1cde Citations

Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase.

Proc Natl Acad Sci U S A 89 6114-8 (1992)
Cited: 60 times
EuropePMC logo PMID: 1631098

Abstract

The three-dimensional structure of phosphoribosylglycinamide formyltransferase (10-formyltetrahydrofolate:5'-phosphoribosylglycinamide formyltransferase, EC 2.1.2.2) has been solved both as an apoenzyme at 2.8-A resolution and as a ternary complex with the substrate glycinamide ribonucleotide and a folate inhibitor at 2.5-A resolution. The structure is a modified doubly wound alpha/beta sheet with flexibility in the active site, including a disordered loop in the apo structure, which is ordered in the ternary complex structure. This enzyme is a target for anti-cancer therapy and now for structure-based drug design.

Reviews - 1cde mentioned but not cited (1)

  1. Structural biology of the purine biosynthetic pathway. Zhang Y, Morar M, Ealick SE. Cell Mol Life Sci 65 3699-3724 (2008)

Articles - 1cde mentioned but not cited (12)

  1. Assigning folds to the proteins encoded by the genome of Mycoplasma genitalium. Fischer D, Eisenberg D. Proc Natl Acad Sci U S A 94 11929-11934 (1997)
  2. Dynamic allostery can drive cold adaptation in enzymes. Saavedra HG, Wrabl JO, Anderson JA, Li J, Hilser VJ. Nature 558 324-328 (2018)
  3. Insights into the transposable mobilome of Paracoccus spp. (Alphaproteobacteria). Dziewit L, Baj J, Szuplewska M, Maj A, Tabin M, Czyzkowska A, Skrzypczyk G, Adamczuk M, Sitarek T, Stawinski P, Tudek A, Wanasz K, Wardal E, Piechucka E, Bartosik D. PLoS One 7 e32277 (2012)
  4. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. Houben B, Michiels E, Ramakers M, Konstantoulea K, Louros N, Verniers J, van der Kant R, De Vleeschouwer M, Chicória N, Vanpoucke T, Gallardo R, Schymkowitz J, Rousseau F. EMBO J 39 e102864 (2020)
  5. Native-state conformational dynamics of GART: a regulatory pH-dependent coil-helix transition examined by electrostatic calculations. Morikis D, Elcock AH, Jennings PA, McCammon JA. Protein Sci 10 2363-2378 (2001)
  6. Proton transfer dynamics of GART: the pH-dependent catalytic mechanism examined by electrostatic calculations. Morikis D, Elcock AH, Jennings PA, McCammon JA. Protein Sci 10 2379-2392 (2001)
  7. Automated protein motif generation in the structure-based protein function prediction tool ProMOL. Osipovitch M, Lambrecht M, Baker C, Madha S, Mills JL, Craig PA, Bernstein HJ. J Struct Funct Genomics 16 101-111 (2015)
  8. Morphological and Biochemical Diversity of Shallot Landraces Preserved Along the Croatian Coast. Major N, Goreta Ban S, Urlić B, Ban D, Dumičić G, Perković J. Front Plant Sci 9 1749 (2018)
  9. PMFF: Development of a Physics-Based Molecular Force Field for Protein Simulation and Ligand Docking. Hwang SB, Lee CJ, Lee S, Ma S, Kang YM, Cho KH, Kim SY, Kwon OY, Yoon CN, Kang YK, Yoon JH, Nam KY, Kim SG, In Y, Chai HH, Acree WE, Grant JA, Gibson KD, Jhon MS, Scheraga HA, No KT. J Phys Chem B 124 974-989 (2020)
  10. PvdF of pyoverdin biosynthesis is a structurally unique N10-formyltetrahydrofolate-dependent formyltransferase. Kenjić N, Hoag MR, Moraski GC, Caperelli CA, Moran GR, Lamb AL. Arch Biochem Biophys 664 40-50 (2019)
  11. Predicting flexible loop regions that interact with ligands: the challenge of accurate scoring. Danielson ML, Lill MA. Proteins 80 246-260 (2012)
  12. Expression, crystallization and preliminary X-ray analysis of the phosphoribosylglycinamide formyltransferase from Streptococcus mutans. Zhai F, Liu X, Ruan J, Li J, Liu Z, Hu Y, Li S. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 287-290 (2011)


Reviews citing this publication (5)

  1. Aminoacyl-tRNA synthesis. Ibba M, Soll D. Annu Rev Biochem 69 617-650 (2000)
  2. FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Krupenko SA. Chem Biol Interact 178 84-93 (2009)
  3. Modular evolution of the purine biosynthetic pathway. Kappock TJ, Ealick SE, Stubbe J. Curr Opin Chem Biol 4 567-572 (2000)
  4. Enzymes of nucleotide synthesis. Smith JL. Curr Opin Struct Biol 5 752-757 (1995)
  5. Enzymes required for the biosynthesis of N-formylated sugars. Holden HM, Thoden JB, Gilbert M. Curr Opin Struct Biol 41 1-9 (2016)

Articles citing this publication (42)

  1. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Reimer JM, Aloise MN, Harrison PM, Schmeing TM. Nature 529 239-242 (2016)
  2. Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet. Schmitt E, Panvert M, Blanquet S, Mechulam Y. EMBO J 17 6819-6826 (1998)
  3. Combinatorial protein engineering by incremental truncation. Ostermeier M, Nixon AE, Shim JH, Benkovic SJ. Proc Natl Acad Sci U S A 96 3562-3567 (1999)
  4. A combinatorial approach to hybrid enzymes independent of DNA homology. Ostermeier M, Shim JH, Benkovic SJ. Nat Biotechnol 17 1205-1209 (1999)
  5. Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration. Collakova E, Goyer A, Naponelli V, Krassovskaya I, Gregory JF, Hanson AD, Shachar-Hill Y. Plant Cell 20 1818-1832 (2008)
  6. The human purH gene product, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase. Cloning, sequencing, expression, purification, kinetic analysis, and domain mapping. Rayl EA, Moroson BA, Beardsley GP. J Biol Chem 271 2225-2233 (1996)
  7. Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli. Nygaard P, Smith JM. J Bacteriol 175 3591-3597 (1993)
  8. Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli. Nagy PL, Marolewski A, Benkovic SJ, Zalkin H. J Bacteriol 177 1292-1298 (1995)
  9. Structure and function of both domains of ArnA, a dual function decarboxylase and a formyltransferase, involved in 4-amino-4-deoxy-L-arabinose biosynthesis. Williams GJ, Breazeale SD, Raetz CR, Naismith JH. J Biol Chem 280 23000-23008 (2005)
  10. Structure of crystalline Escherichia coli methionyl-tRNA(f)Met formyltransferase: comparison with glycinamide ribonucleotide formyltransferase. Schmitt E, Blanquet S, Mechulam Y. EMBO J 15 4749-4758 (1996)
  11. X-ray crystal structure of aminoimidazole ribonucleotide synthetase (PurM), from the Escherichia coli purine biosynthetic pathway at 2.5 A resolution. Li C, Kappock TJ, Stubbe J, Weaver TM, Ealick SE. Structure 7 1155-1166 (1999)
  12. AG2034: a novel inhibitor of glycinamide ribonucleotide formyltransferase. Boritzki TJ, Barlett CA, Zhang C, Howland EF. Invest New Drugs 14 295-303 (1996)
  13. Horizontal Gene Transfer to a Defensive Symbiont with a Reduced Genome in a Multipartite Beetle Microbiome. Waterworth SC, Flórez LV, Rees ER, Hertweck C, Kaltenpoth M, Kwan JC. mBio 11 e02430-19 (2020)
  14. Thermodynamic characterization of monomeric and dimeric forms of CcdB (controller of cell division or death B protein). Bajaj K, Chakshusmathi G, Bachhawat-Sikder K, Surolia A, Varadarajan R. Biochem J 380 409-417 (2004)
  15. purU, a source of formate for purT-dependent phosphoribosyl-N-formylglycinamide synthesis. Nagy PL, McCorkle GM, Zalkin H. J Bacteriol 175 7066-7073 (1993)
  16. Crystal structure and mechanism of the Escherichia coli ArnA (PmrI) transformylase domain. An enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance. Gatzeva-Topalova PZ, May AP, Sousa MC. Biochemistry 44 5328-5338 (2005)
  17. Crystal structure of Escherichia coli PurE, an unusual mutase in the purine biosynthetic pathway. Mathews II, Kappock TJ, Stubbe J, Ealick SE. Structure 7 1395-1406 (1999)
  18. Mapping the active site of the Haemophilus influenzae methionyl-tRNA formyltransferase: residues important for catalysis and tRNA binding. Newton DT, Mangroo D. Biochem J 339 ( Pt 1) 63-69 (1999)
  19. Suppressor mutations in Escherichia coli methionyl-tRNA formyltransferase: role of a 16-amino acid insertion module in initiator tRNA recognition. Ramesh V, Gite S, Li Y, RajBhandary UL. Proc Natl Acad Sci U S A 94 13524-13529 (1997)
  20. Peptide deformylase inhibitors as potent antimycobacterial agents. Teo JW, Thayalan P, Beer D, Yap AS, Nanjundappa M, Ngew X, Duraiswamy J, Liung S, Dartois V, Schreiber M, Hasan S, Cynamon M, Ryder NS, Yang X, Weidmann B, Bracken K, Dick T, Mukherjee K. Antimicrob Agents Chemother 50 3665-3673 (2006)
  21. Domain structure of rat 10-formyltetrahydrofolate dehydrogenase. Resolution of the amino-terminal domain as 10-formyltetrahydrofolate hydrolase. Krupenko SA, Wagner C, Cook RJ. J Biol Chem 272 10273-10278 (1997)
  22. New role for the ankyrin repeat revealed by a study of the N-formyltransferase from Providencia alcalifaciens. Woodford CR, Thoden JB, Holden HM. Biochemistry 54 631-638 (2015)
  23. Structure of a sugar N-formyltransferase from Campylobacter jejuni. Thoden JB, Goneau MF, Gilbert M, Holden HM. Biochemistry 52 6114-6126 (2013)
  24. A pH-dependent stabilization of an active site loop observed from low and high pH crystal structures of mutant monomeric glycinamide ribonucleotide transformylase at 1.8 to 1.9 A. Su Y, Yamashita MM, Greasley SE, Mullen CA, Shim JH, Jennings PA, Benkovic SJ, Wilson IA. J Mol Biol 281 485-499 (1998)
  25. Lysine 207 as the site of cross-linking between the 3'-end of Escherichia coli initiator tRNA and methionyl-tRNA formyltransferase. Gite S, RajBhandary UL. J Biol Chem 272 5305-5312 (1997)
  26. Conformational selection in silico: loop latching motions and ligand binding in enzymes. Wong S, Jacobson MP. Proteins 71 153-164 (2008)
  27. Induced fit of a peptide loop of methionyl-tRNA formyltransferase triggered by the initiator tRNA substrate. Ramesh V, Mayer C, Dyson MR, Gite S, RajBhandary UL. Proc Natl Acad Sci U S A 96 875-880 (1999)
  28. Molecular structure of an N-formyltransferase from Providencia alcalifaciens O30. Genthe NA, Thoden JB, Benning MM, Holden HM. Protein Sci 24 976-986 (2015)
  29. Conformationally restricted analogues designed for selective inhibition of GAR Tfase versus thymidylate synthase or dihydrofolate reductase. Boger DL, Labroli MA, Marsilje TH, Jin Q, Hedrick MP, Baker SJ, Shim JH, Benkovic SJ. Bioorg Med Chem 8 1075-1086 (2000)
  30. A single mutation disrupts the pH-dependent dimerization of glycinamide ribonucleotide transformylase. Mullen CA, Jennings PA. J Mol Biol 276 819-827 (1998)
  31. Structures of glycinamide ribonucleotide transformylase (PurN) from Mycobacterium tuberculosis reveal a novel dimer with relevance to drug discovery. Zhang Z, Caradoc-Davies TT, Dickson JM, Baker EN, Squire CJ. J Mol Biol 389 722-733 (2009)
  32. Structure of the Escherichia coli ArnA N-formyltransferase domain in complex with N(5) -formyltetrahydrofolate and UDP-Ara4N. Genthe NA, Thoden JB, Holden HM. Protein Sci 25 1555-1562 (2016)
  33. A quantum chemical study of the water-assisted mechanism in one-carbon unit transfer reaction catalyzed by glycinamide ribonucleotide transformylase. Qiao QA, Cai ZT, Feng DC, Jiang YS. Biophys Chem 110 259-266 (2004)
  34. On the structural and functional modularity of glycinamide ribonucleotide formyltransferases. Lee SG, Lutz S, Benkovic SJ. Protein Sci 12 2206-2214 (2003)
  35. Structures and reaction mechanisms of the two related enzymes, PurN and PurU. Sampei G, Kanagawa M, Baba S, Shimasaki T, Taka H, Mitsui S, Fujiwara S, Yanagida Y, Kusano M, Suzuki S, Terao K, Kawai H, Fukai Y, Nakagawa N, Ebihara A, Kuramitsu S, Yokoyama S, Kawai G. J Biochem 154 569-579 (2013)
  36. The pH dependence of stability of the activation helix and the catalytic site of GART. Morikis D, Elcock AH, Jennings PA, McCammon JA. Biophys Chem 105 279-291 (2003)
  37. Human glycinamide ribonucleotide transformylase: active site mutants as mechanistic probes. Manieri W, Moore ME, Soellner MB, Tsang P, Caperelli CA. Biochemistry 46 156-163 (2007)
  38. Identification of Active Site Residues of the Siderophore Synthesis Enzyme PvdF and Evidence for Interaction of PvdF with a Substrate-Providing Enzyme. Philem P, Kleffmann T, Gai S, Hawkins BC, Wilbanks SM, Lamont IL. Int J Mol Sci 22 2211 (2021)
  39. Novel nonclassical inhibitors of glycinamide ribonucleotide formyltransferase: 10-formyl and 10-hydroxymethyl derivatives of 5,8,10-trideazapteroic acid. Liu L, Nair MG, Kisliuk RL. J Mol Recognit 9 169-174 (1996)
  40. A quantum chemical study on the mechanism of glycinamide ribonucleotide transformylase inhibitor: 10-Formyl-5,8,10-trideazafolic acid. Qiao QA, Jin Y, Yang C, Zhang Z, Wang M. Biophys Chem 118 78-83 (2005)
  41. Stereoselective Synthesis of β-Glycinamide Ribonucleotide. Ngu L, Ray D, Watson SS, Beuning PJ, Ondrechen MJ, O'Doherty GA. Molecules 27 2528 (2022)
  42. Structural features of Cryptococcus neoformans bifunctional GAR/AIR synthetase may present novel antifungal drug targets. Chua SMH, Wizrah MSI, Luo Z, Lim BYJ, Kappler U, Kobe B, Fraser JA. J Biol Chem 297 101091 (2021)


Related citations provided by authors (2)