. Ramli AN, Mahadi NM, Shamsir MS, Rabu A, Joyce-Tan KH, Murad AM, Illias RM. J. Comput. Aided Mol. Des. 26 947-961 (2012)
  126. Structure of full-length bacterial chitinase containing two fibronectin type III domains revealed by small angle X-ray scattering. Toratani T, Kezuka Y, Nonaka T, Hiragi Y, Watanabe T. Biochem. Biophys. Res. Commun. 348 814-818 (2006)
  127. The effects of the surface-exposed residues on the binding and hydrolytic activities of Vibrio carchariae chitinase A. Pantoom S, Songsiriritthigul C, Suginta W. BMC Biochem. 9 2 (2008)
  128. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1) Reveals Features of Its Chitin Binding Domain. Fadel F, Zhao Y, Cousido-Siah A, Ruiz FX, Mitschler A, Podjarny A. PLoS ONE 11 e0154190 (2016)
  129. Expression and efficient secretion of a functional chitinase from Chromobacterium violaceum in Escherichia coli. Lobo MD, Silva FD, Landim PG, da Cruz PR, de Brito TL, de Medeiros SC, Oliveira JT, Vasconcelos IM, Pereira HD, Grangeiro TB. BMC Biotechnol. 13 46 (2013)
  130. Multiple roles of Asp313 in the refined catalytic cycle of chitin degradation by Vibrio harveyi chitinase A. Suginta W, Sritho N. Biosci. Biotechnol. Biochem. 76 2275-2281 (2012)
  131. Site-directed mutagenesis of Asp280 suggests substrate-assisted catalysis of chitinase A1 from Bacillus circulans WL-12. Hashimoto M, Honda Y, Nikaidou N, Fukamizo T, Watanabe T. J. Biosci. Bioeng. 89 100-102 (2000)
  132. YKL-40/chitinase-3-like protein 1 is associated with poor prognosis and promotes cell growth and migration of cholangiocarcinoma. Thongsom S, Chaocharoen W, Silsirivanit A, Wongkham S, Sripa B, Choe H, Suginta W, Talabnin C. Tumour Biol. 37 9451-9463 (2016)
  133. A fluorescence-quenched chitopentaose for the study of endo-chitinases and chitobiosidases. Cottaz S, Brasme B, Driguez H. Eur. J. Biochem. 267 5593-5600 (2000)
  134. Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. van Munster JM, van der Kaaij RM, Dijkhuizen L, van der Maarel MJ. Microbiology (Reading, Engl.) 158 2168-2179 (2012)
  135. Directed evolution of a Bacillus chitinase. Songsiriritthigul C, Pesatcha P, Eijsink VG, Yamabhai M. Biotechnol J 4 501-509 (2009)
  136. Introduction of a tryptophan side chain into subsite +1 enhances transglycosylation activity of a GH-18 chitinase from Arabidopsis thaliana, AtChiC. Umemoto N, Ohnuma T, Mizuhara M, Sato H, Skriver K, Fukamizo T. Glycobiology 23 81-90 (2013)
  137. Molecular cloning and purification of an endochitinase from Serratia marcescens (Nima). Ruiz-Sanchez A, Cruz-Camarillo R, Salcedo-Hernandez R, Ibarra JE, Barboza-Corona JE. Mol. Biotechnol. 31 103-111 (2005)
  138. Plasmodium gallinaceum: use of antisera to degenerate synthetic peptides derived from the active site of protozoal chitinases to characterize an ookinete-specific chitinase. Vinetz JM, Kaslow DC. Exp. Parasitol. 90 199-202 (1998)
  139. A computational analysis of the binding mode of closantel as inhibitor of the Onchocerca volvulus chitinase: insights on macrofilaricidal drug design. Segura-Cabrera A, Bocanegra-García V, Lizarazo-Ortega C, Guo X, Correa-Basurto J, Rodríguez-Pérez MA. J. Comput. Aided Mol. Des. 25 1107-1119 (2011)
  140. A metalloprotease (MprIII) involved in the chitinolytic system of a marine bacterium, Alteromonas sp. strain O-7. Miyamoto K, Nukui E, Hirose M, Nagai F, Sato T, Inamori Y, Tsujibo H. Appl. Environ. Microbiol. 68 5563-5570 (2002)
  141. Cloning, expression, characterization and crystallization of BRP39, a signalling glycoprotein expressed during mammary gland apoptosis. Mohanty AK, Fisher AJ, Yu Z, Pradeep MA, Janjanam J, Kaushik JK. Protein Expr. Purif. 64 213-218 (2009)
  142. Heterologous expression and site-directed mutagenesis studies of two Trichoderma harzianum chitinases, Chit33 and Chit42, in Escherichia coli. Boer H, Simolin H, Cottaz S, Söderlund H, Koivula A. Protein Expr. Purif. 51 216-226 (2007)
  143. Mode of action and antifungal properties of two cold-adapted chitinases. Mavromatis K, Lorito M, Woo SL, Bouriotis V. Extremophiles 7 385-390 (2003)
  144. Molecular characterization of the modular chitin binding protein Cbp50 from Bacillus thuringiensis serovar konkukian. Mehmood MA, Xiao X, Hafeez FY, Gai Y, Wang F. Antonie Van Leeuwenhoek 100 445-453 (2011)
  145. Putative exposed aromatic and hydroxyl residues on the surface of the N-terminal domains of Chi1 from Aeromonas caviae CB101 are essential for chitin binding and hydrolysis. Li Q, Wang F, Zhou Y, Xiao X. Appl. Environ. Microbiol. 71 7559-7561 (2005)
  146. Crystal structure determination and inhibition studies of a novel xylanase and alpha-amylase inhibitor protein (XAIP) from Scadoxus multiflorus. Kumar S, Singh N, Sinha M, Dube D, Singh SB, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP. FEBS J. 277 2868-2882 (2010)
  147. The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function. Banach M, Konieczny L, Roterman I. J. Theor. Biol. 359 6-17 (2014)
  148. Cloning and expression of a chitinase gene from Sanguibacter sp. C4. Tao Y, Jin H, Long ZF, Zhang L, Ding XQ, Tao K, Liu SG. Yi Chuan Xue Bao 33 1037-1046 (2006)
  149. Identification of chitinases Is-chiA and Is-chiB from Isoptericola jiangsuensis CLG and their characterization. Wu Y, Liu F, Liu YC, Zhang ZH, Zhou TT, Liu X, Shen QR, Shen B. Appl. Microbiol. Biotechnol. 89 705-713 (2011)
  150. Identification of two group A chitinase genes in Botrytis cinerea which are differentially induced by exogenous chitin. Choquer M, Becker HF, Vidal-Cros A. Mycol. Res. 111 615-625 (2007)
  151. New insights into the enzymatic mechanism of human chitotriosidase (CHIT1) catalytic domain by atomic resolution X-ray diffraction and hybrid QM/MM. Fadel F, Zhao Y, Cachau R, Cousido-Siah A, Ruiz FX, Harlos K, Howard E, Mitschler A, Podjarny A. Acta Crystallogr. D Biol. Crystallogr. 71 1455-1470 (2015)
  152. Structure, Catalysis, and Inhibition of OfChi-h, the Lepidoptera-exclusive Insect Chitinase. Liu T, Chen L, Zhou Y, Jiang X, Duan Y, Yang Q. J. Biol. Chem. 292 2080-2088 (2017)
  153. The dual exo/endo-type mode and the effect of ionic strength on the mode of catalysis of chitinase 60 (CHI60) from Serratia sp. TU09 and its mutants. Kuttiyawong K, Nakapong S, Pichyangkura R. Carbohydr. Res. 343 2754-2762 (2008)
  154. Cloning and functional expression of a chitinase cDNA from the apple leaf miner moth Lithocolletis ringoniella. Fan XJ, Mi YX, Ren H, Zhang C, Li Y, Xian XX. Biochemistry Mosc. 80 242-250 (2015)
  155. Cloning, nucleotide sequence and expression of the beta-N-acetylglucosaminidase gene from Aeromonas sp. no. 10S-24. Ueda M, Fujita Y, Kawaguchi T, Arai M. J. Biosci. Bioeng. 89 164-169 (2000)
  156. Effects of C-terminal amino acids truncation on enzyme properties of Aeromonas caviae D1 chitinase. Lin FP, Chuang HH, Liu YH, Hsieh CY, Lin PW, Lin HY. Arch. Microbiol. 191 265-273 (2009)
  157. Equilibrium heat-induced denaturation of chitinase 40 from Streptomyces thermoviolaceus. Pyrpassopoulos S, Vlassi M, Tsortos A, Papanikolau Y, Petratos K, Vorgias CE, Nounesis G. Proteins 64 513-523 (2006)
  158. Potent family-18 chitinase inhibitors: x-ray structures, affinities, and binding mechanisms. Pantoom S, Vetter IR, Prinz H, Suginta W. J. Biol. Chem. 286 24312-24323 (2011)
  159. Rate constants, processivity, and productive binding ratio of chitinase A revealed by single-molecule analysis. Nakamura A, Tasaki T, Okuni Y, Song C, Murata K, Kozai T, Hara M, Sugimoto H, Suzuki K, Watanabe T, Uchihashi T, Noji H, Iino R. Phys Chem Chem Phys 20 3010-3018 (2018)
  160. Bisdionin C-a rationally designed, submicromolar inhibitor of family 18 chitinases. Schüttelkopf AW, Andersen OA, Rao FV, Allwood M, Rush CL, Eggleston IM, van Aalten DM. ACS Med Chem Lett 2 428-432 (2011)
  161. Characterization of two novel bacterial type A exo-chitobiose hydrolases having C-terminal 5/12-type carbohydrate-binding modules. Jamek SB, Nyffenegger C, Muschiol J, Holck J, Meyer AS, Mikkelsen JD. Appl. Microbiol. Biotechnol. 101 4533-4546 (2017)
  162. Cloning and molecular characterization of chitinase from Bacillus licheniformis MS-3. Mostafa SA, Mahmoud MS, Mohamed ZK, Enan MR. J. Gen. Appl. Microbiol. 55 241-246 (2009)
  163. Effect of demethylation on the chitinase inhibitory activity of allosamidin. Spindler KD, Spindler-Barth M, Sakuda S. Arch. Insect Biochem. Physiol. 36 223-227 (1997)
  164. Effects of C-terminal domain truncation on enzyme properties of Serratia marcescens chitinase C. Lin FP, Wu CY, Chen HN, Lin HJ. Appl. Biochem. Biotechnol. 175 3617-3627 (2015)
  165. Molecular analysis of genes involved in chitin degradation from the chitinolytic bacterium Bacillus velezensis. Tran DM, Huynh TU, Nguyen TH, Do TO, Nguyen QV, Nguyen AD. Antonie Van Leeuwenhoek 115 215-231 (2022)
  166. Mutagenesis and molecular dynamics simulations revealed the chitooligosaccharide entry and exit points for chitinase D from Serratia proteamaculans. Madhuprakash J, Tanneeru K, Karlapudi B, Guruprasad L, Podile AR. Biochim. Biophys. Acta 1840 2685-2694 (2014)
  167. Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolytic action. Landim PGC, Correia TO, Silva FDA, Nepomuceno DR, Costa HPS, Pereira HM, Lobo MDP, Moreno FBMB, Brandão-Neto J, Medeiros SC, Vasconcelos IM, Oliveira JTA, Sousa BL, Barroso-Neto IL, Freire VN, Carvalho CPS, Monteiro-Moreira ACO, Grangeiro TB. Biochimie 135 89-103 (2017)
  168. Structural basis for carbohydrate binding properties of a plant chitinase-like agglutinin with conserved catalytic machinery. Sulzenbacher G, Roig-Zamboni V, Peumans WJ, Henrissat B, van Damme EJ, Bourne Y. J. Struct. Biol. 190 115-121 (2015)
  169. Detection of chitinase ChiA produced by Serratia marcescens PRC-5, using anti-PrGV-chitinase. Song YS, Oh S, Han YS, Seo DJ, Park RD, Jung WJ. Carbohydr Polym 92 2276-2281 (2013)
  170. Human Chitotriosidase Is an Endo-Processive Enzyme. Kuusk S, Sørlie M, Väljamäe P. PLoS ONE 12 e0171042 (2017)
  171. Modulation of inhibitory activity of xylanase-α-amylase inhibitor protein (XAIP): binding studies and crystal structure determination of XAIP-II from Scadoxus multiflorus at 1.2 Å resolution. Kumar S, Singh N, Mishra B, Dube D, Sinha M, Singh SB, Dey S, Kaur P, Sharma S, Singh TP. BMC Struct. Biol. 10 41 (2010)
  172. Phage display screening for peptidic chitinase inhibitors. Petter C, Scholz C, Wessner H, Hansen G, Henklein P, Watanabe T, Höhne W. J. Mol. Recognit. 21 401-409 (2008)
  173. Screening for Candidate Genes Associated with Biocontrol Mechanisms of Bacillus pumilus DX01 Using Tn5 Transposon Mutagenesis and a 2-DE-Based Comparative Proteomic Analysis. Chen Y, Liu T, Li Q, Ma Y, Cheng J, Xu L. Curr Microbiol 77 3397-3408 (2020)
  174. Structure-function studies on the chitinolytic enzymes of Serratia marcescens chitinase and chitobiase. Vorgias CE, Perrakis A, Tews I. Ann. N. Y. Acad. Sci. 799 190-192 (1996)
  175. Systems analysis of the glycoside hydrolase family 18 enzymes from Cellvibrio japonicus characterizes essential chitin degradation functions. Monge EC, Tuveng TR, Vaaje-Kolstad G, Eijsink VGH, Gardner JG. J. Biol. Chem. 293 3849-3859 (2018)
  176. The directionality of processive enzymes acting on recalcitrant polysaccharides is reflected in the kinetic signatures of oligomer degradation. Hamre AG, Schaupp D, Eijsink VG, Sørlie M. FEBS Lett. 589 1807-1812 (2015)
  177. Characterization of a novel chitinase, DkChi, from Dendrolimus kikuchii nucleopolyhedrovirus. Wang Q, Qu L, Zhang Z, Wang Y, Zhang Y. Arch. Virol. 158 2523-2530 (2013)
  178. Domain wise docking analyses of the modular chitin binding protein CBP50 from Bacillus thuringiensis serovar konkukian S4. Sehar U, Mehmood MA, Hussain K, Nawaz S, Nadeem S, Siddique MH, Nadeem H, Gull M, Ahmad N, Sohail I, Gill SS, Majeed S. Bioinformation 9 901-907 (2013)
  179. Extracellular chitinases of mutant superproducing strain Serratia marcescens M-1. Duzhak AB, Panfilova ZI, Duzhak TG, Vasyunina EA. Biochemistry Mosc. 74 209-214 (2009)
  180. Hexapod Assassins' Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus. Rügen N, Jenkins TP, Wielsch N, Vogel H, Hempel BF, Süssmuth RD, Ainsworth S, Cabezas-Cruz A, Vilcinskas A, Tonk M. Biomedicines 9 819 (2021)
  181. Mining and characterization of two novel chitinases from Hirsutella sinensis using an efficient transcriptome-mining approach. Lin S, Liu ZQ, Yi M, Wu H, Xu F, Zheng YG. Protein Expr. Purif. 133 81-89 (2017)
  182. Structural Insight Into Chitin Degradation and Thermostability of a Novel Endochitinase From the Glycoside Hydrolase Family 18. Wang YJ, Jiang WX, Zhang YS, Cao HY, Zhang Y, Chen XL, Li CY, Wang P, Zhang YZ, Song XY, Li PY. Front Microbiol 10 2457 (2019)
  183. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects. Chen W, Qu M, Zhou Y, Yang Q. J. Biol. Chem. 293 2652-2660 (2018)
  184. Structural insights of the enzymes from the chitin utilization locus of Flavobacterium johnsoniae. Mazurkewich S, Helland R, Mackenzie A, Eijsink VGH, Pope PB, Brändén G, Larsbrink J. Sci Rep 10 13775 (2020)
  185. The stability of the TIM-barrel domain of a psychrophilic chitinase. Stavros P, Malecki PH, Theodoridou M, Rypniewski W, Vorgias CE, Nounesis G. Biochem Biophys Rep 3 108-116 (2015)


Related citations provided by authors (2)

  1. Purification and Characterization of the Recombinant Chtin Degrading Enzymes Chitinase a and Chitobiase from Serratia Marcescens. Vorgias CE, Tews I, Perrakis A, Oppenheim AB, Wilson KS CHITIN ENZYMOL. 417- (1993)
  2. Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens.. Jones JD, Grady KL, Suslow TV, Bedbrook JR EMBO J 5 467-73 (1986)