1cea Citations

Crystal structures of the recombinant kringle 1 domain of human plasminogen in complexes with the ligands epsilon-aminocaproic acid and trans-4-(aminomethyl)cyclohexane-1-carboxylic Acid.

Biochemistry 35 2567-76 (1996)
Cited: 38 times
EuropePMC logo PMID: 8611560

Abstract

The X-ray crystal structures of the complexes of the recombinant kringle 1 domain of human plasminogen (Klpg) with the ligands epsilon-aminocaproic acid (EACA) and trans-4-(aminomethyl)cyclohexane-1-carboxylic acid (AMCHA), which are representative of a class of in vivo antifibrinolytic agents, have been determined at 2.1 angstroms resolution. Each Klpg/ligand unit cell contained a dimer of the complexes, and some small differences were noted in the kringle/ligand interatomic distances within the monomeric components of the dimers. The structures obtained allowed predictions to be made of the amino acid residues of Klpg that are likely important to ligand binding. In the crystal structure, the anionic center of Klpg responsible for coordinating the amino group of the ligands is composed of both Asp54 and Asp56, and the cationic center that stabilizes binding of the carboxylate moiety of the ligands is Arg70, with a possible contribution from Arg34. A hydrogen bond between the carboxylate of the ligand to the hydroxyl group of Tyr63 also appears to contribute to the kringle/ligand binding energies. The methylene groups of the ligand are stablized in the binding pocket by van der Waals contacts with side-chain atoms of Trp61 and Tyr71. These conclusions are in general agreement with site-directed mutagenesis results that implicate many of the same amino acid residues in the binding process, thus showing that the crystal and solution structures are in basic accord with each other. Further comparisons of the X-ray crystal structures of the Klpg/ligand complexes with each other and with apo-Klpg show that while small differences in Klpg side-chain geometries may exist in the three structures, the binding pocket can be considered to be preformed in the apokringle and not substantially altered by the nature of the omega-amino acid ligand that is inserted into the site. From the similar geometries of the binding of EACA and AMCHA, it appears that the kon is an important component to the tighter binding of AMCHA to Klpg, as compared to EACA. Ordered solvation effects of the bound AMCHA may contribute to its longer lifetime on Klpg, thereby retarding koff, both effects thus accounting for the higher binding energy of AMCHA as compared to EACA.

Reviews - 1cea mentioned but not cited (1)

Articles - 1cea mentioned but not cited (6)

  1. Plasminogen alleles influence susceptibility to invasive aspergillosis. Zaas AK, Liao G, Chien JW, Weinberg C, Shore D, Giles SS, Marr KA, Usuka J, Burch LH, Perera L, Perfect JR, Peltz G, Schwartz DA. PLoS Genet 4 e1000101 (2008)
  2. Toward prediction of functional protein pockets using blind docking and pocket search algorithms. Hetényi C, van der Spoel D. Protein Sci 20 880-893 (2011)
  3. Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa. Yang QZ, Wang C, Lang L, Zhou Y, Wang H, Shang DJ. Arch Pharm Res 36 1302-1310 (2013)
  4. Melanoma cell surface-expressed phosphatidylserine as a therapeutic target for cationic anticancer peptide, temporin-1CEa. Wang C, Chen YW, Zhang L, Gong XG, Zhou Y, Shang DJ. J Drug Target 24 548-556 (2016)
  5. Identification and analyses of inhibitors targeting apolipoprotein(a) kringle domains KIV-7, KIV-10, and KV provide insight into kringle domain function. Sandmark J, Tigerström A, Akerud T, Althage M, Antonsson T, Blaho S, Bodin C, Boström J, Chen Y, Dahlén A, Eriksson PO, Evertsson E, Fex T, Fjellström O, Gustafsson D, Herslöf M, Hicks R, Jarkvist E, Johansson C, Kalies I, Karlsson Svalstedt B, Kartberg F, Legnehed A, Martinsson S, Moberg A, Ridderström M, Rosengren B, Sabirsh A, Thelin A, Vinblad J, Wellner AU, Xu B, Östlund-Lindqvist AM, Knecht W. J Biol Chem 295 5136-5151 (2020)
  6. 1,2,3-Triazole Derivatives as Novel Antifibrinolytic Drugs. Bosch-Sanz O, Rabadà Y, Biarnés X, Pedreño J, Caveda L, Balcells M, Martorell J, Sánchez-García D. Int J Mol Sci 23 14942 (2022)


Reviews citing this publication (8)

  1. Bacterial plasminogen activators and receptors. Lähteenmäki K, Kuusela P, Korhonen TK. FEMS Microbiol Rev 25 531-552 (2001)
  2. Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. Bhattacharya S, Ploplis VA, Castellino FJ. J Biomed Biotechnol 2012 482096 (2012)
  3. The plasmin-antiplasmin system: structural and functional aspects. Schaller J, Gerber SS. Cell Mol Life Sci 68 785-801 (2011)
  4. ROR1, an embryonic protein with an emerging role in cancer biology. Borcherding N, Kusner D, Liu GH, Zhang W. Protein Cell 5 496-502 (2014)
  5. Recent advances on plasmin inhibitors for the treatment of fibrinolysis-related disorders. Al-Horani RA, Desai UR. Med Res Rev 34 1168-1216 (2014)
  6. What the structure of angiostatin may tell us about its mechanism of action. Geiger JH, Cnudde SE. J Thromb Haemost 2 23-34 (2004)
  7. Apolipoprotein(a): structure-function relationship at the lysine-binding site and plasminogen activator cleavage site. Anglés-Cano E, Rojas G. Biol Chem 383 93-99 (2002)
  8. Understanding the fluorescence changes of human plasminogen when it binds the ligand, 6-aminohexanoate: a synthesis. Kornblatt JA. Biochim Biophys Acta 1481 1-10 (2000)

Articles citing this publication (23)

  1. Crystal structure of the native plasminogen reveals an activation-resistant compact conformation. Xue Y, Bodin C, Olsson K. J Thromb Haemost 10 1385-1396 (2012)
  2. Structure and binding determinants of the recombinant kringle-2 domain of human plasminogen to an internal peptide from a group A Streptococcal surface protein. Rios-Steiner JL, Schenone M, Mochalkin I, Tulinsky A, Castellino FJ. J Mol Biol 308 705-719 (2001)
  3. Human plasminogen catalytic domain undergoes an unusual conformational change upon activation. Wang X, Terzyan S, Tang J, Loy JA, Lin X, Zhang XC. J Mol Biol 295 903-914 (2000)
  4. Analysis of plasminogen-binding M proteins of Streptococcus pyogenes. Ringdahl U, Sjöbring U. Methods 21 143-150 (2000)
  5. Nonfibrinolytic functions of plasminogen. Ploplis VA, Castellino FJ. Methods 21 103-110 (2000)
  6. Plasminogen substrate recognition by the streptokinase-plasminogen catalytic complex is facilitated by Arg253, Lys256, and Lys257 in the streptokinase beta-domain and kringle 5 of the substrate. Tharp AC, Laha M, Panizzi P, Thompson MW, Fuentes-Prior P, Bock PE. J Biol Chem 284 19511-19521 (2009)
  7. The Adhesion of Lactobacillus salivarius REN to a Human Intestinal Epithelial Cell Line Requires S-layer Proteins. Wang R, Jiang L, Zhang M, Zhao L, Hao Y, Guo H, Sang Y, Zhang H, Ren F. Sci Rep 7 44029 (2017)
  8. Solution structure of the complex of VEK-30 and plasminogen kringle 2. Wang M, Zajicek J, Geiger JH, Prorok M, Castellino FJ. J Struct Biol 169 349-359 (2010)
  9. Enhancement through mutagenesis of the binding of the isolated kringle 2 domain of human plasminogen to omega-amino acid ligands and to an internal sequence of a Streptococcal surface protein. Nilsen SL, Prorok M, Castellino FJ. J Biol Chem 274 22380-22386 (1999)
  10. Discovery of the Fibrinolysis Inhibitor AZD6564, Acting via Interference of a Protein-Protein Interaction. Cheng L, Pettersen D, Ohlsson B, Schell P, Karle M, Evertsson E, Pahlén S, Jonforsen M, Plowright AT, Boström J, Fex T, Thelin A, Hilgendorf C, Xue Y, Wahlund G, Lindberg W, Larsson LO, Gustafsson D. ACS Med Chem Lett 5 538-543 (2014)
  11. Structural/functional properties of the Glu1-HSer57 N-terminal fragment of human plasminogen: conformational characterization and interaction with kringle domains. An SS, Marti DN, Carreño C, Albericio F, Schaller J, Llinas M. Protein Sci 7 1947-1959 (1998)
  12. The effects of ligand binding on the backbone dynamics of the kringle 1 domain of human plasminogen. Zajicek J, Chang Y, Castellino FJ. J Mol Biol 301 333-347 (2000)
  13. Exploring the chemical space of the lysine-binding pocket of the first kringle domain of hepatocyte growth factor/scatter factor (HGF/SF) yields a new class of inhibitors of HGF/SF-MET binding. Sigurdardottir AG, Winter A, Sobkowicz A, Fragai M, Chirgadze D, Ascher DB, Blundell TL, Gherardi E. Chem Sci 6 6147-6157 (2015)
  14. NMR backbone dynamics of VEK-30 bound to the human plasminogen kringle 2 domain. Wang M, Prorok M, Castellino FJ. Biophys J 99 302-312 (2010)
  15. Canine plasminogen: spectral responses to changes in 6-aminohexanoate and temperature. Kornblatt JA, Barretto TA, Chigogidze K, Chirwa B. Anal Chem Insights 2 17-29 (2007)
  16. Decoy plasminogen receptor containing a selective Kunitz-inhibitory domain. Kumar Y, Vadivel K, Schmidt AE, Ogueli GI, Ponnuraj SM, Rannulu N, Loo JA, Bajaj MS, Bajaj SP. Biochemistry 53 505-517 (2014)
  17. S2'-subsite variations between human and mouse enzymes (plasmin, factor XIa, kallikrein) elucidate inhibition differences by tissue factor pathway inhibitor -2 domain1-wild-type, Leu17Arg-mutant and aprotinin. Vadivel K, Kumar Y, Ogueli GI, Ponnuraj SM, Wongkongkathep P, Loo JA, Bajaj MS, Bajaj SP. J Thromb Haemost 14 2509-2523 (2016)
  18. Streptococcus co-opts a conformational lock in human plasminogen to facilitate streptokinase cleavage and bacterial virulence. Ayinuola YA, Brito-Robinson T, Ayinuola O, Beck JE, Cruz-Topete D, Lee SW, Ploplis VA, Castellino FJ. J Biol Chem 296 100099 (2021)
  19. Functional and structural consequences of aromatic residue substitutions within the kringle-2 domain of tissue-type plasminogen activator. Chang Y, Nilsen SL, Castellino FJ. J Pept Res 53 656-664 (1999)
  20. Enhanced Antifibrinolytic Efficacy of a Plasmin-Specific Kunitz-Inhibitor (60-Residue Y11T/L17R with C-Terminal IEK) of Human Tissue Factor Pathway Inhibitor Type-2 Domain1. Vadivel K, Zaiss AK, Kumar Y, Fabian FM, Ismail AEA, Arbing MA, Buchholz WG, Velander WH, Bajaj SP. J Clin Med 9 E3684 (2020)
  21. High resolution structure of human apolipoprotein (a) kringle IV type 2: beyond the lysine binding site. Santonastaso A, Maggi M, De Jonge H, Scotti C. J Lipid Res 61 1687-1696 (2020)
  22. A High-Throughput Small-Angle X-ray Scattering Assay to Determine the Conformational Change of Plasminogen. Quek AJ, Cowieson NP, Caradoc-Davies TT, Conroy PJ, Whisstock JC, Law RHP. Int J Mol Sci 24 14258 (2023)
  23. Crystal structure of the kringle domain of human receptor tyrosine kinase-like orphan receptor 1 (hROR1). Guarino SR, Di Bello A, Palamini M, Capillo MC, Forneris F. Acta Crystallogr F Struct Biol Commun 78 185-192 (2022)


Related citations provided by authors (3)

  1. 1H-NMR Assignments and Secondary Structure of Human Plasminogen Kringle 1. Rejante MR, Llinas M Eur. J. Biochem. 221 939- (1994)
  2. The Structure of Recombinant Plasminogen Kringle 1 and the Fibrin Binding Site. Wu T-P, Padmanabhan KP, Tulinsky A Blood Coagul. Fibrinolysis 5 157- (1994)
  3. Lysine(Slash)Fibrin Binding Sites of Kringles Modeled After the Structure of Kringle 1 of Prothrombin. Tulinsky A, Park CH, Mao B, Llinas M Proteins 3 85- (1988)