1cg6 Citations

The structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase at 1.7 A resolution provides insights into substrate binding and catalysis.

Structure 7 629-41 (1999)
Cited: 29 times
EuropePMC logo PMID: 10404592



5'-Deoxy-5'-methylthioadenosine phosphorylase (MTAP) catalyzes the reversible phosphorolysis of 5'-deoxy-5'-methylthioadenosine (MTA) to adenine and 5-methylthio-D-ribose-1-phosphate. MTA is a by-product of polyamine biosynthesis, which is essential for cell growth and proliferation. This salvage reaction is the principle source of free adenine in human cells. Because of its importance in coupling the purine salvage pathway to polyamine biosynthesis MTAP is a potential chemotherapeutic target.


We have determined the crystal structure of MTAP at 1.7 A resolution using multiwavelength anomalous diffraction phasing techniques. MTAP is a trimer comprised of three identical subunits. Each subunit consists of a single alpha/beta domain containing a central eight-stranded mixed beta sheet, a smaller five-stranded mixed beta sheet and six alpha helices. The native structure revealed the presence of an adenine molecule in the purine-binding site. The structure of MTAP with methylthioadenosine and sulfate ion soaked into the active site was also determined using diffraction data to 1.7 A resolution.


The overall quaternary structure and subunit topology of MTAP are similar to mammalian purine nucleoside phosphorylase (PNP). The structures of the MTAP-ligand complexes provide a map of the active site and suggest possible roles for specific residues in substrate binding and catalysis. Residues accounting for the differences in substrate specificity between MTAP and PNP are also identified. Detailed information about the structure and chemical nature of the MTAP active site will aid in the rational design of inhibitors of this potential chemotherapeutic target. The MTAP structure represents the first structure of a mammalian PNP that is specific for 6-aminopurines.

Articles - 1cg6 mentioned but not cited (2)

  1. On the molecular discrimination between adenine and guanine by proteins. Nobeli I, Laskowski RA, Valdar WS, Thornton JM. Nucleic Acids Res. 29 4294-4309 (2001)
  2. Identification of Rv0535 as methylthioadenosine phosphorylase from Mycobacterium tuberculosis. Buckoreelall K, Sun Y, Hobrath JV, Wilson L, Parker WB. Tuberculosis (Edinb) 92 139-147 (2012)

Reviews citing this publication (1)

  1. Enzymatic transition states: thermodynamics, dynamics and analogue design. Schramm VL. Arch. Biochem. Biophys. 433 13-26 (2005)

Articles citing this publication (26)

  1. A systematic comparative and structural analysis of protein phosphorylation sites based on the mtcPTM database. Jiménez JL, Hegemann B, Hutchins JR, Peters JM, Durbin R. Genome Biol. 8 R90 (2007)
  2. Transition-state structure of human 5'-methylthioadenosine phosphorylase. Singh V, Schramm VL. J. Am. Chem. Soc. 128 14691-14696 (2006)
  3. Crystal structure of purine nucleoside phosphorylase from Thermus thermophilus. Tahirov TH, Inagaki E, Ohshima N, Kitao T, Kuroishi C, Ukita Y, Takio K, Kobayashi M, Kuramitsu S, Yokoyama S, Miyano M. J. Mol. Biol. 337 1149-1160 (2004)
  4. Structural snapshots of MTA/AdoHcy nucleosidase along the reaction coordinate provide insights into enzyme and nucleoside flexibility during catalysis. Lee JE, Smith GD, Horvatin C, Huang DJ, Cornell KA, Riscoe MK, Howell PL. J. Mol. Biol. 352 559-574 (2005)
  5. A novel hyperthermostable 5'-deoxy-5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Cacciapuoti G, Forte S, Moretti MA, Brio A, Zappia V, Porcelli M. FEBS J. 272 1886-1899 (2005)
  6. Primate genome gain and loss: a bone dysplasia, muscular dystrophy, and bone cancer syndrome resulting from mutated retroviral-derived MTAP transcripts. Camacho-Vanegas O, Camacho SC, Till J, Miranda-Lorenzo I, Terzo E, Ramirez MC, Schramm V, Cordovano G, Watts G, Mehta S, Kimonis V, Hoch B, Philibert KD, Raabe CA, Bishop DF, Glucksman MJ, Martignetti JA. Am. J. Hum. Genet. 90 614-627 (2012)
  7. Structure of Escherichia coli AMP nucleosidase reveals similarity to nucleoside phosphorylases. Zhang Y, Cottet SE, Ealick SE. Structure 12 1383-1394 (2004)
  8. Methylthioadenosine phosphorylase from the archaeon Pyrococcus furiosus. Mechanism of the reaction and assignment of disulfide bonds. Cacciapuoti G, Moretti MA, Forte S, Brio A, Camardella L, Zappia V, Porcelli M. Eur. J. Biochem. 271 4834-4844 (2004)
  9. Design, synthesis, and biological evaluation of novel human 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP) substrates. Kung PP, Zehnder LR, Meng JJ, Kupchinsky SW, Skalitzky DJ, Johnson MC, Maegley KA, Ekker A, Kuhn LA, Rose PW, Bloom LA. Bioorg. Med. Chem. Lett. 15 2829-2833 (2005)
  10. Glycal formation in crystals of uridine phosphorylase. Paul D, O'Leary SE, Rajashankar K, Bu W, Toms A, Settembre EC, Sanders JM, Begley TP, Ealick SE. Biochemistry 49 3499-3509 (2010)
  11. Enzyme-ligand interactions that drive active site rearrangements in the Helicobacter pylori 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Ronning DR, Iacopelli NM, Mishra V. Protein Sci. 19 2498-2510 (2010)
  12. Entropy-driven binding of picomolar transition state analogue inhibitors to human 5'-methylthioadenosine phosphorylase. Guan R, Ho MC, Brenowitz M, Tyler PC, Evans GB, Almo SC, Schramm VL. Biochemistry 50 10408-10417 (2011)
  13. Breaking the singleton of germination protease. Pei J, Grishin NV. Protein Sci. 11 691-697 (2002)
  14. Biochemical and structural characterization of mammalian-like purine nucleoside phosphorylase from the Archaeon Pyrococcus furiosus. Cacciapuoti G, Gorassini S, Mazzeo MF, Siciliano RA, Carbone V, Zappia V, Porcelli M. FEBS J. 274 2482-2495 (2007)
  15. Transition state analogue inhibitors of human methylthioadenosine phosphorylase and bacterial methylthioadenosine/S-adenosylhomocysteine nucleosidase incorporating acyclic ribooxacarbenium ion mimics. Clinch K, Evans GB, Fröhlich RF, Gulab SA, Gutierrez JA, Mason JM, Schramm VL, Tyler PC, Woolhouse AD. Bioorg. Med. Chem. 20 5181-5187 (2012)
  16. Purine nucleoside phosphorylases from hyperthermophilic Archaea require a CXC motif for stability and folding. Cacciapuoti G, Peluso I, Fuccio F, Porcelli M. FEBS J. 276 5799-5805 (2009)
  17. Identification and characterization of two adenosine phosphorylase activities in Mycobacterium smegmatis. Buckoreelall K, Wilson L, Parker WB. J. Bacteriol. 193 5668-5674 (2011)
  18. Structure analysis of archaeal AMP phosphorylase reveals two unique modes of dimerization. Nishitani Y, Aono R, Nakamura A, Sato T, Atomi H, Imanaka T, Miki K. J. Mol. Biol. 425 2709-2721 (2013)
  19. Thermodynamic analysis of transition-state features in picomolar inhibitors of human 5'-methylthioadenosine phosphorylase. Guan R, Tyler PC, Evans GB, Schramm VL. Biochemistry 52 8313-8322 (2013)
  20. Synthesis of a potent 5'-methylthioadenosine/S-adenosylhomocysteine (MTAN) inhibitor. Kamath VP, Zhang J, Morris PE, Babu YS. Bioorg. Med. Chem. Lett. 16 2662-2665 (2006)
  21. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5'-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway. Torini JR, Brandão-Neto J, DeMarco R, Pereira HD. PLoS Negl Trop Dis 10 e0005178 (2016)
  22. Molecular characterization of 5'-deoxy-5'-methylthioadenosine phosphorylase-deficient mutant clones of murine lymphoma cell line R1.1. Kadariya Y, Nishioka J, Nakamura A, Kato-Nakazawa K, Nobori T. Cancer Sci. 94 519-522 (2003)
  23. A corrected space group for Sulfolobus sulfataricus 5'-deoxy-5'-methylthioadenosine phosphorylase II. Zhang Y, Zwart PH, Ealick SE. Acta Crystallogr. D Biol. Crystallogr. 68 249-252 (2012)
  24. Molecular dynamics study of the effect of active site protonation on Helicobacter pylori 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Tekpinar M, Yildirim A, Wassenaar TA. Eur. Biophys. J. 44 685-696 (2015)
  25. Efficient Fludarabine-Activating PNP From Archaea as a Guidance for Redesign the Active Site of E. Coli PNP. Cacciapuoti G, Bagarolo ML, Martino E, Scafuri B, Marabotti A, Porcelli M. J. Cell. Biochem. 117 1126-1135 (2016)
  26. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase. Firestone RS, Cameron SA, Karp JM, Arcus VL, Schramm VL. ACS Chem. Biol. 12 464-473 (2017)