1cer Citations

Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 Angstroms Resolution.

Biochemistry 35 2597-609 (1996)
Cited: 236 times
EuropePMC logo PMID: 8611563

Abstract

The crystal structure of holo D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the extreme thermophile Thermus aquaticus has been solved at 2.5 Angstroms resolution. To study the determinants of thermostability, we compare our structure to four other GAPDHs. Salt links, hydrogen bonds, buried surface area, packing density, surface to volume ratio, and stabilization of alpha-helices and beta-turns are analyzed. We find a strong correlation between thermostability and the number of hydrogen bonds between charged side chains and neutral partners. These charged-neutral hydrogen bonds provide electrostatic stabilization without the heavy desolvation penalty of salt links. The stability of thermophilic GAPDHs is also correlated with the number of intrasubunit salt links and total hydrogen bonds. Charged residues, therefore, play a dual role in stabilization by participating not only in salt links but also in hydrogen bonds with a neutral partner. Hydrophobic effects allow for discrimination between thermophiles and psychrophiles, but not within the GAPDH thermophiles. There is, however, an association between thermostability and decreasing enzyme surface to volume ratio. Finally, we describe several interactions present in both our GAPDH and a hyperthermophilic GAPDH that are absent in the less thermostable GAPDHs. These include a four-residue salt link network, a hydrogen bond near the active site, an intersubunit salt link, and several buried Ile residues.

Reviews - 1cer mentioned but not cited (16)

  1. The glycosynapse. Hakomori Si SI. Proc Natl Acad Sci U S A 99 225-232 (2002)
  2. Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Hakomori SI. Biochim Biophys Acta 1780 325-346 (2008)
  3. Cancer vaccines and carbohydrate epitopes. Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Vaccine 29 8802-8826 (2011)
  4. Ganglioside biochemistry. Kolter T. ISRN Biochem 2012 506160 (2012)
  5. Utilization of Host-Derived Glycans by Intestinal Lactobacillus and Bifidobacterium Species. Zúñiga M, Monedero V, Yebra MJ. Front Microbiol 9 1917 (2018)
  6. Gangliosides: The Double-Edge Sword of Neuro-Ectodermal Derived Tumors. Cavdarli S, Groux-Degroote S, Delannoy P. Biomolecules 9 E311 (2019)
  7. Membrane glycolipids in stem cells. Yu RK, Suzuki Y, Yanagisawa M. FEBS Lett 584 1694-1699 (2010)
  8. Receptor mimicry as novel therapeutic treatment for biothreat agents. Thomas RJ. Bioeng Bugs 1 17-30 (2010)
  9. Glycobiology of reproductive processes in marine animals: the state of the art. Gallo A, Costantini M. Mar Drugs 10 2861-2892 (2012)
  10. Tumor-Associated Glycans as Targets for Immunotherapy: The Wistar Institute Experience/Legacy. Thurin M. Monoclon Antib Immunodiagn Immunother 40 89-100 (2021)
  11. Application of the Antibody-Inducing Activity of Glycosphingolipids to Human Diseases. Okuda T. Int J Mol Sci 22 3776 (2021)
  12. Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Detzner J, Pohlentz G, Müthing J. Toxins (Basel) 12 E373 (2020)
  13. SARS-CoV-2 Attacks in the Brain: Focus on the Sialome. Wielgat P, Narejko K, Car H. Cells 11 1458 (2022)
  14. A2B5 Expression in Central Nervous System and Gliomas. Figarella-Branger D, Colin C, Baeza-Kallee N, Tchoghandjian A. Int J Mol Sci 23 4670 (2022)
  15. Glycosphingolipids in human parasites. Cummings RD. FEBS Open Bio 13 1625-1635 (2023)
  16. Microbial lectome versus host glycolipidome: How pathogens exploit glycosphingolipids to invade, dupe or kill. Bereznicka A, Mikolajczyk K, Czerwinski M, Kaczmarek R. Front Microbiol 13 958653 (2022)

Articles - 1cer mentioned but not cited (109)

  1. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR. Mol Cell Proteomics 9 54-70 (2010)
  2. Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a phase I trial. Gilewski T, Ragupathi G, Bhuta S, Williams LJ, Musselli C, Zhang XF, Bornmann WG, Spassova M, Bencsath KP, Panageas KS, Chin J, Hudis CA, Norton L, Houghton AN, Livingston PO, Danishefsky SJ. Proc Natl Acad Sci U S A 98 3270-3275 (2001)
  3. Characterization of a human melanoma-associated ganglioside antigen defined by a monoclonal antibody, 4.2. Nudelman E, Hakomori S, Kannagi R, Levery S, Yeh MY, Hellström KE, Hellström I. J Biol Chem 257 12752-12756 (1982)
  4. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells. Blomqvist M, Rhost S, Teneberg S, Löfbom L, Osterbye T, Brigl M, Månsson JE, Cardell SL. Eur J Immunol 39 1726-1735 (2009)
  5. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Magalhães A, Gomes J, Ismail MN, Haslam SM, Mendes N, Osório H, David L, Le Pendu J, Haas R, Dell A, Borén T, Reis CA. Glycobiology 19 1525-1536 (2009)
  6. Elevation of sulfatides in ovarian cancer: an integrated transcriptomic and lipidomic analysis including tissue-imaging mass spectrometry. Liu Y, Chen Y, Momin A, Shaner R, Wang E, Bowen NJ, Matyunina LV, Walker LD, McDonald JF, Sullards MC, Merrill AH. Mol Cancer 9 186 (2010)
  7. Isolation and chemical characterization of neutral glycosphingolipids of human neutrophils. Macher BA, Klock JC. J Biol Chem 255 2092-2096 (1980)
  8. Structure elucidation of sphingolipids from the mycopathogen Paracoccidioides brasiliensis: an immunodominant beta-galactofuranose residue is carried by a novel glycosylinositol phosphorylceramide antigen. Levery SB, Toledo MS, Straus AH, Takahashi HK. Biochemistry 37 8764-8775 (1998)
  9. The globoseries glycosphingolipid sialosyl galactosyl globoside is found in urinary tract tissues and is a preferred binding receptor In vitro for uropathogenic Escherichia coli expressing pap-encoded adhesins. Stapleton AE, Stroud MR, Hakomori SI, Stamm WE. Infect Immun 66 3856-3861 (1998)
  10. Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Khan AS, Kniep B, Oelschlaeger TA, Van Die I, Korhonen T, Hacker J. Infect Immun 68 3541-3547 (2000)
  11. Recognition of blood group ABH type 1 determinants by the FedF adhesin of F18-fimbriated Escherichia coli. Coddens A, Diswall M, Angström J, Breimer ME, Goddeeris B, Cox E, Teneberg S. J Biol Chem 284 9713-9726 (2009)
  12. Immunochemistry of I/i-active oligo- and polyglycosylceramides from rabbit erythrocyte membranes. Characterization of linear, di-, and triantennary neolactoglycosphingolipids. Egge H, Kordowicz M, Peter-Katalinić J, Hanfland P. J Biol Chem 260 4927-4935 (1985)
  13. The major subunit, CfaB, of colonization factor antigen i from enterotoxigenic Escherichia coli is a glycosphingolipid binding protein. Jansson L, Tobias J, Lebens M, Svennerholm AM, Teneberg S. Infect Immun 74 3488-3497 (2006)
  14. NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Kim C, Choi J, Lee SJ, Welsh WJ, Yoon S. Nucleic Acids Res 37 W469-73 (2009)
  15. The pH 6 antigen of Yersinia pestis binds to beta1-linked galactosyl residues in glycosphingolipids. Payne D, Tatham D, Williamson ED, Titball RW. Infect Immun 66 4545-4548 (1998)
  16. Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). I. Isolation and chemical characterization. Clausen H, Levery SB, Kannagi R, Hakomori S. J Biol Chem 261 1380-1387 (1986)
  17. Cytolethal distending toxin family members are differentially affected by alterations in host glycans and membrane cholesterol. Eshraghi A, Maldonado-Arocho FJ, Gargi A, Cardwell MM, Prouty MG, Blanke SR, Bradley KA. J Biol Chem 285 18199-18207 (2010)
  18. Structural characterization of lactotetraosylceramide, a novel glycosphingolipid isolated from human meconium. Karlsson KA, Larson G. J Biol Chem 254 9311-9316 (1979)
  19. Isolation and characterization of the sulfated gangliotriaosylceramide from rat kidney. Tadano K, Ishizuka I. J Biol Chem 257 1482-1490 (1982)
  20. Isolation and structural analysis of three neutral glycosphingolipids from a mixed population of Caenorhabditis elegans (Nematoda:Rhabditida). Gerdt S, Lochnit G, Dennis RD, Geyer R. Glycobiology 7 265-275 (1997)
  21. Sialylpentaosylceramide detected with anti-GM2 monoclonal antibody. Structural characterization and complementary expression with GM2 in gastric cancer and normal gastric mucosa. Dohi T, Ohta S, Hanai N, Yamaguchi K, Oshima M. J Biol Chem 265 7880-7885 (1990)
  22. A sulfated glucosylceramide from rat kidney. Iida N, Toida T, Kushi Y, Handa S, Fredman P, Svennerholm L, Ishizuka I. J Biol Chem 264 5974-5980 (1989)
  23. Sulfatide from the pig jejunum brush border epithelial cell surface is involved in binding of Escherichia coli enterotoxin b. Rousset E, Harel J, Dubreuil JD. Infect Immun 66 5650-5658 (1998)
  24. Notch ligand activity is modulated by glycosphingolipid membrane composition in Drosophila melanogaster. Hamel S, Fantini J, Schweisguth F. J Cell Biol 188 581-594 (2010)
  25. Sulfatide recognition by colonization factor antigen CS6 from enterotoxigenic Escherichia coli. Jansson L, Tobias J, Jarefjäll C, Lebens M, Svennerholm AM, Teneberg S. PLoS One 4 e4487 (2009)
  26. Helicobacter pylori and complex gangliosides. Roche N, Angström J, Hurtig M, Larsson T, Borén T, Teneberg S. Infect Immun 72 1519-1529 (2004)
  27. Neutral glycosphingolipids in human blood: a precise mass spectrometry analysis with special reference to lipoprotein-associated Shiga toxin receptors. Schweppe CH, Hoffmann P, Nofer JR, Pohlentz G, Mormann M, Karch H, Friedrich AW, Müthing J. J Lipid Res 51 2282-2294 (2010)
  28. 1H-n.m.r. analysis of glycolipids possessing mono- and multi-meric X and Y haptens: characterization of two novel extended Y structures from human adenocarcinoma. Levery SB, Nudelman ED, Andersen NH, Hakomori S. Carbohydr Res 151 311-328 (1986)
  29. Synthesis of sialyl Lewis(a) (sLe (a), CA19-9) and construction of an immunogenic sLe(a) vaccine. Ragupathi G, Damani P, Srivastava G, Srivastava O, Sucheck SJ, Ichikawa Y, Livingston PO. Cancer Immunol Immunother 58 1397-1405 (2009)
  30. Bis-sulfated gangliotetraosylceramide from rat kidney. Tadano K, Ishizuka I, Matsuo M, Matsumoto S. J Biol Chem 257 13413-13420 (1982)
  31. Molecular genetic basis of the human Forssman glycolipid antigen negativity. Yamamoto M, Cid E, Yamamoto F. Sci Rep 2 975 (2012)
  32. Sialyl-lactotetra, a novel cell surface marker of undifferentiated human pluripotent stem cells. Barone A, Säljö K, Benktander J, Blomqvist M, Månsson JE, Johansson BR, Mölne J, Aspegren A, Björquist P, Breimer ME, Teneberg S. J Biol Chem 289 18846-18859 (2014)
  33. Binding of Actinobacillus pleuropneumoniae lipopolysaccharides to glycosphingolipids evaluated by thin-layer chromatography. Abul-Milh M, Paradis SE, Dubreuil JD, Jacques M. Infect Immun 67 4983-4987 (1999)
  34. Redefinition of the carbohydrate binding specificity of Helicobacter pylori BabA adhesin. Benktander J, Ångström J, Breimer ME, Teneberg S. J Biol Chem 287 31712-31724 (2012)
  35. A novel sulfoglycosphingolipid of mouse small intestine, IV3-sulfogangliotetraosylceramide, demonstrated by negative ion fast atom bombardment mass spectrometry. Leffler H, Hansson GC, Strömberg N. J Biol Chem 261 1440-1444 (1986)
  36. Isolation and partial characterization of blood group A and H active glycosphingolipids of rat small intestine. Breimer ME, Hansson GC, Karlsson KA, Leffler H. J Biol Chem 257 906-912 (1982)
  37. Isolation and structural characterization of human lymphocyte and neutrophil gangliosides. Macher BA, Klock JC, Fukuda MN, Fukuda M. J Biol Chem 256 1968-1974 (1981)
  38. Structure elucidation of sphingolipids from the mycopathogen Sporothrix schenckii: identification of novel glycosylinositol phosphorylceramides with core manalpha1-->6Ins linkage. Toledo MS, Levery SB, Glushka J, Straus AH, Takahashi HK. Biochem Biophys Res Commun 280 19-24 (2001)
  39. Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells. Kouzel IU, Pohlentz G, Storck W, Radamm L, Hoffmann P, Bielaszewska M, Bauwens A, Cichon C, Schmidt MA, Mormann M, Karch H, Müthing J. J Lipid Res 54 692-710 (2013)
  40. Erythrocyte and porcine intestinal glycosphingolipids recognized by F4 fimbriae of enterotoxigenic Escherichia coli. Coddens A, Valis E, Benktander J, Ångström J, Breimer ME, Cox E, Teneberg S. PLoS One 6 e23309 (2011)
  41. Polar glycosphingolipids in annelida. A novel series of glycosphingolipids containing choline phosphate from the earthworm, Pheretima hilgendorf. Sugita M, Fujii H, Inagaki F, Suzuki M, Hayata C, Hori T. J Biol Chem 267 22595-22598 (1992)
  42. Structural elucidation of novel phosphocholine-containing glycosylinositol-phosphoceramides in filamentous fungi and their induction of cell death of cultured rice cells. Aoki K, Uchiyama R, Itonori S, Sugita M, Che FS, Isogai A, Hada N, Hada J, Takeda T, Kumagai H, Yamamoto K. Biochem J 378 461-472 (2004)
  43. Shiga Toxin Glycosphingolipid Receptors in Human Caco-2 and HCT-8 Colon Epithelial Cell Lines. Kouzel IU, Pohlentz G, Schmitz JS, Steil D, Humpf HU, Karch H, Müthing J. Toxins (Basel) 9 (2017)
  44. Bis-sulfoglycosphingolipid containing a unique 3-O-sulfated N-acetylgalactosamine from rat kidney. Tadano K, Ishizuka I. J Biol Chem 257 9294-9299 (1982)
  45. Characterization of a novel glycosphingolipid, ceramide nonasaccharide, isolated from spermatozoa of the fresh water bivalve, Hyriopsis schlegelii. Hori T, Sugita M, Ando S, Kuwahara M, Kumauchi K, Sugie E, Itasaka O. J Biol Chem 256 10979-10985 (1981)
  46. Different binding properties of three monoclonal antibodies to sialyl Le(x) glycolipids in a gastric cancer cell line and normal stomach tissue. Dohi T, Nemoto T, Ohta S, Shitara K, Hanai N, Nudelman E, Hakomori S, Oshima M. Anticancer Res 13 1277-1282 (1993)
  47. Glycosphingolipids of the model fungus Aspergillus nidulans: characterization of GIPCs with oligo-alpha-mannose-type glycans. Bennion B, Park C, Fuller M, Lindsey R, Momany M, Jennemann R, Levery SB. J Lipid Res 44 2073-2088 (2003)
  48. Structural complexity of non-acid glycosphingolipids in human embryonic stem cells grown under feeder-free conditions. Barone A, Benktander J, Ångström J, Aspegren A, Björquist P, Teneberg S, Breimer ME. J Biol Chem 288 10035-10050 (2013)
  49. Blood group H antigen with globo-series structure. Isolation and characterization from human blood group O erythrocytes. Kannagi R, Levery SB, Hakomori S. FEBS Lett 175 397-401 (1984)
  50. Glycosphingolipid patterns of the epithelial and non-epithelial compartments of rat large intestine. Hansson GC, Karlsson KA, Thurin J. Biochim Biophys Acta 792 281-292 (1984)
  51. Helicobacter pylori SabA binding gangliosides of human stomach. Benktander J, Barone A, Johansson MM, Teneberg S. Virulence 9 738-751 (2018)
  52. Isolation and structural characterization of a mono-sulfated isoglobotetraosylceramide, the first sulfoglycosphingolipid of the isoglobo-series, from rat kidney. Tadano-Aritomi K, Kasama T, Handa S, Ishizuka I. Eur J Biochem 209 305-313 (1992)
  53. Hybrid type glycolipids (lacto-ganglio series) with a novel branched structure. Their presence in undifferentiated murine leukemia cells and their dependence on differentiation. Kannagi R, Levery SB, Hakomori S. J Biol Chem 259 8444-8451 (1984)
  54. Characterization of the sulfated monosialosyltriglycosylceramide from bovine gastric mucosa. Slomiany BL, Kojima K, Banas-Gruszka Z, Murty VL, Galicki NI, Slomiany A. Eur J Biochem 119 647-650 (1981)
  55. Identification of the Molecular and Genetic Basis of PX2, a Glycosphingolipid Blood Group Antigen Lacking on Globoside-deficient Erythrocytes. Westman JS, Benktander J, Storry JR, Peyrard T, Hult AK, Hellberg Å, Teneberg S, Olsson ML. J Biol Chem 290 18505-18518 (2015)
  56. Isolation and structural characterization of human lymphocyte neutral glycosphingolipids. Lee WM, Klock JC, Macher BA. Biochemistry 20 3810-3814 (1981)
  57. Sphingolipids of the mycopathogen Sporothrix schenckii: identification of a glycosylinositol phosphorylceramide with novel core GlcNH(2)alpha1-->2Ins motif. Toledo MS, Levery SB, Straus AH, Takahashi HK. FEBS Lett 493 50-56 (2001)
  58. Crystal Structure of Glyceraldehyde-3-Phosphate Dehydrogenase from the Gram-Positive Bacterial Pathogen A. vaginae, an Immunoevasive Factor that Interacts with the Human C5a Anaphylatoxin. Querol-García J, Fernández FJ, Marin AV, Gómez S, Fullà D, Melchor-Tafur C, Franco-Hidalgo V, Albertí S, Juanhuix J, Rodríguez de Córdoba S, Regueiro JR, Vega MC. Front Microbiol 8 541 (2017)
  59. Isolation and characterization of a unique sulfated ganglioside, sulfated GM1a, from rat kidney. Tadano-Aritomi K, Kubo H, Ireland P, Hikita T, Ishizuka I. Glycobiology 8 341-350 (1998)
  60. Structural elucidation of two novel amphoteric glycosphingolipids from the earthworm, Pheretima hilgendorfi. Sugita M, Fujii H, Dulaney JT, Inagaki F, Suzuki M, Suzuki A, Ohta S. Biochim Biophys Acta 1259 220-226 (1995)
  61. A revised structure for the disialosyl globo-series gangliosides of human erythrocytes and chicken skeletal muscle. Levery SB, Salyan ME, Steele SJ, Kannagi R, Dasgupta S, Chien JL, Hogan EL, van Halbeek H, Hakomori S. Arch Biochem Biophys 312 125-134 (1994)
  62. Nontypeable Haemophilus influenzae-binding gangliosides of human respiratory (HEp-2) cells have a requisite lacto/neolacto core structure. Berenson CS, Sayles KB, Huang J, Reinhold VN, Garlipp MA, Yohe HC. FEMS Immunol Med Microbiol 45 171-182 (2005)
  63. A novel mono-sulfated pentaglycosylceramide with the isoglobo-series core structure in rat kidney. Tadano-Aritomi K, Okuda M, Ishizuka I, Kubo H, Ireland P. Carbohydr Res 265 49-59 (1994)
  64. Characterization of a diphosphonopentaosylceramide containing 3-O-methylgalactose from the skin of Aplysia kurodai (sea hare) Araki S, Satake M, Ando S, Hayashi A, Fujii N. J Biol Chem 261 5138-5144 (1986)
  65. Characterization of a major neutral glycolipid in PC12 cells as III3Gal alpha-globotriaosylceramide by the method for determining glycosphingolipid saccharide sequence with endoglycoceramidase. Shimamura M, Hayase T, Ito M, Rasilo ML, Yamagata T. J Biol Chem 263 12124-12128 (1988)
  66. Ganglio-N-tetraosylceramide (GA1) of bovine and human brain. Molecular characterization and presence in myelin. Dasgupta S, van Halbeek H, Hogan EL. FEBS Lett 301 141-144 (1992)
  67. Membrane assembly of Shiga toxin glycosphingolipid receptors and toxin refractiveness of MDCK II epithelial cells. Legros N, Pohlentz G, Steil D, Kouzel IU, Liashkovich I, Mellmann A, Karch H, Müthing J. J Lipid Res 59 1383-1401 (2018)
  68. Relapsing fever Borrelia binds to neolacto glycans and mediates rosetting of human erythrocytes. Guo BP, Teneberg S, Münch R, Terunuma D, Hatano K, Matsuoka K, Angström J, Borén T, Bergström S. Proc Natl Acad Sci U S A 106 19280-19285 (2009)
  69. Tetanus neurotoxin utilizes two sequential membrane interactions for channel formation. Burns JR, Baldwin MR. J Biol Chem 289 22450-22458 (2014)
  70. A new ganglioside of the lactotetraose series, GalNAc-3'-isoLM1, detected in human meconium. Fredman P, Månsson JE, Wikstrand CJ, Vrionis FD, Rynmark BM, Bigner DD, Svennerholm L. J Biol Chem 264 12122-12125 (1989)
  71. Corynebacterium matruchotii Demography and Adhesion Determinants in the Oral Cavity of Healthy Individuals. Esberg A, Barone A, Eriksson L, Lif Holgerson P, Teneberg S, Johansson I. Microorganisms 8 E1780 (2020)
  72. Glycoconjugate binding of gastric and enterohepatic Helicobacter spp. Hynes SO, Teneberg S, Roche N, Wadström T. Infect Immun 71 2976-2980 (2003)
  73. Glycosphingolipids of a green monkey kidney cell line (GMK AH-1). Evidence for a novel pentaglycosylceramide based on globotetraosylceramide. Blomberg J, Breimer ME, Karlsson KA. Biochim Biophys Acta 711 466-477 (1982)
  74. 1H NMR studies of a biosynthetic lacto-ganglio hybrid glycosphingolipid: confirmation of structure, interpretation of "anomalous" chemical shifts, and evidence for interresidue amide-amide hydrogen bonding. Levery SB, Holmes EH, Harris DD, Hakomori S. Biochemistry 31 1069-1080 (1992)
  75. Neutral glycosphingolipids in hairy cell leukemia. Lee WM, Klock JC, Macher BA. Biochemistry 20 6505-6508 (1981)
  76. An antigen present in rat adenocarcinoma and normal colon non-epithelial stroma is a novel Forssman-like glycolipid based on isoglobotetraosylceramide. Falk P, Holgersson J, Jovall PA, Karlsson KA, Strömberg N, Thurin J, Brodin T, Sjögren HO. Biochim Biophys Acta 878 296-299 (1986)
  77. Glycosphingolipid expression at breast cancer stem cells after novel thieno[2,3-b]pyridine anticancer compound treatment. Marijan S, Markotić A, Mastelić A, Režić-Mužinić N, Pilkington LI, Reynisson J, Čulić VČ. Sci Rep 10 11876 (2020)
  78. Isolation and characterization of gangliosides from chronic myelogenous leukemia cells. Westrick MA, Lee WM, Macher BA. Cancer Res 43 5890-5894 (1983)
  79. Occurrence of ceramide digalactoside as the main glycosphingolipid in the marine sponge Halichondria japonica. Hayashi A, Nishimura Y, Matsubara T. Biochim Biophys Acta 1083 179-186 (1991)
  80. Shiga Toxin (Stx)-Binding Glycosphingolipids of Primary Human Renal Cortical Epithelial Cells (pHRCEpiCs) and Stx-Mediated Cytotoxicity. Detzner J, Krojnewski E, Pohlentz G, Steil D, Humpf HU, Mellmann A, Karch H, Müthing J. Toxins (Basel) 13 139 (2021)
  81. Structural studies on the neutral glycosphingolipids of Manduca sexta. Abeytunga DT, Oland L, Somogyi A, Polt R. Bioorg Chem 36 70-76 (2008)
  82. A trisialosyl ganglioside GT3 of hog kidney. Structure and biosynthesis in vitro. Murakami-Murofushi K, Tadano K, Koyama I, Ishizuka I. J Biochem 90 1817-1820 (1981)
  83. Characterization of Glycosphingolipids in the Human Parathyroid and Thyroid Glands. Säljö K, Thornell A, Jin C, Stålberg P, Norlén O, Teneberg S. Int J Mol Sci 22 7044 (2021)
  84. Characterization of the specificity of binding of Moluccella laevis lectin to glycosphingolipids. Teneberg S, Leonardsson I, Angström J, Ehrlich-Rogozinski S, Sharon N. Glycoconj J 11 418-423 (1994)
  85. Isolation and characterization of a novel uronic acid-containing acidic glycosphingolipid from the ascidian Halocynthia roretzi. Ito M, Matsumuro Y, Yamada S, Kitamura T, Itonori S, Sugita M. J Lipid Res 48 96-103 (2007)
  86. Structural characterization of a novel mono-sulfated gangliotriaosylceramide containing a 3-O-sulfated N-acetylgalactosamine from rat kidney. Tadano-Aritomi K, Kubo H, Ireland P, Kasama T, Handa S, Ishizuka I. Glycoconj J 13 285-293 (1996)
  87. The repertoire of glycosphingolipids recognized by Vibrio cholerae. Benktander J, Ångström J, Karlsson H, Teymournejad O, Lindén S, Lebens M, Teneberg S. PLoS One 8 e53999 (2013)
  88. Chemical characterization of a blood group H type pentaglycosylceramide of human small intestine. Breimer ME, Karlsson KA, Larson G, McKibbin JM. Chem Phys Lipids 33 135-144 (1983)
  89. Glycolipids of rat small intestine. Characterization of a novel blood group H-active triglycosylceramide. Breimer ME, Hansson GC, Karlsson KA, Leffler H. Biochim Biophys Acta 617 85-96 (1980)
  90. Structural elucidation of the neutral glycosphingolipids, mono-, di-, tri- and tetraglycosylceramides from the marine crab Erimacrus isenbeckii. Kimura K, Itonori S, Kajiwara C, Hada N, Takeda T, Sugita M. J Oleo Sci 63 269-280 (2014)
  91. The mono- and difucosyl blood group B glycosphingolipids of rat large intestine differ in type of core saccharide. Angström J, Falk P, Hansson GC, Holgersson J, Karlsson H, Karlsson KA, Strömberg N, Thurin J. Biochim Biophys Acta 926 79-86 (1987)
  92. Chemical and immunological characterization of galactosyl-beta 1-3-globoside in bovine, human, and rat brain. Dasgupta S, Hogan EL, van Halbeek H. J Neurochem 65 2344-2349 (1995)
  93. Chemical characterization of penta-, hexa-, hepta-, octa-, and nonaglycosylceramides of rat small intestine having a globoside-like terminus. Angström J, Breimer ME, Falk KE, Hansson GC, Karlsson KA, Leffler H. J Biol Chem 257 682-688 (1982)
  94. Glycolipids of rat large intestine. Characterization of a novel blood group B-active tetraglycosylceramide absent from small intestine. Hansson GC, Karlsson KA, Thurin J. Biochim Biophys Acta 620 270-280 (1980)
  95. Glycosphingolipids Recognized by Acinetobacter baumannii. Madar Johansson M, Azzouz M, Häggendal B, Säljö K, Malmi H, Zaviolov A, Teneberg S. Microorganisms 8 E612 (2020)
  96. Structural characterization of intermediates in the biosynthetic pathway of neolacto glycosphingolipids: differential expression in human leukaemia cells. Hu J, Stults CL, Holmes EH, Macher BA. Glycobiology 4 251-257 (1994)
  97. A GM1b-derived disialoganglioside GD1c is the predominant ganglioside of rat thymocytes. Nohara K, Suzuki M, Inagaki F, Kaya K. J Biochem 110 274-278 (1991)
  98. A novel difucosylated neutral glycosphingolipid from the eggs of the sea urchin, Hemicentrotus pulcherrimus: I. Purification and structural determination of the glycolipid. Kubo H, Jiang GJ, Irie A, Suzuki M, Inagaki F, Hoshi M. J Biochem 112 281-285 (1992)
  99. Characterization of glycosphingolipids from gastrointestinal stromal tumours. Santos L, Jin C, Gazárková T, Thornell A, Norlén O, Säljö K, Teneberg S. Sci Rep 10 19371 (2020)
  100. Characterization of novel nonacid glycosphingolipids as biomarkers of human gastric adenocarcinoma. Jin C, Teneberg S. J Biol Chem 298 101732 (2022)
  101. Differentiation of type 1 and type 2 chain linkages of native glycosphingolipids by positive-ion fast-atom bombardment mass spectrometry with collision-induced dissociation and linked scanning. Salyan ME, Stroud MR, Levery SB. Rapid Commun Mass Spectrom 5 456-462 (1991)
  102. Molecular characterization of gangliotetraosylceramide (GA1) in normal human brain and its developmental change. Dasgupta S, Hogan EL. Indian J Biochem Biophys 30 341-345 (1993)
  103. A Generative Angular Model of Protein Structure Evolution. Golden M, García-Portugués E, Sørensen M, Mardia KV, Hamelryck T, Hein J. Mol Biol Evol 34 2085-2100 (2017)
  104. Fluorescence Imaging of Streptococcus pneumoniae with the Helix pomatia agglutinin (HPA) As a Potential, Rapid Diagnostic Tool. Domenech M, García E. Front Microbiol 8 1333 (2017)
  105. Human Lewis alpha 1-->3/4fucosyltransferase: specificity of fucose transfer to GlcNAc beta 1-->3Gal beta 1-->4Glc beta 1-->1Cer (LcOse3Cer). Holmes EH. Glycobiology 3 77-81 (1993)
  106. Structural elucidation of a novel phosphonoglycosphingolipid in eggs of the sea hare Aplysia juliana. Yamaguchi Y, Ohta M, Hayashi A. Biochim Biophys Acta 1165 160-166 (1992)
  107. Studies on the chemical structure of neutral glycosphingolipids in eggs of the sea hare, Aplysia juliana. Yamaguchi Y, Konda K, Hayashi A. Biochim Biophys Acta 1165 110-118 (1992)
  108. Characterization of Human Medullary Thyroid Carcinoma Glycosphingolipids Identifies Potential Cancer Markers. Säljö K, Thornell A, Jin C, Norlén O, Teneberg S. Int J Mol Sci 22 10463 (2021)
  109. [A novel blood group A- and O (H) -antigens--glycosphingolipids from porcine erythrocytes]. Sako F. Hokkaido Igaku Zasshi 63 534-544 (1988)


Reviews citing this publication (7)

  1. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Vieille C, Zeikus GJ. Microbiol Mol Biol Rev 65 1-43 (2001)
  2. Structural features of thermozymes. Li WF, Zhou XX, Lu P. Biotechnol Adv 23 271-281 (2005)
  3. Cold-adapted enzymes. Marshall CJ. Trends Biotechnol 15 359-364 (1997)
  4. Protein thermostability in extremophiles. Scandurra R, Consalvi V, Chiaraluce R, Politi L, Engel PC. Biochimie 80 933-941 (1998)
  5. Stabilization of protein structures. Lee B, Vasmatzis G. Curr Opin Biotechnol 8 423-428 (1997)
  6. Implication for buried polar contacts and ion pairs in hyperthermostable enzymes. Matsui I, Harata K. FEBS J 274 4012-4022 (2007)
  7. Multifactorial level of extremostability of proteins: can they be exploited for protein engineering? Chakravorty D, Khan MF, Patra S. Extremophiles 21 419-444 (2017)

Articles citing this publication (104)

  1. Electrostatic contributions to the stability of hyperthermophilic proteins. Xiao L, Honig B. J Mol Biol 289 1435-1444 (1999)
  2. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Haney PJ, Badger JH, Buldak GL, Reich CI, Woese CR, Olsen GJ. Proc Natl Acad Sci U S A 96 3578-3583 (1999)
  3. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. Elcock AH. J Mol Biol 284 489-502 (1998)
  4. Protein thermostability above 100 degreesC: a key role for ionic interactions. Vetriani C, Maeder DL, Tolliday N, Yip KS, Stillman TJ, Britton KL, Rice DW, Klump HH, Robb FT. Proc Natl Acad Sci U S A 95 12300-12305 (1998)
  5. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL. Structure 6 351-361 (1998)
  6. Aromatic clusters: a determinant of thermal stability of thermophilic proteins. Kannan N, Vishveshwara S. Protein Eng 13 753-761 (2000)
  7. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Peralta D, Bronowska AK, Morgan B, Dóka É, Van Laer K, Nagy P, Gräter F, Dick TP. Nat Chem Biol 11 156-163 (2015)
  8. Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Gianese G, Bossa F, Pascarella S. Proteins 47 236-249 (2002)
  9. The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures. Maes D, Zeelen JP, Thanki N, Beaucamp N, Alvarez M, Thi MH, Backmann J, Martial JA, Wyns L, Jaenicke R, Wierenga RK. Proteins 37 441-453 (1999)
  10. Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger PH 2.5 acid phosphatase. Wyss M, Pasamontes L, Rémy R, Kohler J, Kusznir E, Gadient M, Müller F, van Loon APGM. Appl Environ Microbiol 64 4446-4451 (1998)
  11. The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilus at 1.9 A resolution: structural basis for thermostability. Lim JH, Yu YG, Han YS, Cho S, Ahn BY, Kim SH, Cho Y. J Mol Biol 270 259-274 (1997)
  12. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Lazaridis T, Lee I, Karplus M. Protein Sci 6 2589-2605 (1997)
  13. Enhanced thermal stability of Clostridium beijerinckii alcohol dehydrogenase after strategic substitution of amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydrogenase. Bogin O, Peretz M, Hacham Y, Korkhin Y, Frolow F, Kalb(Gilboa) AJ, Burstein Y. Protein Sci 7 1156-1163 (1998)
  14. Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus. Tahirov TH, Oki H, Tsukihara T, Ogasahara K, Yutani K, Ogata K, Izu Y, Tsunasawa S, Kato I. J Mol Biol 284 101-124 (1998)
  15. Small structural changes account for the high thermostability of 1[4Fe-4S] ferredoxin from the hyperthermophilic bacterium Thermotoga maritima. Macedo-Ribeiro S, Darimont B, Sterner R, Huber R. Structure 4 1291-1301 (1996)
  16. An evolutionary route to xylanase process fitness. Palackal N, Brennan Y, Callen WN, Dupree P, Frey G, Goubet F, Hazlewood GP, Healey S, Kang YE, Kretz KA, Lee E, Tan X, Tomlinson GL, Verruto J, Wong VW, Mathur EJ, Short JM, Robertson DE, Steer BA. Protein Sci 13 494-503 (2004)
  17. Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability. Usher KC, de la Cruz AF, Dahlquist FW, Swanson RV, Simon MI, Remington SJ. Protein Sci 7 403-412 (1998)
  18. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability. de Bakker PI, Hünenberger PH, McCammon JA. J Mol Biol 285 1811-1830 (1999)
  19. Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation. Leiros HK, Willassen NP, Smalås AO. Eur J Biochem 267 1039-1049 (2000)
  20. Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus. Lee DW, Choe EA, Kim SB, Eom SH, Hong YH, Lee SJ, Lee HS, Lee DY, Pyun YR. Arch Biochem Biophys 434 333-343 (2005)
  21. Structural basis of the properties of an industrially relevant thermophilic xylanase. Harris GW, Pickersgill RW, Connerton I, Debeire P, Touzel JP, Breton C, Pérez S. Proteins 29 77-86 (1997)
  22. Disruption of an ionic network leads to accelerated thermal denaturation of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. Pappenberger G, Schurig H, Jaenicke R. J Mol Biol 274 676-683 (1997)
  23. Refined crystal structure of a superoxide dismutase from the hyperthermophilic archaeon Sulfolobus acidocaldarius at 2.2 A resolution. Knapp S, Kardinahl S, Hellgren N, Tibbelin G, Schäfer G, Ladenstein R. J Mol Biol 285 689-702 (1999)
  24. High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta)alpha-barrel architecture. Lo Leggio L, Kalogiannis S, Bhat MK, Pickersgill RW. Proteins 36 295-306 (1999)
  25. Effects of protein stabilizing agents on thermal backbone motions: a disulfide trapping study. Butler SL, Falke JJ. Biochemistry 35 10595-10600 (1996)
  26. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus. Arnott MA, Michael RA, Thompson CR, Hough DW, Danson MJ. J Mol Biol 304 657-668 (2000)
  27. Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Salameh MA, Wiegel J. Appl Environ Microbiol 73 7725-7731 (2007)
  28. Sequencing and expression of the gene encoding a cold-active citrate synthase from an Antarctic bacterium, strain DS2-3R. Gerike U, Danson MJ, Russell NJ, Hough DW. Eur J Biochem 248 49-57 (1997)
  29. High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases. Wang B, Jones DN, Kaine BP, Weiss MA. Structure 6 555-569 (1998)
  30. Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: insights from the quasi-chemical approximation. Goldstein RA. Protein Sci 16 1887-1895 (2007)
  31. Discrimination of thermophilic and mesophilic proteins. Taylor TJ, Vaisman II. BMC Struct Biol 10 Suppl 1 S5 (2010)
  32. Mechanisms for stabilisation and the maintenance of solubility in proteins from thermophiles. Greaves RB, Warwicker J. BMC Struct Biol 7 18 (2007)
  33. Crystal structure of the beta-glycosidase from the hyperthermophile Thermosphaera aggregans: insights into its activity and thermostability. Chi YI, Martinez-Cruz LA, Jancarik J, Swanson RV, Robertson DE, Kim SH. FEBS Lett 445 375-383 (1999)
  34. Crystal structure of the glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. Isupov MN, Fleming TM, Dalby AR, Crowhurst GS, Bourne PC, Littlechild JA. J Mol Biol 291 651-660 (1999)
  35. Structural genomics of thermotoga maritima proteins shows that contact order is a major determinant of protein thermostability. Robinson-Rechavi M, Godzik A. Structure 13 857-860 (2005)
  36. Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. Criswell AR, Bae E, Stec B, Konisky J, Phillips GN. J Mol Biol 330 1087-1099 (2003)
  37. Ferredoxin from the hyperthermophile Thermotoga maritima is stable beyond the boiling point of water. Pfeil W, Gesierich U, Kleemann GR, Sterner R. J Mol Biol 272 591-596 (1997)
  38. Crystal structure of earthworm fibrinolytic enzyme component B: a novel, glycosylated two-chained trypsin. Wang F, Wang C, Li M, Zhang JP, Gui LL, An XM, Chang WR. J Mol Biol 348 671-685 (2005)
  39. Mutations in BIN1 associated with centronuclear myopathy disrupt membrane remodeling by affecting protein density and oligomerization. Wu T, Shi Z, Baumgart T. PLoS One 9 e93060 (2014)
  40. Hyperthermal stability of neuroglobin and cytoglobin. Hamdane D, Kiger L, Dewilde S, Uzan J, Burmester T, Hankeln T, Moens L, Marden MC. FEBS J 272 2076-2084 (2005)
  41. Structural basis for the enhanced thermal stability of alcohol dehydrogenase mutants from the mesophilic bacterium Clostridium beijerinckii: contribution of salt bridging. Bogin O, Levin I, Hacham Y, Tel-Or S, Peretz M, Frolow F, Burstein Y. Protein Sci 11 2561-2574 (2002)
  42. Structure determination of the glutamate dehydrogenase from the hyperthermophile Thermococcus litoralis and its comparison with that from Pyrococcus furiosus. Britton KL, Yip KS, Sedelnikova SE, Stillman TJ, Adams MW, Adams MW, Ma K, Maeder DL, Robb FT, Tolliday N, Vetriani C, Rice DW, Baker PJ. J Mol Biol 293 1121-1132 (1999)
  43. Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges. Panja AS, Bandopadhyay B, Maiti S. PLoS One 10 e0131495 (2015)
  44. The 1.4 a crystal structure of kumamolysin: a thermostable serine-carboxyl-type proteinase. Comellas-Bigler M, Fuentes-Prior P, Maskos K, Huber R, Oyama H, Uchida K, Dunn BM, Oda K, Bode W. Structure 10 865-876 (2002)
  45. Understanding thermostability in cytochrome P450 by combinatorial mutagenesis. Maves SA, Sligar SG. Protein Sci 10 161-168 (2001)
  46. Hyper-thermostability of CutA1 protein, with a denaturation temperature of nearly 150 degrees C. Tanaka T, Sawano M, Ogasahara K, Sakaguchi Y, Bagautdinov B, Katoh E, Kuroishi C, Shinkai A, Yokoyama S, Yutani K. FEBS Lett 580 4224-4230 (2006)
  47. Crystal structure of the non-regulatory A(4 )isoform of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase complexed with NADP. Fermani S, Ripamonti A, Sabatino P, Zanotti G, Scagliarini S, Sparla F, Trost P, Pupillo P. J Mol Biol 314 527-542 (2001)
  48. Oligomeric integrity--the structural key to thermal stability in bacterial alcohol dehydrogenases. Korkhin Y, Kalb (Gilboa) AJ, Peretz M, Bogin O, Burstein Y, Frolow F. Protein Sci 8 1241-1249 (1999)
  49. Structural adaptation to low temperatures--analysis of the subunit interface of oligomeric psychrophilic enzymes. Tronelli D, Maugini E, Bossa F, Pascarella S. FEBS J 274 4595-4608 (2007)
  50. A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+. Didierjean C, Rahuel-Clermont S, Vitoux B, Dideberg O, Branlant G, Aubry A. J Mol Biol 268 739-759 (1997)
  51. Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Ratcliff K, Corn J, Marqusee S. Biochemistry 48 5890-5898 (2009)
  52. Characterization of a tetrameric inositol monophosphatase from the hyperthermophilic bacterium Thermotoga maritima. Chen L, Roberts MF. Appl Environ Microbiol 65 4559-4567 (1999)
  53. Protein engineering from a bioindustrial point of view. Rubingh DN. Curr Opin Biotechnol 8 417-422 (1997)
  54. Protection against thermal denaturation by trehalose on the plasma membrane H+-ATPase from yeast. Synergetic effect between trehalose and phospholipid environment. Felix CF, Moreira CC, Oliveira MS, Sola-Penna M, Meyer-Fernandes JR, Scofano HM, Ferreira-Pereira A. Eur J Biochem 266 660-664 (1999)
  55. Thermal stability of pyrrolidone carboxyl peptidases from the hyperthermophilic Archaeon, Pyrococcus furiosus. Ogasahara K, Khechinashvili NN, Nakamura M, Yoshimoto T, Yutani K. Eur J Biochem 268 3233-3242 (2001)
  56. Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P. Tanner JJ, Tu SC, Barbour LJ, Barnes CL, Krause KL. Protein Sci 8 1725-1732 (1999)
  57. Crystal structure of Leishmania mexicana glycosomal glyceraldehyde-3-phosphate dehydrogenase in a new crystal form confirms the putative physiological active site structure. Kim H, Hol WG. J Mol Biol 278 5-11 (1998)
  58. Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein. Lee DY, Kim KA, Yu YG, Kim KS. Biochem Biophys Res Commun 320 900-906 (2004)
  59. Crystal structure of MJ1247 protein from M. jannaschii at 2.0 A resolution infers a molecular function of 3-hexulose-6-phosphate isomerase. Martinez-Cruz LA, Dreyer MK, Boisvert DC, Yokota H, Martinez-Chantar ML, Kim R, Kim SH. Structure 10 195-204 (2002)
  60. The catalytic mechanism of glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi elucidated via the QM/MM approach. Reis M, Alves CN, Lameira J, Tuñón I, Martí S, Moliner V. Phys Chem Chem Phys 15 3772-3785 (2013)
  61. Structural basis of increased resistance to thermal denaturation induced by single amino acid substitution in the sequence of beta-glucosidase A from Bacillus polymyxa. Sanz-Aparicio J, Hermoso JA, Martínez-Ripoll M, González B, López-Camacho C, Polaina J. Proteins 33 567-576 (1998)
  62. The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution. Charron C, Talfournier F, Isupov MN, Littlechild JA, Branlant G, Vitoux B, Aubry A. J Mol Biol 297 481-500 (2000)
  63. Mutational effects on thermostable superoxide dismutase from Aquifex pyrophilus: understanding the molecular basis of protein thermostability. Lim JH, Hwang KY, Choi J, Lee DY, Ahn BY, Cho Y, Kim KS, Han YS. Biochem Biophys Res Commun 288 263-268 (2001)
  64. Mutations in salt-bridging residues at the interface of the core and lid domains of epoxide hydrolase StEH1 affect regioselectivity, protein stability and hysteresis. Lindberg D, Ahmad S, Widersten M. Arch Biochem Biophys 495 165-173 (2010)
  65. Packing-based difference of structural features between thermophilic and mesophilic proteins. Pack SP, Yoo YJ. Int J Biol Macromol 35 169-174 (2005)
  66. The crystal structure of rice (Oryza sativa L.) Os4BGlu12, an oligosaccharide and tuberonic acid glucoside-hydrolyzing β-glucosidase with significant thioglucohydrolase activity. Sansenya S, Opassiri R, Kuaprasert B, Chen CJ, Cairns JR. Arch Biochem Biophys 510 62-72 (2011)
  67. The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Aliivibrio salmonicida. Pedersen HL, Willassen NP, Leiros I. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 84-92 (2009)
  68. Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA shuffling. Tang SY, Le QT, Shim JH, Yang SJ, Auh JH, Park C, Park KH. FEBS J 273 3335-3345 (2006)
  69. NMR solution structure of a novel thioredoxin from Bacillus acidocaldarius possible determinants of protein stability. Nicastro G, De Chiara C, Pedone E, Tatò M, Rossi M, Bartolucci S. Eur J Biochem 267 403-413 (2000)
  70. Adaptation of class-13 alpha-amylases to diverse living conditions. Linden A, Wilmanns M. Chembiochem 5 231-239 (2004)
  71. Cloning and characterization of thermostable endoglucanase (Cel8Y) from the hyperthermophilic Aquifex aeolicus VF5. Kim JO, Park SR, Lim WJ, Ryu SK, Kim MK, An CL, Cho SJ, Park YW, Kim JH, Yun HD. Biochem Biophys Res Commun 279 420-426 (2000)
  72. Thermal unfolding of phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase studied by differential scanning calorimetry. Levashov P, Orlov V, Boschi-Muller S, Talfournier F, Asryants R, Bulatnikov I, Muronetz V, Branlant G, Nagradova N. Biochim Biophys Acta 1433 294-306 (1999)
  73. Conformations of nicotinamide adenine dinucleotide (NAD(+)) in various environments. Smith PE, Tanner JJ. J Mol Recognit 13 27-34 (2000)
  74. Intersubunit disulfide interactions play a critical role in maintaining the thermostability of glucose-6-phosphate dehydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. Nakka M, Iyer RB, Bachas LG. Protein J 25 17-21 (2006)
  75. Comment Quantum enzymology. Tunnel vision. Ringe D, Petsko GA. Nature 399 417-418 (1999)
  76. Conformational stabilities of the rat alpha- and beta-parvalbumins. Henzl MT, Graham JS. FEBS Lett 442 241-245 (1999)
  77. Contribution of engineered electrostatic interactions to the stability of cytosolic malate dehydrogenase. Trejo F, Gelpí JL, Ferrer A, Boronat A, Busquets M, Cortés A. Protein Eng 14 911-917 (2001)
  78. Design of Stable α-Helical Peptides and Thermostable Proteins in Biotechnology and Biomedicine. Yakimov AP, Afanaseva AS, Khodorkovskiy MA, Petukhov MG. Acta Naturae 8 70-81 (2016)
  79. Dimer interface of glutathione S-transferase from Arabidopsis thaliana: influence of the G-site architecture on the dimer interface and implications for classification. Prade L, Hof P, Bieseler B. Biol Chem 378 317-320 (1997)
  80. Streptococcus agalactiae amylomaltase offers insight into the transglycosylation mechanism and the molecular basis of thermostability among amylomaltases. Tumhom S, Nimpiboon P, Wangkanont K, Pongsawasdi P. Sci Rep 11 6740 (2021)
  81. Structures of glyceraldehyde 3-phosphate dehydrogenase in Neisseria gonorrhoeae and Chlamydia trachomatis. Barrett KF, Dranow DM, Phan IQ, Michaels SA, Shaheen S, Navaluna ED, Craig JK, Tillery LM, Choi R, Edwards TE, Conrady DG, Abendroth J, Horanyi PS, Lorimer DD, Van Voorhis WC, Zhang Z, Barrett LK, Subramanian S, Staker B, Fan E, Myler PJ, Soge OO, Hybiske K, Ojo KK. Protein Sci 29 768-778 (2020)
  82. Temperature-dependent structural and functional features of a hyperthermostable enzyme using elastic neutron scattering. Koutsopoulos S, van der Oost J, Norde W. Proteins 61 377-384 (2005)
  83. Increasing the thermostability of Flavobacterium meningosepticum glycerol kinase by changing Ser329 to Asp in the subunit interface region. Sakasegawa S, Takehara H, Yoshioka I, Takahashi M, Kagimoto Y, Misaki H, Sakuraba H, Ohshima T. Protein Eng 14 663-667 (2001)
  84. Protein thermostabilizing factors: high relative occurrence of amino acids, residual properties, and secondary structure type in different residual state. Pack SP, Kang TJ, Yoo YJ. Appl Biochem Biotechnol 171 1212-1226 (2013)
  85. Structure of active site carboxymethylated D-glyceraldehyde-3-phosphate dehydrogenase from Palinurus versicolor. Song SY, Xu YB, Lin ZJ, Tsou CL. J Mol Biol 287 719-725 (1999)
  86. All-atom contact potential approach to protein thermostability analysis. Chen C, Li L, Xiao Y. Biopolymers 85 28-37 (2007)
  87. Crystal structures of rice (Oryza sativa) glyceraldehyde-3-phosphate dehydrogenase complexes with NAD and sulfate suggest involvement of Phe37 in NAD binding for catalysis. Tien YC, Chuankhayan P, Huang YC, Chen CD, Alikhajeh J, Chang SL, Chen CJ. Plant Mol Biol 80 389-403 (2012)
  88. Enhancement of the thermostability and activity of mesophilic Clostridium cellulovorans EngD by in vitro DNA recombination with Clostridium thermocellum CelE. Lee CY, Yu KO, Kim SW, Han SO. J Biosci Bioeng 109 331-336 (2010)
  89. Structure of apo-glyceraldehyde-3-phosphate dehydrogenase from Palinurus versicolor. Shen YQ, Li J, Song SY, Lin ZJ. J Struct Biol 130 1-9 (2000)
  90. Use of a rhodamine-based bifunctional probe in N-terminal specific labeling of Thermomyces lanuginosus xylanase. Jia J, Chen W, Ma H, Wang K, Zhao C. Mol Biosyst 6 1829-1833 (2010)
  91. Comparative analysis of thermoadaptation within the archaeal glyceraldehyde-3-phosphate dehydrogenases from mesophilic Methanobacterium bryantii and thermophilic Methanothermus fervidus. Charron C, Vitoux B, Aubry A. Biopolymers 65 263-273 (2002)
  92. Rational stabilization of the C-LytA affinity tag by protein engineering. Hernández-Rocamora VM, Maestro B, Mollá-Morales A, Sanz JM. Protein Eng Des Sel 21 709-720 (2008)
  93. Crystal structure of histidine-containing phosphocarrier protein from Thermoanaerobacter tengcongensis MB4 and the implications for thermostability. Feng C, Gao F, Liu Y, Wang G, Peng H, Ma Y, Yan J, Gao GF. Sci China Life Sci 54 513-519 (2011)
  94. Detection and characterisation of mutations responsible for allele-specific protein thermostabilities at the Mn-superoxide dismutase gene in the deep-sea hydrothermal vent polychaete Alvinella pompejana. Bruneaux M, Mary J, Verheye M, Lecompte O, Poch O, Jollivet D, Tanguy A. J Mol Evol 76 295-310 (2013)
  95. Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation. Dongre AV, Das S, Bellur A, Kumar S, Chandrashekarmath A, Karmakar T, Balaram P, Balasubramanian S, Balaram H. Biophys J 120 3732-3746 (2021)
  96. Structural basis of thermal stability of the tungsten cofactor synthesis protein MoaB from Pyrococcus furiosus. Havarushka N, Fischer-Schrader K, Lamkemeyer T, Schwarz G. PLoS One 9 e86030 (2014)
  97. Without salt, the 'thermophilic' protein Mth10b is just mesophilic. Zhang N, Pan XM, Ge M. PLoS One 7 e53125 (2012)
  98. Cryo-electron structures of the extreme thermostable enzymes Sulfur Oxygenase Reductase and Lumazine Synthase. Sobhy MA, Zhao L, Anjum D, Behzad A, Takahashi M, Tehseen M, Biasio A, Sougrat R, Hamdan S. PLoS One 17 e0275487 (2022)
  99. Crystal structure of a two-subunit TrkA octameric gating ring assembly. Deller MC, Johnson HA, Miller MD, Spraggon G, Elsliger MA, Wilson IA, Lesley SA. PLoS One 10 e0122512 (2015)
  100. Harnessing extremophilic carboxylesterases for applications in polyester depolymerisation and plastic waste recycling. Williams GB, Ma H, Khusnutdinova AN, Yakunin AF, Golyshin PN. Essays Biochem 67 715-729 (2023)
  101. A meta-analysis of the activity, stability, and mutational characteristics of temperature-adapted enzymes. Gault S, Higgins PM, Cockell CS, Gillies K. Biosci Rep 41 BSR20210336 (2021)
  102. Photochemical nucleophile mapping: identification of Tyr311 within the catalytic domain of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Hatanaka Y, Kaneda M, Tomohiro T. Photochem Photobiol 83 213-217 (2007)
  103. Structure of full-length cobalamin-dependent methionine synthase and cofactor loading captured in crystallo. Mendoza J, Purchal M, Yamada K, Koutmos M. Nat Commun 14 6365 (2023)
  104. Thermal stability and structure of glyceraldehyde-3-phosphate dehydrogenase from the coral Acropora millepora. Perez AM, Wolfe JA, Schermerhorn JT, Qian Y, Cela BA, Kalinowski CR, Largoza GE, Fields PA, Brandt GS. RSC Adv 11 10364-10374 (2021)


Related citations provided by authors (1)

  1. Preliminary Crystallographic Analysis of Glyceraldehyde-3-Phosphate Dehydrogenase from the Extreme Thermophile Thermus Aquaticus. Tanner J, Hecht RM, Pisegna M, Seth DM, Krause KL Acta Crystallogr. D Biol. Crystallogr. 50 744- (1994)