1coo Citations

Solution structure of the activator contact domain of the RNA polymerase alpha subunit.

Abstract

The structure of the carboxyl-terminal domain of the Escherichia coli RNA polymerase alpha subunit (alpha CTD), which is regarded as the contact site for transcription activator proteins and for the promoter UP element, was determined by nuclear magnetic resonance spectroscopy. Its compact structure of four helices and two long arms enclosing its hydrophobic core shows a folding topology distinct from those of other DNA-binding proteins. The UP element binding site was found on the surface comprising helix 1, the amino-terminal end of helix 4, and the preceding loop. Mutation experiments indicated that the contact sites for transcription activator proteins are also on the same surface.

Reviews - 1coo mentioned but not cited (3)

  1. Structural biology of bacterial RNA polymerase. Murakami KS. Biomolecules 5 848-864 (2015)
  2. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  3. Carbon Nanodots from an In Silico Perspective. Mocci F, de Villiers Engelbrecht L, Olla C, Cappai A, Casula MF, Melis C, Stagi L, Laaksonen A, Carbonaro CM. Chem Rev 122 13709-13799 (2022)

Articles - 1coo mentioned but not cited (11)

  1. Refinement of homology-based protein structures by molecular dynamics simulation techniques. Fan H, Mark AE. Protein Sci 13 211-220 (2004)
  2. Common fold in helix-hairpin-helix proteins. Shao X, Grishin NV. Nucleic Acids Res 28 2643-2650 (2000)
  3. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Newberry KJ, Nakano S, Zuber P, Brennan RG. Proc Natl Acad Sci U S A 102 15839-15844 (2005)
  4. The structure of full-length LysR-type transcriptional regulators. Modeling of the full-length OxyR transcription factor dimer. Zaim J, Kierzek AM. Nucleic Acids Res 31 1444-1454 (2003)
  5. NusA interaction with the α subunit of E. coli RNA polymerase is via the UP element site and releases autoinhibition. Schweimer K, Prasch S, Sujatha PS, Bubunenko M, Gottesman ME, Rösch P. Structure 19 945-954 (2011)
  6. Correlation between amino acid residues converted by RNA editing and functional residues in protein three-dimensional structures in plant organelles. Yura K, Go M. BMC Plant Biol 8 79 (2008)
  7. Roles of cyclic AMP receptor protein and the carboxyl-terminal domain of the alpha subunit in transcription activation of the Escherichia coli rhaBAD operon. Holcroft CC, Egan SM. J Bacteriol 182 3529-3535 (2000)
  8. Involvement of the global Crp regulator in cyclic AMP-dependent utilization of aromatic amino acids by Pseudomonas putida. Herrera MC, Daddaoua A, Fernández-Escamilla A, Ramos JL. J Bacteriol 194 406-412 (2012)
  9. Structure of the Escherichia coli RNA polymerase alpha subunit C-terminal domain. Lara-González S, Birktoft JJ, Lawson CL. Acta Crystallogr D Biol Crystallogr 66 806-812 (2010)
  10. The transcriptional activator of the bfp operon in EPEC (PerA) interacts with the RNA polymerase alpha subunit. Lara-Ochoa C, González-Lara F, Romero-González LE, Jaramillo-Rodríguez JB, Vázquez-Arellano SI, Medrano-López A, Cedillo-Ramírez L, Martínez-Laguna Y, Girón JA, Pérez-Rueda E, Puente JL, Ibarra JA. Sci Rep 11 8541 (2021)
  11. Activation by TyrR in Escherichia coli K-12 by Interaction between TyrR and the α-Subunit of RNA Polymerase. Camakaris H, Yang J, Fujii T, Pittard J. J Bacteriol 203 e0025221 (2021)


Reviews citing this publication (15)

  1. Transcription activation by catabolite activator protein (CAP). Busby S, Ebright RH. J Mol Biol 293 199-213 (1999)
  2. UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Gourse RL, Ross W, Gaal T. Mol Microbiol 37 687-695 (2000)
  3. rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. Gourse RL, Gaal T, Bartlett MS, Appleman JA, Ross W. Annu Rev Microbiol 50 645-677 (1996)
  4. Activating transcription in bacteria. Lee DJ, Minchin SD, Busby SJ. Annu Rev Microbiol 66 125-152 (2012)
  5. Protein-protein contacts that activate and repress prokaryotic transcription. Hochschild A, Dove SL. Cell 92 597-600 (1998)
  6. DNA bending and wrapping around RNA polymerase: a "revolutionary" model describing transcriptional mechanisms. Coulombe B, Burton ZF. Microbiol Mol Biol Rev 63 457-478 (1999)
  7. Structural trees for protein superfamilies. Efimov AV. Proteins 28 241-260 (1997)
  8. Activation and repression of E. coli promoters. Gralla JD. Curr Opin Genet Dev 6 526-530 (1996)
  9. Activation of P2 late transcription by P2 Ogr protein requires a discrete contact site on the C terminus of the alpha subunit of Escherichia coli RNA polymerase. Wood LF, Tszine NY, Christie GE. J Mol Biol 274 1-7 (1997)
  10. An Introduction to the Structure and Function of the Catalytic Core Enzyme of Escherichia coli RNA Polymerase. Sutherland C, Murakami KS. EcoSal Plus 8 (2018)
  11. Strength and regulation without transcription factors: lessons from bacterial rRNA promoters. Gourse RL, Gaal T, Aiyar SE, Barker MM, Estrem ST, Hirvonen CA, Ross W. Cold Spring Harb Symp Quant Biol 63 131-139 (1998)
  12. Structural studies of Escherichia coli RNA polymerase. Darst SA, Polyakov A, Richter C, Zhang G. Cold Spring Harb Symp Quant Biol 63 269-276 (1998)
  13. Fluorescence resonance energy transfer analysis of escherichia coli RNA polymerase and polymerase-DNA complexes. Heyduk T, Niedziela-Majka A. Biopolymers 61 201-213 (2001)
  14. Use of artificial activators to define a role for protein-protein and protein-DNA contacts in transcriptional activation. Dove SL, Hochschild A. Cold Spring Harb Symp Quant Biol 63 173-180 (1998)
  15. Spore-specific modification of DNA-dependent RNA polymerase alpha subunit in streptomycetes--a new model of transcription regulation. Najmanová L, Janata J, Kopecký J, Spízek J. Folia Microbiol (Praha) 48 573-579 (2003)

Articles citing this publication (84)

  1. X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme. Murakami KS. J Biol Chem 288 9126-9134 (2013)
  2. Structural organization of the RNA polymerase-promoter open complex. Naryshkin N, Revyakin A, Kim Y, Mekler V, Ebright RH. Cell 101 601-611 (2000)
  3. The molecular architecture of the sar locus in Staphylococcus aureus. Bayer MG, Heinrichs JH, Cheung AL. J Bacteriol 178 4563-4570 (1996)
  4. Transcription activation at Class II CRP-dependent promoters: identification of determinants in the C-terminal domain of the RNA polymerase alpha subunit. Savery NJ, Lloyd GS, Kainz M, Gaal T, Ross W, Ebright RH, Gourse RL, Busby SJ. EMBO J 17 3439-3447 (1998)
  5. Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element. Murakami K, Fujita N, Ishihama A. EMBO J 15 4358-4367 (1996)
  6. RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. Artsimovitch I, Svetlov V, Anthony L, Burgess RR, Landick R. J Bacteriol 182 6027-6035 (2000)
  7. Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove. Ross W, Ernst A, Gourse RL. Genes Dev 15 491-506 (2001)
  8. Nature of DNA binding and RNA polymerase interaction of the Bordetella pertussis BvgA transcriptional activator at the fha promoter. Boucher PE, Murakami K, Ishihama A, Stibitz S. J Bacteriol 179 1755-1763 (1997)
  9. An intersubunit contact stimulating transcription initiation by E coli RNA polymerase: interaction of the alpha C-terminal domain and sigma region 4. Ross W, Schneider DA, Paul BJ, Mertens A, Gourse RL. Genes Dev 17 1293-1307 (2003)
  10. A second calcineurin binding site on the NFAT regulatory domain. Park S, Uesugi M, Verdine GL. Proc Natl Acad Sci U S A 97 7130-7135 (2000)
  11. Sequence-independent upstream DNA-alphaCTD interactions strongly stimulate Escherichia coli RNA polymerase-lacUV5 promoter association. Ross W, Gourse RL. Proc Natl Acad Sci U S A 102 291-296 (2005)
  12. Positioning of two alpha subunit carboxy-terminal domains of RNA polymerase at promoters by two transcription factors. Murakami K, Owens JT, Belyaeva TA, Meares CF, Busby SJ, Ishihama A. Proc Natl Acad Sci U S A 94 11274-11278 (1997)
  13. The C-terminal domains of the RNA polymerase alpha subunits: contact site with Fis and localization during co-activation with CRP at the Escherichia coli proP P2 promoter. McLeod SM, Aiyar SE, Gourse RL, Johnson RC. J Mol Biol 316 517-529 (2002)
  14. Improved segmental isotope labeling of proteins and application to a larger protein. Otomo T, Teruya K, Uegaki K, Yamazaki T, Kyogoku Y. J Biomol NMR 14 105-114 (1999)
  15. Determinants of the C-terminal domain of the Escherichia coli RNA polymerase alpha subunit important for transcription at class I cyclic AMP receptor protein-dependent promoters. Savery NJ, Lloyd GS, Busby SJ, Thomas MS, Ebright RH, Gourse RL. J Bacteriol 184 2273-2280 (2002)
  16. Transcription of the Salmonella invasion gene activator, hilA, requires HilD activation in the absence of negative regulators. Boddicker JD, Knosp BM, Jones BD. J Bacteriol 185 525-533 (2003)
  17. The two alpha subunits of Escherichia coli RNA polymerase are asymmetrically arranged and contact different halves of the DNA upstream element. Murakami K, Kimura M, Owens JT, Meares CF, Ishihama A. Proc Natl Acad Sci U S A 94 1709-1714 (1997)
  18. Mutations conferring amino acid residue substitutions in the carboxy-terminal domain of RNA polymerase alpha can suppress clpX and clpP with respect to developmentally regulated transcription in Bacillus subtilis. Nakano MM, Zhu Y, Liu J, Reyes DY, Yoshikawa H, Zuber P. Mol Microbiol 37 869-884 (2000)
  19. Transcription activation at class I FNR-dependent promoters: identification of the activating surface of FNR and the corresponding contact site in the C-terminal domain of the RNA polymerase alpha subunit. Williams SM, Savery NJ, Busby SJ, Wing HJ. Nucleic Acids Res 25 4028-4034 (1997)
  20. Flexible linker in the RNA polymerase alpha subunit facilitates the independent motion of the C-terminal activator contact domain. Jeon YH, Yamazaki T, Otomo T, Ishihama A, Kyogoku Y. J Mol Biol 267 953-962 (1997)
  21. Protein p4 represses phage phi 29 A2c promoter by interacting with the alpha subunit of Bacillus subtilis RNA polymerase. Monsalve M, Mencía M, Mencía M, Salas M, Rojo F. Proc Natl Acad Sci U S A 93 8913-8918 (1996)
  22. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA. Elife 8 e49375 (2019)
  23. The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Lacal J, Busch A, Guazzaroni ME, Krell T, Ramos JL. Proc Natl Acad Sci U S A 103 8191-8196 (2006)
  24. Novel protein--protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase alpha subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress. Shah IM, Wolf RE. J Mol Biol 343 513-532 (2004)
  25. Architecture of Fis-activated transcription complexes at the Escherichia coli rrnB P1 and rrnE P1 promoters. Aiyar SE, McLeod SM, Ross W, Hirvonen CA, Thomas MS, Johnson RC, Gourse RL. J Mol Biol 316 501-516 (2002)
  26. Identification of activating region (AR) of Escherichia coli LysR-type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter. Lochowska A, Iwanicka-Nowicka R, Zaim J, Witkowska-Zimny M, Bolewska K, Hryniewicz MM. Mol Microbiol 53 791-806 (2004)
  27. An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. Papa R, Rippa V, Sannia G, Marino G, Duilio A. J Biotechnol 127 199-210 (2007)
  28. Participation of IHF and a distant UP element in the stimulation of the phage lambda PL promoter. Giladi H, Koby S, Prag G, Engelhorn M, Geiselmann J, Oppenheim AB. Mol Microbiol 30 443-451 (1998)
  29. Role of the C-terminal domain of the alpha subunit of RNA polymerase in LuxR-dependent transcriptional activation of the lux operon during quorum sensing. Finney AH, Blick RJ, Murakami K, Ishihama A, Stevens AM. J Bacteriol 184 4520-4528 (2002)
  30. Crystal structure of bacteriophage lambda cII and its DNA complex. Jain D, Kim Y, Maxwell KL, Beasley S, Zhang R, Gussin GN, Edwards AM, Darst SA. Mol Cell 19 259-269 (2005)
  31. Relevance of UP elements for three strong Bacillus subtilis phage phi29 promoters. Meijer WJ, Salas M. Nucleic Acids Res 32 1166-1176 (2004)
  32. Versatility of the carboxy-terminal domain of the alpha subunit of RNA polymerase in transcriptional activation: use of the DNA contact site as a protein contact site for MarA. Dangi B, Gronenborn AM, Rosner JL, Martin RG. Mol Microbiol 54 45-59 (2004)
  33. Repression and activation of promoter-bound RNA polymerase activity by Gal repressor. Choy HE, Hanger RR, Aki T, Mahoney M, Murakami K, Ishihama A, Adhya S. J Mol Biol 272 293-300 (1997)
  34. Relative stability of protein structures determined by X-ray crystallography or NMR spectroscopy: a molecular dynamics simulation study. Fan H, Mark AE. Proteins 53 111-120 (2003)
  35. Interaction of the C-terminal domain of the E. coli RNA polymerase alpha subunit with the UP element: recognizing the backbone structure in the minor groove surface. Yasuno K, Yamazaki T, Tanaka Y, Kodama TS, Matsugami A, Katahira M, Ishihama A, Kyogoku Y. J Mol Biol 306 213-225 (2001)
  36. Interdependence of activation at rhaSR by cyclic AMP receptor protein, the RNA polymerase alpha subunit C-terminal domain, and rhaR. Holcroft CC, Egan SM. J Bacteriol 182 6774-6782 (2000)
  37. Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. Katayama S, Matsushita O, Jung CM, Minami J, Okabe A. EMBO J 18 3442-3450 (1999)
  38. UP element-dependent transcription at the Escherichia coli rrnB P1 promoter: positional requirements and role of the RNA polymerase alpha subunit linker. Meng W, Belyaeva T, Savery NJ, Busby SJ, Ross WE, Gaal T, Gourse RL, Thomas MS. Nucleic Acids Res 29 4166-4178 (2001)
  39. The C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase is required for efficient rho-dependent transcription termination. Kainz M, Gourse RL. J Mol Biol 284 1379-1390 (1998)
  40. Gene silencing by H-NS from distal DNA site. Shin M, Lagda AC, Lee JW, Bhat A, Rhee JH, Kim JS, Takeyasu K, Choy HE. Mol Microbiol 86 707-719 (2012)
  41. Insights into Escherichia coli RNA polymerase structure from a combination of x-ray and electron crystallography. Darst SA, Polyakov A, Richter C, Zhang G. J Struct Biol 124 115-122 (1998)
  42. RNA polymerase alpha and sigma(70) subunits participate in transcription of the Escherichia coli uhpT promoter. Olekhnovich IN, Kadner RJ. J Bacteriol 181 7266-7273 (1999)
  43. The Escherichia coli RNA polymerase alpha subunit linker: length requirements for transcription activation at CRP-dependent promoters. Meng W, Savery NJ, Busby SJ, Thomas MS. EMBO J 19 1555-1566 (2000)
  44. Location of the C-terminal domain of the RNA polymerase alpha subunit in different open complexes at the Escherichia coli galactose operon regulatory region. Belyaeva TA, Bown JA, Fujita N, Ishihama A, Busby SJ. Nucleic Acids Res 24 2242-2251 (1996)
  45. Metal- and DNA-binding properties and mutational analysis of the transcription activating factor, B, of coliphage 186: a prokaryotic C4 zinc-finger protein. Pountney DL, Tiwari RP, Egan JB. Protein Sci 6 892-902 (1997)
  46. Transcriptional activation of Agrobacterium tumefaciens virulence gene promoters in Escherichia coli requires the A. tumefaciens RpoA gene, encoding the alpha subunit of RNA polymerase. Lohrke SM, Nechaev S, Yang H, Severinov K, Jin SJ. J Bacteriol 181 4533-4539 (1999)
  47. Embedding and publishing interactive, 3-dimensional, scientific figures in Portable Document Format (PDF) files. Barnes DG, Vidiassov M, Ruthensteiner B, Fluke CJ, Quayle MR, McHenry CR. PLoS One 8 e69446 (2013)
  48. FruR-mediated transcriptional activation at the ppsA promoter of Escherichia coli. Nègre D, Oudot C, Prost JF, Murakami K, Ishihama A, Cozzone AJ, Cortay JC. J Mol Biol 276 355-365 (1998)
  49. Positive autoregulation of mrkHI by the cyclic di-GMP-dependent MrkH protein in the biofilm regulatory circuit of Klebsiella pneumoniae. Tan JW, Wilksch JJ, Hocking DM, Wang N, Srikhanta YN, Tauschek M, Lithgow T, Robins-Browne RM, Yang J, Strugnell RA. J Bacteriol 197 1659-1667 (2015)
  50. Analysis of interactions between Activating Region 1 of Escherichia coli FNR protein and the C-terminal domain of the RNA polymerase alpha subunit: use of alanine scanning and suppression genetics. Lee DJ, Wing HJ, Savery NJ, Busby SJ. Mol Microbiol 37 1032-1040 (2000)
  51. Cra-dependent transcriptional activation of the icd gene of Escherichia coli. Prost JF, Nègre D, Oudot C, Murakami K, Ishihama A, Cozzone AJ, Cortay JC. J Bacteriol 181 893-898 (1999)
  52. Function of the C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase in basal expression and integration host factor-mediated activation of the early promoter of bacteriophage Mu. van Ulsen P, Hillebrand M, Kainz M, Collard R, Zulianello L, van de Putte P, Gourse RL, Goosen N. J Bacteriol 179 530-537 (1997)
  53. Gene organization and protein sequence of the small subunits of Schizosaccharomyces pombe RNA polymerase II. Sakurai H, Ishihama A. Gene 196 165-174 (1997)
  54. Interactions of the XylS regulators with the C-terminal domain of the RNA polymerase alpha subunit influence the expression level from the cognate Pm promoter. Ruiz R, Ramos JL, Egan SM. FEBS Lett 491 207-211 (2001)
  55. Transcriptional activation of the mrkA promoter of the Klebsiella pneumoniae type 3 fimbrial operon by the c-di-GMP-dependent MrkH protein. Yang J, Wilksch JJ, Tan JW, Hocking DM, Webb CT, Lithgow T, Robins-Browne RM, Strugnell RA. PLoS One 8 e79038 (2013)
  56. Role of the RNA polymerase alpha subunits in CII-dependent activation of the bacteriophage lambda pE promoter: identification of important residues and positioning of the alpha C-terminal domains. Kedzierska B, Lee DJ, Wegrzyn G, Busby SJ, Thomas MS. Nucleic Acids Res 32 834-841 (2004)
  57. Amino acid residues in the alpha-subunit C-terminal domain of Escherichia coli RNA polymerase involved in activation of transcription from the mtr promoter. Yang J, Murakami K, Camakaris H, Fujita N, Ishihama A, Pittard AJ. J Bacteriol 179 6187-6191 (1997)
  58. Cloning and characterization of the str operon and elongation factor Tu expression in Bacillus stearothermophilus. Krásný L, Vacík T, Fucík V, Jonák J. J Bacteriol 182 6114-6122 (2000)
  59. RNA polymerase sigma factor determines start-site selection but is not required for upstream promoter element activation on heteroduplex (bubble) templates. Fredrick K, Helmann JD. Proc Natl Acad Sci U S A 94 4982-4987 (1997)
  60. Requirement for two copies of RNA polymerase alpha subunit C-terminal domain for synergistic transcription activation at complex bacterial promoters. Lloyd GS, Niu W, Tebbutt J, Ebright RH, Busby SJ. Genes Dev 16 2557-2565 (2002)
  61. Role of the RNA polymerase alpha subunits in MetR-dependent activation of metE and metH: important residues in the C-terminal domain and orientation requirements within RNA polymerase. Fritsch PS, Urbanowski ML, Stauffer GV. J Bacteriol 182 5539-5550 (2000)
  62. Eukaryotic RNA polymerase subunit RPB8 is a new relative of the OB family. Krapp S, Kelly G, Reischl J, Weinzierl RO, Matthews S. Nat Struct Biol 5 110-114 (1998)
  63. Interactions among CII protein, RNA polymerase and the lambda PRE promoter: contacts between RNA polymerase and the -35 region of PRE are identical in the presence and absence of CII protein. Marr MT, Roberts JW, Brown SE, Klee M, Gussin GN. Nucleic Acids Res 32 1083-1090 (2004)
  64. Substitution of the C-terminal domain of the Escherichia coli RNA polymerase alpha subunit by that from Bacillus subtilis makes the enzyme responsive to a Bacillus subtilis transcriptional activator. Mencía M, Mencía M, Monsalve M, Rojo F, Salas M. J Mol Biol 275 177-185 (1998)
  65. Helicobacter pylori RNA polymerase α-subunit C-terminal domain shows features unique to ɛ-proteobacteria and binds NikR/DNA complexes. Borin BN, Tang W, Krezel AM. Protein Sci 23 454-463 (2014)
  66. Identification and comparative analysis of the chloroplast alpha-subunit gene of DNA-dependent RNA polymerase from seven Euglena species. Sheveleva EV, Giordani NV, Hallick RB. Nucleic Acids Res 30 1247-1254 (2002)
  67. Contribution of the RpoA C-terminal domain to stimulation of the Salmonella enterica hilA promoter by HilC and HilD. Olekhnovich IN, Kadner RJ. J Bacteriol 186 3249-3253 (2004)
  68. DNA flexibility of the UP element is a major determinant for transcriptional activation at the Escherichia coli acetate promoter. Nègre D, Bonod-Bidaud C, Oudot C, Prost JF, Kolb A, Ishihama A, Cozzone AJ, Cortay JC. Nucleic Acids Res 25 713-718 (1997)
  69. Mode of DNA-protein interaction between the C-terminal domain of Escherichia coli RNA polymerase alpha subunit and T7D promoter UP element. Ozoline ON, Fujita N, Ishihama A. Nucleic Acids Res 29 4909-4919 (2001)
  70. Residues 137 and 153 of XylS influence contacts with the C-terminal domain of the RNA polymerase alpha subunit. Ruiz R, Ramos JL. Biochem Biophys Res Commun 287 519-521 (2001)
  71. The C-terminal domain of the Escherichia coli RNA polymerase alpha subunit plays a role in the CI-dependent activation of the bacteriophage lambda pM promoter. Kedzierska B, Szambowska A, Herman-Antosiewicz A, Lee DJ, Busby SJ, Wegrzyn G, Thomas MS. Nucleic Acids Res 35 2311-2320 (2007)
  72. Activation of the promoter of the fengycin synthetase operon by the UP element. Ke WJ, Chang BY, Lin TP, Liu ST. J Bacteriol 191 4615-4623 (2009)
  73. CAP, the -45 region, and RNA polymerase: three partners in transcription initiation at lacP1 in Escherichia coli. Noel RJ, Reznikoff WS. J Mol Biol 282 495-504 (1998)
  74. Suppressor mutations in alpha-subunit of RNA polymerase for a mutant of the positive regulator, OmpR, in Escherichia coli. Kato N, Aiba H, Mizuno T. FEMS Microbiol Lett 139 175-180 (1996)
  75. Molecular analysis of RNA polymerase alpha subunit gene from Streptomyces coelicolor A3(2). Cho EJ, Bae JB, Kang JG, Roe JH. Nucleic Acids Res 24 4565-4571 (1996)
  76. A structural tree for alpha-helical proteins containing alpha-alpha-corners and its application to protein classification. Efimov AV. FEBS Lett 391 167-170 (1996)
  77. Method for designing and optimizing random-search libraries for strain improvement. Klein-Marcuschamer D, Stephanopoulos G. Appl Environ Microbiol 76 5541-5546 (2010)
  78. RNA polymerase--promoter recognition. Specific features of electrostatic potential of "early" T4 phage DNA promoters. Kamzolova SG, Sivozhelezov VS, Sorokin AA, Dzhelyadin TR, Ivanova NN, Polozov RV. J Biomol Struct Dyn 18 325-334 (2000)
  79. A Mutation in the C-terminal domain of the RNA polymerase alpha subunit that destabilizes the open complexes formed at the phage phi 29 late A3 promoter. Calles B, Monsalve M, Rojo F, Salas M. J Mol Biol 307 487-497 (2001)
  80. The glutamic acid residue at amino acid 261 of the alpha subunit is a determinant of the intrinsic efficiency of RNA polymerase at the metE core promoter in Escherichia coli. Jafri S, Urbanowski ML, Stauffer GV. J Bacteriol 178 6810-6816 (1996)
  81. GcvA-mediated activation of gcvT-lacZ expression involves the carboxy-terminal domain of the alpha subunit of RNA polymerase. Jourdan AD, Stauffer GV. FEMS Microbiol Lett 181 307-312 (1999)
  82. The effect of a nested set of C-terminal substituted deletions on the function of the alpha subunit of Escherichia coli RNA polymerase. Thomas MS, Zou C, Ishihama A, Glass RE. Int J Biochem Cell Biol 29 1475-1483 (1997)
  83. Cloning and expression of the gene encoding RNA polymerase alpha subunit from alkaliphilic Bacillus sp. strain C-125. Nakasone K, Takaki Y, Takami H, Inoue A, Horikoshi K. FEMS Microbiol Lett 168 269-276 (1998)
  84. Specific fluorescent labeling of two functional domains in RNA polymerase alpha subunit. Ozoline ON, Murakami K, Negishi T, Fujita N, Ishihama A. Proteins 30 183-192 (1998)


Related citations provided by authors (1)