1cjl Citations

Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment.

EMBO J 15 5492-503 (1996)
Cited: 221 times
EuropePMC logo PMID: 8896443

Abstract

Cathepsin L is a member of the papain superfamily of cysteine proteases and, like many other proteases, it is synthesized as an inactive proenzyme. Its prosegment shows little homology to that of procathepsin B, whose structure, the first for a cysteine protease proenzyme, has been determined recently. We report here the 3-D structure of a mutant of human procathepsin L determined at 2.2 A resolution, describe the mode of binding employed by the prosegment and discuss the molecular basis for other possible roles of the prosegment. The N-terminal part of the prosegment is globular and contains three alpha-helices with a small hydrophobic core built around aromatic side chains. This domain packs against a loop on the enzyme's surface, with the aromatic side chain from the prosegment being located in the center of this loop and providing a large contact area. The C-terminal portion of the prosegment assumes an extended conformation and follows along the substrate binding cleft toward the N-terminus of the mature enzyme. The direction of the prosegment in the substrate binding cleft is opposite to that of substrates. The previously described role of the prosegment in the interactions with membranes is supported by the structure of its N-terminal domain. The fold of the prosegment and the mechanism by which it inhibits the enzymatic activity of procathepsin L is similar to that observed in procathepsin B despite differences in length and sequence, suggesting that this mode of inhibition is common to all enzymes from the papain superfamily.

Reviews - 1cjl mentioned but not cited (4)

  1. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Millet JK, Whittaker GR. Virus Res 202 120-134 (2015)
  2. A Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L. Dana D, Pathak SK. Molecules 25 E698 (2020)
  3. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Tušar L, Usenik A, Turk B, Turk D. Int J Mol Sci 22 997 (2021)
  4. Structure determinants defining the specificity of papain-like cysteine proteases. Petushkova AI, Savvateeva LV, Zamyatnin AA. Comput Struct Biotechnol J 20 6552-6569 (2022)

Articles - 1cjl mentioned but not cited (15)

  1. The effect of secretory factors of adipose-derived stem cells on human keratinocytes. Moon KM, Park YH, Lee JS, Chae YB, Kim MM, Kim DS, Kim BW, Nam SW, Lee JH. Int J Mol Sci 13 1239-1257 (2012)
  2. A human RNA viral cysteine proteinase that depends upon a unique Zn2+-binding finger connecting the two domains of a papain-like fold . Herold J, Siddell SG, Gorbalenya AE. J Biol Chem 274 14918-14925 (1999)
  3. Collagenolytic activities of the major secreted cathepsin L peptidases involved in the virulence of the helminth pathogen, Fasciola hepatica. Robinson MW, Corvo I, Jones PM, George AM, Padula MP, To J, Cancela M, Rinaldi G, Tort JF, Roche L, Dalton JP. PLoS Negl Trop Dis 5 e1012 (2011)
  4. Toxoplasma gondii cathepsin L is the primary target of the invasion-inhibitory compound morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl. Larson ET, Parussini F, Huynh MH, Giebel JD, Kelley AM, Zhang L, Bogyo M, Merritt EA, Carruthers VB. J Biol Chem 284 26839-26850 (2009)
  5. The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Huang R, Que X, Hirata K, Brinen LS, Lee JH, Hansell E, Engel J, Sajid M, Reed S. Mol Biochem Parasitol 164 86-94 (2009)
  6. Crystal structure of NS-134 in complex with bovine cathepsin B: a two-headed epoxysuccinyl inhibitor extends along the entire active-site cleft. Stern I, Schaschke N, Moroder L, Turk D. Biochem J 381 511-517 (2004)
  7. Discovering RNA-protein interactome by using chemical context profiling of the RNA-protein interface. Parisien M, Wang X, Perdrizet G, Lamphear C, Fierke CA, Maheshwari KC, Wilde MJ, Sosnick TR, Pan T. Cell Rep 3 1703-1713 (2013)
  8. Crystal structure and silica condensing activities of silicatein alpha-cathepsin L chimeras. Fairhead M, Johnson KA, Kowatz T, McMahon SA, Carter LG, Oke M, Liu H, Naismith JH, van der Walle CF. Chem Commun (Camb) 1765-1767 (2008)
  9. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile. Bradshaw WJ, Kirby JM, Thiyagarajan N, Chambers CJ, Davies AH, Roberts AK, Shone CC, Acharya KR. Acta Crystallogr D Biol Crystallogr 70 1983-1993 (2014)
  10. Therapeutic Potential of Novel Mastoparan-Chitosan Nanoconstructs Against Clinical MDR Acinetobacter baumannii: In silico, in vitro and in vivo Studies. Hassan A, Ikram A, Raza A, Saeed S, Zafar Paracha R, Younas Z, Khadim MT. Int J Nanomedicine 16 3755-3773 (2021)
  11. Computational study on substrate specificity of a novel cysteine protease 1 precursor from Zea mays. Liu H, Chen L, Li Q, Zheng M, Liu J. Int J Mol Sci 15 10459-10478 (2014)
  12. Structure, interdomain dynamics, and pH-dependent autoactivation of pro-rhodesain, the main lysosomal cysteine protease from African trypanosomes. Johé P, Jaenicke E, Neuweiler H, Schirmeister T, Kersten C, Hellmich UA. J Biol Chem 296 100565 (2021)
  13. Regulation of the Fasciola hepatica newly excysted juvenile cathepsin L3 (FhCL3) by its propeptide: a proposed 'clamp-like' mechanism of binding and inhibition. Pritsch IC, Tikhonova IG, Jewhurst HL, Drysdale O, Cwiklinski K, Molento MB, Dalton JP, Verissimo CM. BMC Mol Cell Biol 21 90 (2020)
  14. Molluscicidal and Larvicidal Potency of N-Heterocylic Analogs against Biomophalaria alexandrina Snails and Schistosoma mansoni Larval Stages. Sheir SK, Elmongy EI, Mohamad AH, Osman GY, Bendary SE, Ahmed AAS, Binsuwaidan R, El-Sayed IE. Pharmaceutics 15 1200 (2023)
  15. Proteomic data and structure analysis combined reveal interplay of structural rigidity and flexibility on selectivity of cysteine cathepsins. Tušar L, Loboda J, Impens F, Sosnowski P, Van Quickelberghe E, Vidmar R, Demol H, Sedeyn K, Saelens X, Vizovišek M, Mihelič M, Fonović M, Horvat J, Kosec G, Turk B, Gevaert K, Turk D. Commun Biol 6 450 (2023)


Reviews citing this publication (28)

  1. Cysteine cathepsins: from structure, function and regulation to new frontiers. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D. Biochim Biophys Acta 1824 68-88 (2012)
  2. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. Eckelman BP, Salvesen GS, Scott FL. EMBO Rep 7 988-994 (2006)
  3. Specialized roles for cysteine cathepsins in health and disease. Reiser J, Adair B, Reinheckel T. J Clin Invest 120 3421-3431 (2010)
  4. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Khan AR, James MN. Protein Sci 7 815-836 (1998)
  5. The lysosomal cysteine proteases in MHC class II antigen presentation. Hsing LC, Rudensky AY. Immunol Rev 207 229-241 (2005)
  6. The lysosomal cysteine proteases. McGrath ME. Annu Rev Biophys Biomol Struct 28 181-204 (1999)
  7. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Stoka V, Turk V, Turk B. Ageing Res Rev 32 22-37 (2016)
  8. Cysteine proteinases and the pathogenesis of amebiasis. Que X, Reed SL. Clin Microbiol Rev 13 196-206 (2000)
  9. Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR. Annu Rev Pharmacol Toxicol 48 393-423 (2008)
  10. Revised definition of substrate binding sites of papain-like cysteine proteases. Turk D, Guncar G, Podobnik M, Turk B. Biol Chem 379 137-147 (1998)
  11. Cathepsins and compartmentalization in antigen presentation. Riese RJ, Chapman HA. Curr Opin Immunol 12 107-113 (2000)
  12. Malarial proteases and host cell egress: an 'emerging' cascade. Blackman MJ. Cell Microbiol 10 1925-1934 (2008)
  13. Endosomal proteolysis and MHC class II function. Chapman HA. Curr Opin Immunol 10 93-102 (1998)
  14. Role for cysteine protease cathepsins in heart disease: focus on biology and mechanisms with clinical implication. Cheng XW, Shi GP, Kuzuya M, Sasaki T, Okumura K, Murohara T. Circulation 125 1551-1562 (2012)
  15. CD74: an emerging opportunity as a therapeutic target in cancer and autoimmune disease. Borghese F, Clanchy FI. Expert Opin Ther Targets 15 237-251 (2011)
  16. Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Mills EN, Jenkins JA, Alcocer MJ, Shewry PR. Crit Rev Food Sci Nutr 44 379-407 (2004)
  17. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets. Verma S, Dixit R, Pandey KC. Front Pharmacol 7 107 (2016)
  18. Proregion structure of members of the papain superfamily. Mode of inhibition of enzymatic activity. Cygler M, Mort JS. Biochimie 79 645-652 (1997)
  19. Role of Papain-Like Cysteine Proteases in Plant Development. Liu H, Hu M, Wang Q, Cheng L, Zhang Z. Front Plant Sci 9 1717 (2018)
  20. Congopain from Trypanosoma congolense: drug target and vaccine candidate. Lalmanach G, Boulangé A, Serveau C, Lecaille F, Scharfstein J, Gauthier F, Authié E. Biol Chem 383 739-749 (2002)
  21. Structural aspects of activation pathways of aspartic protease zymogens and viral 3C protease precursors. Khan AR, Khazanovich-Bernstein N, Bergmann EM, James MN. Proc Natl Acad Sci U S A 96 10968-10975 (1999)
  22. Amide Bond Activation of Biological Molecules. Mahesh S, Tang KC, Raj M. Molecules 23 E2615 (2018)
  23. Proteolysis and antigen presentation by MHC class II molecules. Bryant PW, Lennon-Duménil AM, Fiebiger E, Lagaudrière-Gesbert C, Ploegh HL. Adv Immunol 80 71-114 (2002)
  24. Cysteine cathepsin activity regulation by glycosaminoglycans. Novinec M, Lenarčič B, Turk B. Biomed Res Int 2014 309718 (2014)
  25. Family C1 cysteine proteases: biological diversity or redundancy? Nägler DK, Ménard R. Biol Chem 384 837-843 (2003)
  26. Microbial inhibitors of cysteine proteases. Kędzior M, Seredyński R, Gutowicz J. Med Microbiol Immunol 205 275-296 (2016)
  27. Plant Milk-Clotting Enzymes for Cheesemaking. Nicosia FD, Puglisi I, Pino A, Caggia C, Randazzo CL. Foods 11 871 (2022)
  28. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Stoka V, Vasiljeva O, Nakanishi H, Turk V. Int J Mol Sci 24 15613 (2023)

Articles citing this publication (174)

  1. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M. Chem Biol 7 569-581 (2000)
  2. A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A. Mol Cell 14 207-219 (2004)
  3. Silicatein alpha: cathepsin L-like protein in sponge biosilica. Shimizu K, Cha J, Stucky GD, Morse DE. Proc Natl Acad Sci U S A 95 6234-6238 (1998)
  4. An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: proteins associated with invasion and infection of the mammalian host. Robinson MW, Menon R, Donnelly SM, Dalton JP, Ranganathan S. Mol Cell Proteomics 8 1891-1907 (2009)
  5. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. Johnston SC, Larsen CN, Cook WJ, Wilkinson KD, Hill CP. EMBO J 16 3787-3796 (1997)
  6. Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Sijwali PS, Shenai BR, Gut J, Singh A, Rosenthal PJ. Biochem J 360 481-489 (2001)
  7. Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. Guncar G, Pungercic G, Klemencic I, Turk V, Turk D. EMBO J 18 793-803 (1999)
  8. Multistep autoactivation of asparaginyl endopeptidase in vitro and in vivo. Li DN, Matthews SP, Antoniou AN, Mazzeo D, Watts C. J Biol Chem 278 38980-38990 (2003)
  9. Lysosomal cathepsins: structure, role in antigen processing and presentation, and cancer. Turk V, Turk B, Guncar G, Turk D, Kos J. Adv Enzyme Regul 42 285-303 (2002)
  10. Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. Guarné A, Tormo J, Kirchweger R, Pfistermueller D, Fita I, Skern T. EMBO J 17 7469-7479 (1998)
  11. Crystal structure of porcine cathepsin H determined at 2.1 A resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Guncar G, Podobnik M, Pungercar J, Strukelj B, Turk V, Turk D. Structure 6 51-61 (1998)
  12. Characterization of novel cathepsin K mutations in the pro and mature polypeptide regions causing pycnodysostosis. Hou WS, Brömme D, Zhao Y, Mehler E, Dushey C, Weinstein H, Miranda CS, Fraga C, Greig F, Carey J, Rimoin DL, Desnick RJ, Gelb BD. J Clin Invest 103 731-738 (1999)
  13. Letter Crystal structure of human cathepsin K complexed with a potent inhibitor. McGrath ME, Klaus JL, Barnes MG, Brömme D. Nat Struct Biol 4 105-109 (1997)
  14. Proteomics and phylogenetic analysis of the cathepsin L protease family of the helminth pathogen Fasciola hepatica: expansion of a repertoire of virulence-associated factors. Robinson MW, Tort JF, Lowther J, Donnelly SM, Wong E, Xu W, Stack CM, Padula M, Herbert B, Dalton JP. Mol Cell Proteomics 7 1111-1123 (2008)
  15. Vacuolar processing enzyme is self-catalytically activated by sequential removal of the C-terminal and N-terminal propeptides. Hiraiwa N, Nishimura M, Hara-Nishimura I. FEBS Lett 447 213-216 (1999)
  16. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease. Kagawa TF, Cooney JC, Baker HM, McSweeney S, Liu M, Gubba S, Musser JM, Baker EN. Proc Natl Acad Sci U S A 97 2235-2240 (2000)
  17. The multiple cpb cysteine proteinase genes of Leishmania mexicana encode isoenzymes that differ in their stage regulation and substrate preferences. Mottram JC, Frame MJ, Brooks DR, Tetley L, Hutchison JE, Souza AE, Coombs GH. J Biol Chem 272 14285-14293 (1997)
  18. Heterologous expression, purification, refolding, and structural-functional characterization of EP-B2, a self-activating barley cysteine endoprotease. Bethune MT, Strop P, Tang Y, Sollid LM, Khosla C. Chem Biol 13 637-647 (2006)
  19. The crystal structure of human cathepsin L complexed with E-64. Fujishima A, Imai Y, Nomura T, Fujisawa Y, Yamamoto Y, Sugawara T. FEBS Lett 407 47-50 (1997)
  20. Letter Crystal structure of human osteoclast cathepsin K complex with E-64. Zhao B, Janson CA, Amegadzie BY, D'Alessio K, Griffin C, Hanning CR, Jones C, Kurdyla J, McQueney M, Qiu X, Smith WW, Abdel-Meguid SS. Nat Struct Biol 4 109-111 (1997)
  21. Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen. Podobnik M, Kuhelj R, Turk V, Turk D. J Mol Biol 271 774-788 (1997)
  22. Comprehensive search for cysteine cathepsins in the human genome. Rossi A, Deveraux Q, Turk B, Sali A. Biol Chem 385 363-372 (2004)
  23. Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. Stack CM, Caffrey CR, Donnelly SM, Seshaadri A, Lowther J, Tort JF, Collins PR, Robinson MW, Xu W, McKerrow JH, Craik CS, Geiger SR, Marion R, Brinen LS, Dalton JP. J Biol Chem 283 9896-9908 (2008)
  24. Autocatalytic processing of recombinant human procathepsin B is a bimolecular process. Rozman J, Stojan J, Kuhelj R, Turk V, Turk B. FEBS Lett 459 358-362 (1999)
  25. Expression of human cathepsin K in Pichia pastoris and preliminary crystallographic studies of an inhibitor complex. Linnevers CJ, McGrath ME, Armstrong R, Mistry FR, Barnes MG, Klaus JL, Palmer JT, Katz BA, Brömme D. Protein Sci 6 919-921 (1997)
  26. Invariant chain controls the activity of extracellular cathepsin L. Fiebiger E, Maehr R, Villadangos J, Weber E, Erickson A, Bikoff E, Ploegh HL, Lennon-Duménil AM. J Exp Med 196 1263-1269 (2002)
  27. The p41 isoform of invariant chain is a chaperone for cathepsin L. Lennon-Duménil AM, Roberts RA, Valentijn K, Driessen C, Overkleeft HS, Erickson A, Peters PJ, Bikoff E, Ploegh HL, Wolf Bryant P. EMBO J 20 4055-4064 (2001)
  28. Expression and characterization of a recombinant cysteine proteinase of Leishmania mexicana. Sanderson SJ, Pollock KG, Hilley JD, Meldal M, Hilaire PS, Juliano MA, Juliano L, Mottram JC, Coombs GH. Biochem J 347 383-388 (2000)
  29. Activation of human prolegumain by cleavage at a C-terminal asparagine residue. Chen JM, Fortunato M, Barrett AJ. Biochem J 352 Pt 2 327-334 (2000)
  30. Crystal structure of a Trypanosoma brucei metacaspase. McLuskey K, Rudolf J, Proto WR, Isaacs NW, Coombs GH, Moss CX, Mottram JC. Proc Natl Acad Sci U S A 109 7469-7474 (2012)
  31. Structural basis for specificity of papain-like cysteine protease proregions toward their cognate enzymes. Groves MR, Coulombe R, Jenkins J, Cygler M. Proteins 32 504-514 (1998)
  32. Probing the specificity of cysteine proteinases at subsites remote from the active site: analysis of P4, P3, P2' and P3' variations in extended substrates. Portaro FC, Santos AB, Cezari MH, Juliano MA, Juliano L, Carmona E. Biochem J 347 Pt 1 123-129 (2000)
  33. Proteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyte. Ruecker A, Shea M, Hackett F, Suarez C, Hirst EM, Milutinovic K, Withers-Martinez C, Blackman MJ. J Biol Chem 287 37949-37963 (2012)
  34. The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. Meno K, Thorsted PB, Ipsen H, Kristensen O, Larsen JN, Spangfort MD, Gajhede M, Lund K. J Immunol 175 3835-3845 (2005)
  35. Ovarian cysteine proteinases in the teleost Fundulus heteroclitus: molecular cloning and gene expression during vitellogenesis and oocyte maturation. Fabra M, Cerdà J. Mol Reprod Dev 67 282-294 (2004)
  36. The importance of pH in regulating the function of the Fasciola hepatica cathepsin L1 cysteine protease. Lowther J, Robinson MW, Donnelly SM, Xu W, Stack CM, Matthews JM, Dalton JP. PLoS Negl Trop Dis 3 e369 (2009)
  37. A single amino acid substitution affects substrate specificity in cysteine proteinases from Fasciola hepatica. Smooker PM, Whisstock JC, Irving JA, Siyaguna S, Spithill TW, Pike RN. Protein Sci 9 2567-2572 (2000)
  38. The evolution of enzyme specificity in Fasciola spp. Irving JA, Spithill TW, Pike RN, Whisstock JC, Smooker PM. J Mol Evol 57 1-15 (2003)
  39. Autocatalytic processing of procathepsin B is triggered by proenzyme activity. Pungercar JR, Caglic D, Sajid M, Dolinar M, Vasiljeva O, Pozgan U, Turk D, Bogyo M, Turk V, Turk B. FEBS J 276 660-668 (2009)
  40. Potency and selectivity of inhibition of cathepsin K, L and S by their respective propeptides. Guay J, Falgueyret JP, Ducret A, Percival MD, Mancini JA. Eur J Biochem 267 6311-6318 (2000)
  41. The inhibition of cathepsin S by its propeptide--specificity and mechanism of action. Maubach G, Schilling K, Rommerskirch W, Wenz I, Schultz JE, Weber E, Wiederanders B. Eur J Biochem 250 745-750 (1997)
  42. Acidic pH as a physiological regulator of human cathepsin L activity. Turk B, Dolenc I, Lenarcic B, Krizaj I, Turk V, Bieth JG, Björk I. Eur J Biochem 259 926-932 (1999)
  43. Full-length cDNA of human cathepsin F predicts the presence of a cystatin domain at the N-terminus of the cysteine protease zymogen. Nägler DK, Sulea T, Ménard R. Biochem Biophys Res Commun 257 313-318 (1999)
  44. Evolution of placentally expressed cathepsins. Sol-Church K, Picerno GN, Stabley DL, Frenck J, Xing S, Bertenshaw GP, Mason RW. Biochem Biophys Res Commun 293 23-29 (2002)
  45. Phylogenetic relationships and gene expression pattern of three different cathepsin L (Ctsl) isoforms in zebrafish: Ctsla is the putative yolk processing enzyme. Tingaud-Sequeira A, Cerdà J. Gene 386 98-106 (2007)
  46. Isolation of a cDNA encoding Fasciola hepatica cathepsin L2 and functional expression in Saccharomyces cerevisiae. Dowd AJ, Tort J, Roche L, Ryan T, Dalton JP. Mol Biochem Parasitol 88 163-174 (1997)
  47. Localization of nuclear cathepsin L and its association with disease progression and poor outcome in colorectal cancer. Sullivan S, Tosetto M, Kevans D, Coss A, Wang L, O'Donoghue D, Hyland J, Sheahan K, Mulcahy H, O'Sullivan J. Int J Cancer 125 54-61 (2009)
  48. Fibrinogen cleavage by the Streptococcus pyogenes extracellular cysteine protease and generation of antibodies that inhibit enzyme proteolytic activity. Matsuka YV, Pillai S, Gubba S, Musser JM, Olmsted SB. Infect Immun 67 4326-4333 (1999)
  49. Molecular cloning and characterization of cathepsin L encoding genes from Fasciola gigantica. Grams R, Vichasri-Grams S, Sobhon P, Upatham ES, Viyanant V. Parasitol Int 50 105-114 (2001)
  50. Cloning and characterization of a gut-specific cathepsin L from the aphid Aphis gossypii. Deraison C, Darboux I, Duportets L, Gorojankina T, Rahbé Y, Jouanin L. Insect Mol Biol 13 165-177 (2004)
  51. Crystal structure of wild-type human procathepsin K. Sivaraman J, Lalumière M, Ménard R, Cygler M. Protein Sci 8 283-290 (1999)
  52. Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle. Stallmach R, Kavishwar M, Withers-Martinez C, Hackett F, Collins CR, Howell SA, Yeoh S, Knuepfer E, Atid AJ, Holder AA, Blackman MJ. Mol Microbiol 96 368-387 (2015)
  53. Cathepsin F cysteine protease of the human liver fluke, Opisthorchis viverrini. Pinlaor P, Kaewpitoon N, Laha T, Sripa B, Kaewkes S, Morales ME, Mann VH, Parriott SK, Suttiprapa S, Robinson MW, To J, Dalton JP, Loukas A, Brindley PJ. PLoS Negl Trop Dis 3 e398 (2009)
  54. Identification of the major cysteine protease of Giardia and its role in encystation. DuBois KN, Abodeely M, Sakanari J, Craik CS, Lee M, McKerrow JH, Sajid M. J Biol Chem 283 18024-18031 (2008)
  55. Location of the binding site for chloride ion activation of cathepsin C. Cigic B, Pain RH. Eur J Biochem 264 944-951 (1999)
  56. The Staphostatin-staphopain complex: a forward binding inhibitor in complex with its target cysteine protease. Filipek R, Rzychon M, Oleksy A, Gruca M, Dubin A, Potempa J, Bochtler M. J Biol Chem 278 40959-40966 (2003)
  57. Functional roles of specific bruchid protease isoforms in adaptation to a soybean protease inhibitor. Ahn JE, Salzman RA, Braunagel SC, Koiwa H, Zhu-Salzman K. Insect Mol Biol 13 649-657 (2004)
  58. Unique thrombin inhibition mechanism by anophelin, an anticoagulant from the malaria vector. Figueiredo AC, de Sanctis D, Gutiérrez-Gallego R, Cereija TB, Macedo-Ribeiro S, Fuentes-Prior P, Pereira PJ. Proc Natl Acad Sci U S A 109 E3649-58 (2012)
  59. Host Enzymes Heparanase and Cathepsin L Promote Herpes Simplex Virus 2 Release from Cells. Hopkins J, Yadavalli T, Agelidis AM, Shukla D. J Virol 92 e01179-18 (2018)
  60. Lysine-based structure responsible for selective mannose phosphorylation of cathepsin D and cathepsin L defines a common structural motif for lysosomal enzyme targeting. Cuozzo JW, Tao K, Cygler M, Mort JS, Sahagian GG. J Biol Chem 273 21067-21076 (1998)
  61. Crystal structure of the parasite protease inhibitor chagasin in complex with a host target cysteine protease. Ljunggren A, Redzynia I, Alvarez-Fernandez M, Abrahamson M, Mort JS, Krupa JC, Jaskolski M, Bujacz G. J Mol Biol 371 137-153 (2007)
  62. Regulatory elements within the prodomain of Falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. Pandey KC, Barkan DT, Sali A, Rosenthal PJ. PLoS One 4 e5694 (2009)
  63. The crystal structure of human cathepsin F and its implications for the development of novel immunomodulators. Somoza JR, Palmer JT, Ho JD. J Mol Biol 322 559-568 (2002)
  64. Porphyromonas gingivalis virulence factor gingipain RgpB shows a unique zymogenic mechanism for cysteine peptidases. de Diego I, Veillard FT, Guevara T, Potempa B, Sztukowska M, Potempa J, Gomis-Rüth FX. J Biol Chem 288 14287-14296 (2013)
  65. Several cooperating binding sites mediate the interaction of a lysosomal enzyme with phosphotransferase. Tikkanen R, Peltola M, Oinonen C, Rouvinen J, Peltonen L. EMBO J 16 6684-6693 (1997)
  66. Structural insights into the protease-like antigen Plasmodium falciparum SERA5 and its noncanonical active-site serine. Hodder AN, Malby RL, Clarke OB, Fairlie WD, Colman PM, Crabb BS, Smith BJ. J Mol Biol 392 154-165 (2009)
  67. High resolution structure of an M23 peptidase with a substrate analogue. Grabowska M, Jagielska E, Czapinska H, Bochtler M, Sabala I. Sci Rep 5 14833 (2015)
  68. Novel cathepsin B and cathepsin B-like cysteine protease of Naegleria fowleri excretory-secretory proteins and their biochemical properties. Lee J, Kim JH, Sohn HJ, Yang HJ, Na BK, Chwae YJ, Park S, Kim K, Shin HJ. Parasitol Res 113 2765-2776 (2014)
  69. The propeptide of Fasciola hepatica cathepsin L is a potent and selective inhibitor of the mature enzyme. Roche L, Tort J, Dalton JP. Mol Biochem Parasitol 98 271-277 (1999)
  70. Two osteoclastic markers expressed in multinucleate osteoclasts of goldfish scales. Azuma K, Kobayashi M, Nakamura M, Suzuki N, Yashima S, Iwamuro S, Ikegame M, Yamamoto T, Hattori A. Biochem Biophys Res Commun 362 594-600 (2007)
  71. Characterisation and expression of the Fasciola gigantica cathepsin L gene. Yamasaki H, Mineki R, Murayama K, Ito A, Aoki T. Int J Parasitol 32 1031-1042 (2002)
  72. Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II. Criscitiello MF, Ohta Y, Graham MD, Eubanks JO, Chen PL, Flajnik MF. Dev Comp Immunol 36 521-533 (2012)
  73. Subsite specificity of trypanosomal cathepsin L-like cysteine proteases. Probing the S2 pocket with phenylalanine-derived amino acids. Lecaille F, Authié E, Moreau T, Serveau C, Gauthier F, Lalmanach G. Eur J Biochem 268 2733-2741 (2001)
  74. The slow-binding inhibition of cathepsin K by its propeptide. Billington CJ, Mason P, Magny MC, Mort JS. Biochem Biophys Res Commun 276 924-929 (2000)
  75. Channel catfish, Ictalurus punctatus, cysteine proteinases: cloning, characterisation and expression of cathepsin H and L. Yeh HY, Klesius PH. Fish Shellfish Immunol 26 332-338 (2009)
  76. Letter Maternal-fetal conflict: rapidly evolving proteins in the rodent placenta. Chuong EB, Tong W, Hoekstra HE. Mol Biol Evol 27 1221-1225 (2010)
  77. SpeB-Spi: a novel protease-inhibitor pair from Streptococcus pyogenes. Kagawa TF, O'toole PW, Cooney JC. Mol Microbiol 57 650-666 (2005)
  78. An evolutionarily conserved tripartite tryptophan motif stabilizes the prodomains of cathepsin L-like cysteine proteases. Kreusch S, Fehn M, Maubach G, Nissler K, Rommerskirch W, Schilling K, Weber E, Wenz I, Wiederanders B. Eur J Biochem 267 2965-2972 (2000)
  79. Asparaginyl endopeptidase (VmPE-1) and autocatalytic processing synergistically activate the vacuolar cysteine proteinase (SH-EP). Okamoto T, Yuki A, Mitsuhashi N, Minamikawa T. Eur J Biochem 264 223-232 (1999)
  80. Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system. Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. Nat Commun 11 1865 (2020)
  81. Towards delineating functions within the fasciola secreted cathepsin l protease family by integrating in vivo based sub-proteomics and phylogenetics. Morphew RM, Wright HA, Lacourse EJ, Porter J, Barrett J, Woods DJ, Brophy PM. PLoS Negl Trop Dis 5 e937 (2011)
  82. Cloning and expression of Blo t 1, a novel allergen from the dust mite Blomia tropicalis, homologous to cysteine proteases. Mora C, Flores I, Montealegre F, Díaz A. Clin Exp Allergy 33 28-34 (2003)
  83. Secreted cysteine proteases of the carcinogenic liver fluke, Opisthorchis viverrini: regulation of cathepsin F activation by autocatalysis and trans-processing by cathepsin B. Sripa J, Laha T, To J, Brindley PJ, Sripa B, Kaewkes S, Dalton JP, Robinson MW. Cell Microbiol 12 781-795 (2010)
  84. The alpha1/2 helical backbone of the prodomains defines the intrinsic inhibitory specificity in the cathepsin L-like cysteine protease subfamily. Guo YL, Kurz U, Schultz JE, Lim CC, Wiederanders B, Schilling K. FEBS Lett 469 203-207 (2000)
  85. Papain-like and legumain-like proteases in rice: genome-wide identification, comprehensive gene feature characterization and expression analysis. Wang W, Zhou XM, Xiong HX, Mao WY, Zhao P, Sun MX. BMC Plant Biol 18 87 (2018)
  86. Structural characterization of activation 'intermediate 2' on the pathway to human gastricsin. Khan AR, Cherney MM, Tarasova NI, James MN. Nat Struct Biol 4 1010-1015 (1997)
  87. Lecture Protease injury in the development of COPD: Thomas A. Neff Lecture. Chapman HA, Shi GP. Chest 117 295S-9S (2000)
  88. Defined characteristics of cathepsin B-like proteins from nematodes: inferred functional diversity and phylogenetic relationships. Rehman A, Jasmer DP. Mol Biochem Parasitol 102 297-310 (1999)
  89. Reaction mechanism of caspases: insights from QM/MM Car-Parrinello simulations. Sulpizi M, Laio A, VandeVondele J, Cattaneo A, Rothlisberger U, Carloni P. Proteins 52 212-224 (2003)
  90. Cysteinyl cathepsins: multifunctional enzymes in cardiovascular disease. Li X, Liu Z, Cheng Z, Cheng X. Chonnam Med J 48 77-85 (2012)
  91. Highly potent inhibitors of human cathepsin L identified by screening combinatorial pentapeptide amide collections. Brinker A, Weber E, Stoll D, Voigt J, Müller A, Sewald N, Jung G, Wiesmüller KH, Bohley P. Eur J Biochem 267 5085-5092 (2000)
  92. Identification, characterization and deduced amino acid sequence of the dominant protease from Kudoa paniformis and K. thyrsites: a unique cytoplasmic cysteine protease. Funk VA, Olafson RW, Raap M, Smith D, Aitken L, Haddow JD, Wang D, Dawson-Coates JA, Burke RD, Miller KM. Comp Biochem Physiol B Biochem Mol Biol 149 477-489 (2008)
  93. Molecular modeling and substrate specificity of discrete cruzipain-like and cathepsin L-like cysteine proteinases of the human blood fluke Schistosoma mansoni. Brady CP, Brinkworth RI, Dalton JP, Dowd AJ, Verity CK, Brindley PJ. Arch Biochem Biophys 380 46-55 (2000)
  94. Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion. Liu J, Sharma A, Niewiara MJ, Singh R, Ming R, Yu Q. BMC Genomics 19 26 (2018)
  95. Structure-function of falcipains: malarial cysteine proteases. Pandey KC, Dixit R. J Trop Med 2012 345195 (2012)
  96. The structure of a thermostable mutant of pro-papain reveals its activation mechanism. Roy S, Choudhury D, Aich P, Dattagupta JK, Biswas S. Acta Crystallogr D Biol Crystallogr 68 1591-1603 (2012)
  97. Efficient co-expression of a recombinant staphopain A and its inhibitor staphostatin A in Escherichia coli. Wladyka B, Puzia K, Dubin A. Biochem J 385 181-187 (2005)
  98. Exploring the role of putative active site amino acids and pro-region motif of recombinant falcipain-2: a principal hemoglobinase of Plasmodium falciparum. Kumar A, Dasaradhi PV, Chauhan VS, Malhotra P. Biochem Biophys Res Commun 317 38-45 (2004)
  99. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite. Prasad R, Atul, Soni A, Puri SK, Sijwali PS. PLoS One 7 e51619 (2012)
  100. Identification and expressional analysis of two cathepsins from half-smooth tongue sole (Cynoglossus semilaevis). Chen L, Zhang M, Sun L. Fish Shellfish Immunol 31 1270-1277 (2011)
  101. Identification of peptides inhibitory to recombinant cysteine proteinase, CPB, of Leishmania mexicana. Alves LC, St Hilaire PM, Meldal M, Sanderson SJ, Mottram JC, Coombs GH, Juliano L, Juliano MA. Mol Biochem Parasitol 114 81-88 (2001)
  102. Interactions between mature Der p 1 and its free prodomain indicate membership of a new family of C1 peptidases. Zhang J, Hamilton JM, Garrod DR, Robinson C. Allergy 62 1302-1309 (2007)
  103. Molecular characterization and expression analysis of four cathepsin L genes in the razor clam, Sinonovacula constricta. Niu D, Jin K, Wang L, Feng B, Li J. Fish Shellfish Immunol 35 581-588 (2013)
  104. Serpins in the Caenorhabditis elegans genome. Whisstock JC, Irving JA, Bottomley SP, Pike RN, Lesk AM. Proteins 36 31-41 (1999)
  105. Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions. Bleischwitz M, Albert M, Fuchsbauer HL, Kaldenhoff R. BMC Plant Biol 10 227 (2010)
  106. Two Phytophthora parasitica cysteine protease genes, PpCys44 and PpCys45, trigger cell death in various Nicotiana spp. and act as virulence factors. Zhang Q, Li W, Yang J, Xu J, Meng Y, Shan W. Mol Plant Pathol 21 541-554 (2020)
  107. A heparin binding motif on the pro-domain of human procathepsin L mediates zymogen destabilization and activation. Fairhead M, Kelly SM, van der Walle CF. Biochem Biophys Res Commun 366 862-867 (2008)
  108. Cowpea bruchid Callosobruchus maculatus counteracts dietary protease inhibitors by modulating propeptides of major digestive enzymes. Ahn JE, Lovingshimer MR, Salzman RA, Presnail JK, Lu AL, Koiwa H, Zhu-Salzman K. Insect Mol Biol 16 295-304 (2007)
  109. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function. Perkin L, Elpidina EN, Oppert B. PeerJ 4 e1581 (2016)
  110. Molecular dynamics studies of caspase-3. Sulpizi M, Rothlisberger U, Carloni P. Biophys J 84 2207-2215 (2003)
  111. RNA interference and dietary inhibitors induce a similar compensation response in Tribolium castaneum larvae. Perkin LC, Elpidina EN, Oppert B. Insect Mol Biol 26 35-45 (2017)
  112. Shrimp cathepsin L encoded by an intronless gene has predominant expression in hepatopancreas, and occurs in the nucleus of oocyte. Hu KJ, Leung PC. Comp Biochem Physiol B Biochem Mol Biol 137 21-33 (2004)
  113. The crystal structure of a Cys25 -> Ala mutant of human procathepsin S elucidates enzyme-prosequence interactions. Kaulmann G, Palm GJ, Schilling K, Hilgenfeld R, Wiederanders B. Protein Sci 15 2619-2629 (2006)
  114. Cathepsin Q, a novel lysosomal cysteine protease highly expressed in placenta. Sol-Church K, Frenck J, Mason RW. Biochem Biophys Res Commun 267 791-795 (2000)
  115. Letter Caught in the act: the crystal structure of cleaved cathepsin L bound to the active site of Cathepsin L. Sosnowski P, Turk D. FEBS Lett 590 1253-1261 (2016)
  116. Heparin modulates the endopeptidase activity of Leishmania mexicana cysteine protease cathepsin L-Like rCPB2.8. Judice WA, Manfredi MA, Souza GP, Sansevero TM, Almeida PC, Shida CS, Gesteira TF, Juliano L, Westrop GD, Sanderson SJ, Coombs GH, Tersariol IL. PLoS One 8 e80153 (2013)
  117. Phylogenetic relationships and theoretical model of human cathepsin W (lymphopain), a cysteine proteinase from cytotoxic T lymphocytes. Brinkworth RI, Tort JF, Brindley PJ, Dalton JP. Int J Biochem Cell Biol 32 373-384 (2000)
  118. Synthetic peptides derived from the C-terminal 6kDa region of Plasmodium falciparum SERA5 inhibit the enzyme activity and malaria parasite development. Kanodia S, Kumar G, Rizzi L, Pedretti A, Hodder AN, Romeo S, Malhotra P. Biochim Biophys Acta 1840 2765-2775 (2014)
  119. Activation and selectivity of OTUB-1 and OTUB-2 deubiquitinylases. Sivakumar D, Kumar V, Naumann M, Stein M. J Biol Chem 295 6972-6982 (2020)
  120. Cathepsin B Is Inhibited in Mutant Cells Selected during Persistent Reovirus Infection. Ebert DH, Kopecky-Bromberg SA, Dermody TS. J Biol Chem 279 3837-3851 (2004)
  121. Cryptopain-1, a cysteine protease of Cryptosporidium parvum, does not require the pro-domain for folding. Na BK, Kang JM, Cheun HI, Cho SH, Moon SU, Kim TS, Sohn WM. Parasitology 136 149-157 (2009)
  122. Genome-Wide Identification of Papain-Like Cysteine Proteases in Gossypium hirsutum and Functional Characterization in Response to Verticillium dahliae. Zhang S, Xu Z, Sun H, Sun L, Shaban M, Yang X, Zhu L. Front Plant Sci 10 134 (2019)
  123. Role of the prosegment of Fasciola hepatica cathepsin L1 in folding of the catalytic domain. Cappetta M, Roth I, Díaz A, Tort J, Roche L. Biol Chem 383 1215-1221 (2002)
  124. Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis, reveals a novel fold with a characteristic inhibitory loop. Arai R, Fukui S, Kobayashi N, Sekiguchi J. J Biol Chem 287 44736-44748 (2012)
  125. The propeptide of cruzipain--a potent selective inhibitor of the trypanosomal enzymes cruzipain and brucipain, and of the human enzyme cathepsin F. Reis FC, Costa TF, Sulea T, Mezzetti A, Scharfstein J, Brömme D, Ménard R, Lima AP. FEBS J 274 1224-1234 (2007)
  126. A molten globule-to-ordered structure transition of Drosophila melanogaster crammer is required for its ability to inhibit cathepsin. Tseng TS, Cheng CS, Chen DJ, Shih MF, Liu YN, Hsu ST, Lyu PC. Biochem J 442 563-572 (2012)
  127. Cathepsin L of Triatoma brasiliensis (Reduviidae, Triatominae): sequence characterization, expression pattern and zymography. Waniek PJ, Pacheco Costa JE, Jansen AM, Costa J, Araújo CA. J Insect Physiol 58 178-187 (2012)
  128. Characterisation of functional and insecticidal properties of a recombinant cathepsin L-like proteinase from flesh fly (Sarcophaga peregrina), which plays a role in differentiation of imaginal discs. Philip JM, Fitches E, Harrison RL, Bonning B, Gatehouse JA. Insect Biochem Mol Biol 37 589-600 (2007)
  129. Characterization of a novel heterodimeric cathepsin L-like protease and cDNA encoding the catalytic subunit of the protease in embryos of Artemia franciscana. Butler AM, Aiton AL, Warner AH. Biochem Cell Biol 79 43-56 (2001)
  130. Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I). Horn M, Baudys M, Voburka Z, Kluh I, Vondrásek J, Mares M. Protein Sci 11 933-943 (2002)
  131. Recombinant silicateins as model biocatalysts in organosiloxane chemistry. Tabatabaei Dakhili SY, Caslin SA, Faponle AS, Quayle P, de Visser SP, Wong LS. Proc Natl Acad Sci U S A 114 E5285-E5291 (2017)
  132. Hepatitis E Virus Cysteine Protease Has Papain Like Properties Validated by in silico Modeling and Cell-Free Inhibition Assays. Saraswat S, Chaudhary M, Sehgal D. Front Cell Infect Microbiol 9 478 (2019)
  133. Major acid endopeptidases of the blood-feeding monogenean Eudiplozoon nipponicum (Heteronchoinea: Diplozoidae). Jedličková L, Dvořáková H, Kašný M, Ilgová J, Potěšil D, Zdráhal Z, Mikeš L. Parasitology 143 494-506 (2016)
  134. Mapping inhibitor binding modes on an active cysteine protease via nuclear magnetic resonance spectroscopy. Lee GM, Balouch E, Goetz DH, Lazic A, McKerrow JH, Craik CS. Biochemistry 51 10087-10098 (2012)
  135. Molecular cloning and characterization of cathepsin L from freshwater mussel, Cristaria plicata. Hu X, Hu X, Hu B, Wen C, Xie Y, Wu D, Tao Z, Li A, Gao Q. Fish Shellfish Immunol 40 446-454 (2014)
  136. Structural basis for specificity of propeptide-enzyme interaction in barley C1A cysteine peptidases. Cambra I, Hernández D, Diaz I, Martinez M. PLoS One 7 e37234 (2012)
  137. The prohormone proenkephalin possesses differential conformational features of subdomains revealed by rapid H-D exchange mass spectrometry. Lu WD, Liu T, Li S, Woods VL, Hook V. Protein Sci 21 178-187 (2012)
  138. Ultrasensitive internally quenched substrates of human cathepsin L. Lęgowska M, Wysocka M, Burster T, Pikuła M, Rolka K, Lesner A. Anal Biochem 466 30-37 (2014)
  139. Effect of carbohydrate position on lysosomal transport of procathepsin L. Lingeman RG, Joy DS, Sherman MA, Kane SE. Mol Biol Cell 9 1135-1147 (1998)
  140. Mouse cathepsin M, a placenta-specific lysosomal cysteine protease related to cathepsins L and P. Sol-Church K, Frenck J, Mason RW. Biochim Biophys Acta 1491 289-294 (2000)
  141. The high stability of cruzipain against pH-induced inactivation is not dependent on its C-terminal domain. Stoka V, Turk B, McKerrow JH, Björk I, Cazzulo JJ, Turk V. FEBS Lett 469 29-32 (2000)
  142. The recombinant prepro region of TvCP4 is an inhibitor of cathepsin L-like cysteine proteinases of Trichomonas vaginalis that inhibits trichomonal haemolysis. Cárdenas-Guerra RE, Ortega-López J, Flores-Pucheta CI, Benítez-Cardoza CG, Arroyo R. Int J Biochem Cell Biol 59 73-83 (2015)
  143. Behead and live long or the tale of cathepsin L. Streubel MK, Bischof J, Weiss R, Duschl J, Liedl W, Wimmer H, Breitenbach M, Weber M, Geltinger F, Richter K, Rinnerthaler M. Yeast 35 237-249 (2018)
  144. Chondroitin sulfate proteoglycan is a potent enhancer in the processing of procathepsin L. Kihara M, Kakegawa H, Matano Y, Murata E, Tsuge H, Kido H, Katunuma N. Biol Chem 383 1925-1929 (2002)
  145. Filaggrin and filaggrin 2 processing are linked together through skin aspartic acid protease activation. Donovan M, Salamito M, Thomas-Collignon A, Simonetti L, Desbouis S, Rain JC, Formstecher E, Bernard D. PLoS One 15 e0232679 (2020)
  146. Folding incompetence of cathepsin L-like cysteine proteases may be compensated by the highly conserved, domain-building N-terminal extension of the proregion. Schilling K, Pietschmann S, Fehn M, Wenz I, Wiederanders B. Biol Chem 382 859-865 (2001)
  147. C-Terminal extension of a plant cysteine protease modulates proteolytic activity through a partial inhibitory mechanism. Dutta S, Choudhury D, Dattagupta JK, Biswas S. FEBS J 278 3012-3024 (2011)
  148. Foldase function of the cathepsin S proregion is strictly based upon its domain structure. Pietschmann S, Fehn M, Kaulmann G, Wenz I, Wiederanders B, Schilling K. Biol Chem 383 1453-1458 (2002)
  149. Plasmodium falciparum serine-repeat antigen (SERA) forms a homodimer through disulfide bond. Sato D, Li J, Mitamura T, Horii T. Parasitol Int 54 261-265 (2005)
  150. Processing and targeting of cathepsin L (TbCatL) to the lysosome in Trypanosoma brucei. Koeller CM, Bangs JD. Cell Microbiol 21 e12980 (2019)
  151. Binding modes of a new epoxysuccinyl-peptide inhibitor of cysteine proteases. Where and how do cysteine proteases express their selectivity? Czaplewski C, Grzonka Z, Jaskólski M, Kasprzykowski F, Kozak M, Politowska E, Ciarkowski J. Biochim Biophys Acta 1431 290-305 (1999)
  152. Characterization and molecular docking study of cathepsin L inhibitory peptides (SnuCalCpIs) from Calotropis procera R. Br. Kwon CW, Yeo S, Chang PS. Sci Rep 12 5825 (2022)
  153. Crystal structures of human procathepsin H. Hao Y, Purtha W, Cortesio C, Rui H, Gu Y, Chen H, Sickmier EA, Manzanillo P, Huang X. PLoS One 13 e0200374 (2018)
  154. Heterologous expression of the plant cysteine protease bromelain and its inhibitor in Pichia pastoris. Luniak N, Meiser P, Burkart S, Müller R. Biotechnol Prog 33 54-65 (2017)
  155. Highly Conserved Arg Residue of ERFNIN Motif of Pro-Domain is Important for pH-Induced Zymogen Activation Process in Cysteine Cathepsins K and L. Aich P, Biswas S. Cell Biochem Biophys 76 219-229 (2018)
  156. Identification of essential residues of CTLA-2alpha for inhibitory potency. Deshapriya RM, Yuhashi S, Usui M, Kageyama T, Yamamoto Y. J Biochem 147 393-404 (2010)
  157. Molecular characterization and determination of the biochemical properties of cathepsin L of Trichinella spiralis. Liu RD, Meng XY, Li CL, Long SR, Cui J, Wang ZQ. Vet Res 53 48 (2022)
  158. Non-homology knowledge-based prediction of the papain prosegment folding pattern: a description of plausible folding and activation mechanisms. Padilla-Zúñiga AJ, Rojo-Domínguez A. Fold Des 3 271-284 (1998)
  159. Processing and Maturation of Cathepsin C Zymogen: A Biochemical and Molecular Modeling Analysis. Lamort AS, Lamort AS, Hamon Y, Czaplewski C, Gieldon A, Seren S, Coquet L, Lecaille F, Lesner A, Lalmanach G, Gauthier F, Jenne D, Korkmaz B. Int J Mol Sci 20 E4747 (2019)
  160. Structure of the Plasmodium falciparum PfSERA5 pseudo-zymogen. Smith NA, Clarke OB, Lee M, Hodder AN, Smith BJ. Protein Sci 29 2245-2258 (2020)
  161. Cathepsin L-a novel cysteine protease from Haemaphysalis flava Neumann, 1897. Sun Y, He L, Yu L, Guo J, Nie Z, Liu Q, Zhao J. Parasitol Res 118 1581-1592 (2019)
  162. Development of a specific inhibitor for the placental protease, cathepsin P. Hassanein M, Xue F, Seto CT, Mason RW. Arch Biochem Biophys 464 288-294 (2007)
  163. Inhibition of cathepsin L by epoxysuccinyl peptides simultaneously addressing active-site and remote-site regions. Schaschke N, Assfalg-Machleidt I, Machleidt W. Chembiochem 9 1721-1724 (2008)
  164. Structural characterization of the hypothetical protein Lpg2622, a new member of the C1 family peptidases from Legionella pneumophila. Gong X, Zhao X, Zhang W, Wang J, Chen X, Hameed MF, Zhang N, Ge H. FEBS Lett 592 2798-2810 (2018)
  165. Identification and characteristics of a cathepsin L-like cysteine protease from Clonorchis sinensis. Ma C, Liang K, Tang L, He S, Liu X, He M, Li Y. Parasitol Res 118 829-835 (2019)
  166. Mutation in the Pro-Peptide Region of a Cysteine Protease Leads to Altered Activity and Specificity-A Structural and Biochemical Approach. Dutta S, Choudhury D, Roy S, Dattagupta JK, Biswas S. PLoS One 11 e0158024 (2016)
  167. Procathepsin V Is Secreted in a TSH Regulated Manner from Human Thyroid Epithelial Cells and Is Accessible to an Activity-Based Probe. Al-Hashimi A, Venugopalan V, Rehders M, Sereesongsaeng N, Hein Z, Springer S, Weber E, Führer D, Bogyo MS, Scott CJ, Burden RE, Brix K. Int J Mol Sci 21 E9140 (2020)
  168. Studies of inhibitory mechanisms of propeptide-like cysteine protease inhibitors. Nga BT, Takeshita Y, Yamamoto M, Yamamoto Y. Enzyme Res 2014 848937 (2014)
  169. Different Genes are Recruited During Convergent Evolution of Pregnancy and the Placenta. Foster CSP, Van Dyke JU, Thompson MB, Smith NMA, Simpfendorfer CA, Murphy CR, Whittington CM. Mol Biol Evol 39 msac077 (2022)
  170. Extensive substrate recognition by the streptococcal antibody-degrading enzymes IdeS and EndoS. Sudol ASL, Butler J, Ivory DP, Tews I, Crispin M. Nat Commun 13 7801 (2022)
  171. Identification of Structure-Stabilizing Interactions in Enzymes: A Novel Mechanism to Impact Enzyme Activity. Serrano M, Gonzalez V, Ray S, Chavez MD, Narayan M. Cell Biochem Biophys 76 59-71 (2018)
  172. Identification of interaction site of propeptide toward mature carboxypeptidase Y (mCPY) based on the similarity between propeptide and CPY inhibitor (IC). Nagayama M, Kuroda K, Ueda M. Biosci Biotechnol Biochem 76 153-156 (2012)
  173. Residue-specific annotation of disorder-to-order transition and cathepsin inhibition of a propeptide-like crammer from D. melanogaster. Tseng TS, Cheng CS, Hsu ST, Shih MF, He PL, Lyu PC. PLoS One 8 e54187 (2013)
  174. Structure-based discovery of dual pathway inhibitors for SARS-CoV-2 entry. Wang H, Yang Q, Liu X, Xu Z, Shao M, Li D, Duan Y, Tang J, Yu X, Zhang Y, Hao A, Wang Y, Chen J, Zhu C, Guddat L, Chen H, Zhang L, Chen X, Jiang B, Sun L, Rao Z, Yang H. Nat Commun 14 7574 (2023)


Related citations provided by authors (1)

  1. Crystallization and Preliminary X-Ray Diffraction Studies of Human Procathepsin L. Coulombe R, Li Y, Takebe S, Menard R, Mason P, Mort JS, Cygler M Proteins 25 398- (1996)