1ca2 Citations

Refined structure of human carbonic anhydrase II at 2.0 A resolution.

Proteins 4 274-82 (1988)
Related entries: 5cac, 4cac

Cited: 116 times
EuropePMC logo PMID: 3151019

Abstract

The structure of human erythrocytic carbonic anhydrase II has been refined by constrained and restrained structure-factor least-squares refinement at 2.0 A resolution. The conventional crystallographic R value is 17.3%. Of 167 solvent molecules associated with the protein, four are buried and stabilize secondary structure elements. The zinc ion is ligated to three histidyl residues and one water molecule in a nearly tetrahedral geometry. In addition to the zinc-bound water, seven more water molecules are identified in the active site. Assuming that Glu-106 is deprotonated at pH 8.5, some of the hydrogen bond donor-acceptor relations in the active site can be assigned and are described here in detail. The O gamma 1 atom of Thr-199 donates its proton to the O epsilon 1 atom of Glu-106 and can function as a hydrogen bond acceptor only in additional hydrogen bonds.

Reviews - 1ca2 mentioned but not cited (2)

Articles - 1ca2 mentioned but not cited (12)

  1. Derivation of rules for comparative protein modeling from a database of protein structure alignments. Sali A, Overington JP. Protein Sci. 3 1582-1596 (1994)
  2. Structural analysis based on state-space modeling. Stultz CM, White JV, Smith TF. Protein Sci. 2 305-314 (1993)
  3. Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues. Reshetnyak YK, Koshevnik Y, Burstein EA. Biophys. J. 81 1735-1758 (2001)
  4. Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach. Pang YP, Xu K, Yazal JE, Prendergas FG. Protein Sci. 9 1857-1865 (2000)
  5. Iterative in situ click chemistry creates antibody-like protein-capture agents. Agnew HD, Rohde RD, Millward SW, Nag A, Yeo WS, Hein JE, Pitram SM, Tariq AA, Burns VM, Krom RJ, Fokin VV, Sharpless KB, Heath JR. Angew. Chem. Int. Ed. Engl. 48 4944-4948 (2009)
  6. Undistorted structural analysis of soluble proteins by attenuated total reflectance infrared spectroscopy. Goldberg ME, Chaffotte AF. Protein Sci. 14 2781-2792 (2005)
  7. On the evolutionary conservation of hydrogen bonds made by buried polar amino acids: the hidden joists, braces and trusses of protein architecture. Worth CL, Blundell TL. BMC Evol. Biol. 10 161 (2010)
  8. Too packed to change: side-chain packing and site-specific substitution rates in protein evolution. Marcos ML, Echave J. PeerJ 3 e911 (2015)
  9. Effects of silica nanoparticle supported ionic liquid as additive on thermal reversibility of human carbonic anhydrase II. Fallah-Bagheri A, Saboury AA, Ma'mani L, Taghizadeh M, Khodarahmi R, Ranjbar S, Bohlooli M, Shafiee A, Foroumadi A, Sheibani N, Moosavi-Movahedi AA. Int. J. Biol. Macromol. 51 933-938 (2012)
  10. Physiological responses of Daphnia pulex to acid stress. Weber AK, Pirow R. BMC Physiol. 9 9 (2009)
  11. Structure of a monoclinic polymorph of human carbonic anhydrase II with a doubled a axis. Robbins AH, Domsic JF, Agbandje-McKenna M, McKenna R. Acta Crystallogr. D Biol. Crystallogr. 66 628-634 (2010)
  12. Hydrophobic substituents of the phenylmethylsulfamide moiety can be used for the development of new selective carbonic anhydrase inhibitors. De Simone G, Pizika G, Monti SM, Di Fiore A, Ivanova J, Vozny I, Trapencieris P, Zalubovskis R, Supuran CT, Alterio V. Biomed Res Int 2014 523210 (2014)


Reviews citing this publication (12)

  1. Plant Carbonic Anhydrases: Structures, Locations, Evolution, and Physiological Roles. DiMario RJ, Clayton H, Mukherjee A, Ludwig M, Moroney JV. Mol Plant 10 30-46 (2017)
  2. Insights into the role of reactive sulfhydryl groups of Carbonic Anhydrase III and VII during oxidative damage. Monti DM, De Simone G, Langella E, Supuran CT, Di Fiore A, Monti SM. J Enzyme Inhib Med Chem 32 5-12 (2017)
  3. Probing the surface of human carbonic anhydrase for clues towards the design of isoform specific inhibitors. Pinard MA, Mahon B, McKenna R. Biomed Res Int 2015 453543 (2015)
  4. Carbonic anhydrases in photosynthetic cells of higher plants. Rudenko NN, Ignatova LK, Fedorchuk TP, Ivanov BN. Biochemistry Mosc. 80 674-687 (2015)
  5. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Carta F, Supuran CT, Scozzafava A. Future Med Chem 6 1149-1165 (2014)
  6. Structure, function and applications of carbonic anhydrase isozymes. Imtaiyaz Hassan M, Shajee B, Waheed A, Ahmad F, Sly WS. Bioorg. Med. Chem. 21 1570-1582 (2013)
  7. Exploiting the hydrophobic and hydrophilic binding sites for designing carbonic anhydrase inhibitors. De Simone G, Alterio V, Supuran CT. Expert Opin Drug Discov 8 793-810 (2013)
  8. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. DeCoursey TE. Physiol. Rev. 93 599-652 (2013)
  9. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM. Chem. Rev. 108 946-1051 (2008)
  10. Inhibition and catalysis of carbonic anhydrase. Recent crystallographic analyses. Liljas A, Håkansson K, Jonsson BH, Xue Y. Eur. J. Biochem. 219 1-10 (1994)
  11. Internal water molecules and H-bonding in biological macromolecules: a review of structural features with functional implications. Meyer E. Protein Sci. 1 1543-1562 (1992)
  12. Insulin hexamers: new conformations and applications. Brader ML, Dunn MF. Trends Biochem. Sci. 16 341-345 (1991)

Articles citing this publication (90)

  1. Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. Håkansson K, Carlsson M, Svensson LA, Liljas A. J. Mol. Biol. 227 1192-1204 (1992)
  2. Analysis of zinc binding sites in protein crystal structures. Alberts IL, Nadassy K, Wodak SJ. Protein Sci. 7 1700-1716 (1998)
  3. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Alterio V, Hilvo M, Di Fiore A, Supuran CT, Pan P, Parkkila S, Scaloni A, Pastorek J, Pastorekova S, Pedone C, Scozzafava A, Monti SM, De Simone G. Proc. Natl. Acad. Sci. U.S.A. 106 16233-16238 (2009)
  4. The SWISS-PROT protein sequence data bank. Bairoch A, Boeckmann B. Nucleic Acids Res. 19 Suppl 2247-2249 (1991)
  5. The SWISS-PROT protein sequence data bank. Bairoch A, Boeckmann B. Nucleic Acids Res. 20 Suppl 2019-2022 (1992)
  6. Zinc binding in proteins and solution: a simple but accurate nonbonded representation. Stote RH, Karplus M. Proteins 23 12-31 (1995)
  7. A human transmembrane protein-tyrosine-phosphatase, PTP zeta, is expressed in brain and has an N-terminal receptor domain homologous to carbonic anhydrases. Krueger NX, Saito H. Proc. Natl. Acad. Sci. U.S.A. 89 7417-7421 (1992)
  8. Identification of a carbonic anhydrase-like domain in the extracellular region of RPTP gamma defines a new subfamily of receptor tyrosine phosphatases. Barnea G, Silvennoinen O, Shaanan B, Honegger AM, Canoll PD, D'Eustachio P, Morse B, Levy JB, Laforgia S, Huebner K. Mol. Cell. Biol. 13 1497-1506 (1993)
  9. Kinetic and docking studies of phenol-based inhibitors of carbonic anhydrase isoforms I, II, IX and XII evidence a new binding mode within the enzyme active site. Durdagi S, Şentürk M, Ekinci D, Balaydın HT, Göksu S, Küfrevioğlu Öİ, Innocenti A, Scozzafava A, Supuran CT. Bioorg. Med. Chem. 19 1381-1389 (2011)
  10. Common spatial arrangements of backbone fragments in homologous and non-homologous proteins. Alexandrov NN, Takahashi K, Go N. J. Mol. Biol. 225 5-9 (1992)
  11. Crystallographic studies of inhibitor binding sites in human carbonic anhydrase II: a pentacoordinated binding of the SCN- ion to the zinc at high pH. Eriksson AE, Kylsten PM, Jones TA, Liljas A. Proteins 4 283-293 (1988)
  12. Structure determination of murine mitochondrial carbonic anhydrase V at 2.45-A resolution: implications for catalytic proton transfer and inhibitor design. Boriack-Sjodin PA, Heck RW, Laipis PJ, Silverman DN, Christianson DW. Proc. Natl. Acad. Sci. U.S.A. 92 10949-10953 (1995)
  13. Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations. Carta F, Aggarwal M, Maresca A, Scozzafava A, McKenna R, Supuran CT. Chem. Commun. (Camb.) 48 1868-1870 (2012)
  14. Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. Schaefer P, Riccardi D, Cui Q. J Chem Phys 123 014905 (2005)
  15. Crystal structure of human carbonic anhydrase XIII and its complex with the inhibitor acetazolamide. Di Fiore A, Monti SM, Hilvo M, Parkkila S, Romano V, Scaloni A, Pedone C, Scozzafava A, Supuran CT, De Simone G. Proteins 74 164-175 (2009)
  16. Colorimetric protein sensing by controlled assembly of gold nanoparticles functionalized with synthetic receptors. Aili D, Selegård R, Baltzer L, Enander K, Liedberg B. Small 5 2445-2452 (2009)
  17. Sulfonamides incorporating 1,3,5-triazine moieties selectively and potently inhibit carbonic anhydrase transmembrane isoforms IX, XII and XIV over cytosolic isoforms I and II: Solution and X-ray crystallographic studies. Carta F, Garaj V, Maresca A, Wagner J, Avvaru BS, Robbins AH, Scozzafava A, McKenna R, Supuran CT. Bioorg. Med. Chem. 19 3105-3119 (2011)
  18. Refined structure of bovine carbonic anhydrase III at 2.0 A resolution. Eriksson AE, Liljas A. Proteins 16 29-42 (1993)
  19. Elucidation of the proton transport mechanism in human carbonic anhydrase II. Maupin CM, McKenna R, Silverman DN, Voth GA. J. Am. Chem. Soc. 131 7598-7608 (2009)
  20. "Proton holes" in long-range proton transfer reactions in solution and enzymes: A theoretical analysis. Riccardi D, König P, Prat-Resina X, Yu H, Elstner M, Frauenheim T, Cui Q. J. Am. Chem. Soc. 128 16302-16311 (2006)
  21. The importance of being knotted: effects of the C-terminal knot structure on enzymatic and mechanical properties of bovine carbonic anhydrase II. Alam MT, Yamada T, Carlsson U, Ikai A. FEBS Lett. 519 35-40 (2002)
  22. Beta-breakers: an aperiodic secondary structure. Colloc'h N, Cohen FE. J. Mol. Biol. 221 603-613 (1991)
  23. Crystal structures of the human adiponectin receptors. Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Nakamura Y, Hosaka T, Motoyama K, Ikeda M, Wakiyama M, Terada T, Ohsawa N, Hato M, Ogasawara S, Hino T, Murata T, Iwata S, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Shirouzu M, Yamauchi T, Kadowaki T, Yokoyama S. Nature 520 312-316 (2015)
  24. Knotted vs. unknotted proteins: evidence of knot-promoting loops. Potestio R, Micheletti C, Orland H. PLoS Comput. Biol. 6 e1000864 (2010)
  25. Purification and kinetic analysis of recombinant CA XII, a membrane carbonic anhydrase overexpressed in certain cancers. Ulmasov B, Waheed A, Shah GN, Grubb JH, Sly WS, Tu C, Silverman DN. Proc. Natl. Acad. Sci. U.S.A. 97 14212-14217 (2000)
  26. Toward theoretical analysis of long-range proton transfer kinetics in biomolecular pumps. König PH, Ghosh N, Hoffmann M, Elstner M, Tajkhorshid E, Frauenheim T, Cui Q. J Phys Chem A 110 548-563 (2006)
  27. Structure of cobalt carbonic anhydrase complexed with bicarbonate. Håkansson K, Wehnert A. J. Mol. Biol. 228 1212-1218 (1992)
  28. Crystallographic studies of the binding of protonated and unprotonated inhibitors to carbonic anhydrase using hydrogen sulphide and nitrate anions. Mangani S, Håkansson K. Eur. J. Biochem. 210 867-871 (1992)
  29. Carbonic anhydrase activators: L-Adrenaline plugs the active site entrance of isozyme II, activating better isoforms I, IV, VA, VII, and XIV. Temperini C, Innocenti A, Scozzafava A, Mastrolorenzo A, Supuran CT. Bioorg. Med. Chem. Lett. 17 628-635 (2007)
  30. A method for detecting hydrophobic patches on protein surfaces. Lijnzaad P, Berendsen HJ, Argos P. Proteins 26 192-203 (1996)
  31. Crystallographic analysis of Thr-200-->His human carbonic anhydrase II and its complex with the substrate, HCO3-. Xue Y, Vidgren J, Svensson LA, Liljas A, Jonsson BH, Lindskog S. Proteins 15 80-87 (1993)
  32. Kinetic studies of pea carbonic anhydrase. Johansson IM, Forsman C. Eur. J. Biochem. 218 439-446 (1993)
  33. Cis-trans isomerization is rate-determining in the reactivation of denatured human carbonic anhydrase II as evidenced by proline isomerase. Fransson C, Freskgård PO, Herbertsson H, Johansson A, Jonasson P, Mårtensson LG, Svensson M, Jonsson BH, Carlsson U. FEBS Lett. 296 90-94 (1992)
  34. X-ray structure of the first `extremo-α-carbonic anhydrase', a dimeric enzyme from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Di Fiore A, Capasso C, De Luca V, Monti SM, Carginale V, Supuran CT, Scozzafava A, Pedone C, Rossi M, De Simone G. Acta Crystallogr. D Biol. Crystallogr. 69 1150-1159 (2013)
  35. Kinemages--simple macromolecular graphics for interactive teaching and publication. Richardson DC, Richardson JS. Trends Biochem. Sci. 19 135-138 (1994)
  36. Folding pathways of a knotted protein with a realistic atomistic force field. a Beccara S, Škrbić T, Covino R, Micheletti C, Faccioli P. PLoS Comput. Biol. 9 e1003002 (2013)
  37. Reevaluation of the electrophoretic migration behavior of soluble globular proteins in the native and detergent-denatured states in polyacrylamide gels. Westerhuis WH, Sturgis JN, Niederman RA. Anal. Biochem. 284 143-152 (2000)
  38. Preferred orientations of His64 in human carbonic anhydrase II. Maupin CM, Voth GA. Biochemistry 46 2938-2947 (2007)
  39. The structure of human carbonic anhydrase II in complex with bromide and azide. Jönsson BM, Håkansson K, Liljas A. FEBS Lett. 322 186-190 (1993)
  40. Restoring catalytic activity to the human carbonic anhydrase (CA) related proteins VIII, X and XI affords isoforms with high catalytic efficiency and susceptibility to anion inhibition. Nishimori I, Vullo D, Minakuchi T, Scozzafava A, Capasso C, Supuran CT. Bioorg. Med. Chem. Lett. 23 256-260 (2013)
  41. Pretransition and progressive softening of bovine carbonic anhydrase II as probed by single molecule atomic force microscopy. Afrin R, Alam MT, Ikai A. Protein Sci. 14 1447-1457 (2005)
  42. Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide. Huang S, Hainzl T, Grundström C, Forsman C, Samuelsson G, Sauer-Eriksson AE. PLoS ONE 6 e28458 (2011)
  43. Mechanistic comparison of artificial-chaperone-assisted and unassisted refolding of urea-denatured carbonic anhydrase B. Hanson PE, Gellman SH. Fold Des 3 457-468 (1998)
  44. Chemical rescue of enzymes: proton transfer in mutants of human carbonic anhydrase II. Maupin CM, Castillo N, Taraphder S, Tu C, McKenna R, Silverman DN, Voth GA. J. Am. Chem. Soc. 133 6223-6234 (2011)
  45. Origins of enhanced proton transport in the Y7F mutant of human carbonic anhydrase II. Maupin CM, Saunders MG, Thorpe IF, McKenna R, Silverman DN, Voth GA. J. Am. Chem. Soc. 130 11399-11408 (2008)
  46. New insights into the mechanistic details of the carbonic anhydrase cycle as derived from the model system [(NH(3))(3)Zn(OH)](+)/CO(2): how does the H(2)O/HCO(3)(-) replacement step occur? Mauksch M, Bräuer M, Weston J, Anders E. Chembiochem 2 190-198 (2001)
  47. Molecular dynamics simulations of human carbonic anhydrase II: insight into experimental results and the role of solvation. Lu D, Voth GA. Proteins 33 119-134 (1998)
  48. A Zn(II)-binding site engineered into retinol-binding protein exhibits metal-ion specificity and allows highly efficient affinity purification with a newly designed metal ligand. Schmidt AM, Müller HN, Skerra A. Chem. Biol. 3 645-653 (1996)
  49. The substrate-binding site in Cu nitrite reductase and its similarity to Zn carbonic anhydrase. Strange RW, Dodd FE, Abraham ZH, Grossmann JG, Brüser T, Eady RR, Smith BE, Hasnain SS. Nat. Struct. Biol. 2 287-292 (1995)
  50. Proton transfer from exogenous donors in catalysis by human carbonic anhydrase II. Elder I, Tu C, Ming LJ, McKenna R, Silverman DN. Arch. Biochem. Biophys. 437 106-114 (2005)
  51. Manganese-substituted carbonic anhydrase as a new peroxidase. Okrasa K, Kazlauskas RJ. Chemistry 12 1587-1596 (2006)
  52. The extent of pyrene excimer fluorescence emission is a reflector of distance and flexibility: analysis of the segment linking the LDL receptor-binding and tetramerization domains of apolipoprotein E3. Bains GK, Kim SH, Sorin EJ, Narayanaswami V. Biochemistry 51 6207-6219 (2012)
  53. Carbonic anhydrase activators: kinetic and X-ray crystallographic study for the interaction of D- and L-tryptophan with the mammalian isoforms I-XIV. Temperini C, Innocenti A, Scozzafava A, Supuran CT. Bioorg. Med. Chem. 16 8373-8378 (2008)
  54. Solvent hydrogen isotope effects and anion inhibition of CO2 hydration catalysed by carbonic anhydrase from Pisum sativum. Johansson IM, Forsman C. Eur. J. Biochem. 224 901-907 (1994)
  55. Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II. Xue Y, Liljas A, Jonsson BH, Lindskog S. Proteins 17 93-106 (1993)
  56. 1H nuclear magnetic resonance investigation of cobalt(II) substituted carbonic anhydrase. Banci L, Dugad LB, La Mar GN, Keating KA, Luchinat C, Pierattelli R. Biophys. J. 63 530-543 (1992)
  57. Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. De Simone G, Monti SM, Alterio V, Buonanno M, De Luca V, Rossi M, Carginale V, Supuran CT, Capasso C, Di Fiore A. Bioorg. Med. Chem. Lett. 25 2002-2006 (2015)
  58. Carbonic anhydrase inhibitors: crystallographic and solution binding studies for the interaction of a boron-containing aromatic sulfamide with mammalian isoforms I-XV. Di Fiore A, Monti SM, Innocenti A, Winum JY, De Simone G, Supuran CT. Bioorg. Med. Chem. Lett. 20 3601-3605 (2010)
  59. Car-Parrinello simulation of an O-H stretching envelope and potential of mean force of an intramolecular hydrogen bonded system: application to a Mannich base in solid state and in vacuum. Jezierska A, Panek JJ, Koll A, Mavri J. J Chem Phys 126 205101 (2007)
  60. The binding of human carbonic anhydrase II by functionalized folded polypeptide receptors. Andersson T, Lundquist M, Dolphin GT, Enander K, Jonsson BH, Nilsson JW, Baltzer L. Chem. Biol. 12 1245-1252 (2005)
  61. Activation of carbonic anhydrase II by active-site incorporation of histidine analogs. Elder I, Han S, Tu C, Steele H, Laipis PJ, Viola RE, Silverman DN. Arch. Biochem. Biophys. 421 283-289 (2004)
  62. Metal poison inhibition of carbonic anhydrase. Lindahl M, Svensson LA, Liljas A. Proteins 15 177-182 (1993)
  63. Functional role of Asp160 and the deprotonation mechanism of ammonium in the Escherichia coli ammonia channel protein AmtB. Lin Y, Cao Z, Mo Y. J Phys Chem B 113 4922-4929 (2009)
  64. Zn2+ binding to human calbindin D(28k) and the role of histidine residues. Bauer MC, Nilsson H, Thulin E, Frohm B, Malm J, Linse S. Protein Sci. 17 760-767 (2008)
  65. GroEL/ES-mediated refolding of human carbonic anhydrase II: role of N-terminal helices as recognition motifs for GroEL. Persson M, Aronsson G, Bergenhem N, Freskgård PO, Jonsson BH, Surin BP, Spangfort MD, Carlsson U. Biochim. Biophys. Acta 1247 195-200 (1995)
  66. Characterization of a folding intermediate of human carbonic anhydrase II: probing local mobility by electron paramagnetic resonance. Lindgren M, Svensson M, Freskgård PO, Carlsson U, Jonasson P, Mårtensson LG, Jonsson BH. Biophys. J. 69 202-213 (1995)
  67. Denatured states of human carbonic anhydrase II: an NMR study of hydrogen/deuterium exchange at tryptophan-indole-H(N) sites. Jonasson P, Kjellsson A, Sethson I, Jonsson BH. FEBS Lett. 445 361-365 (1999)
  68. Binding of cyanide, cyanate, and thiocyanate to human carbonic anhydrase II. Peng Z, Merz KM, Banci L. Proteins 17 203-216 (1993)
  69. Assessment of the CCSD and CCSD(T) coupled-cluster methods in calculating heats of formation for Zn complexes. Weaver MN, Yang Y, Merz KM. J Phys Chem A 113 10081-10088 (2009)
  70. Structural features that govern enzymatic activity in carbonic anhydrase from a low-temperature adapted fish, Chionodraco hamatus. Marino S, Hayakawa K, Hatada K, Benfatto M, Rizzello A, Maffia M, Bubacco L. Biophys. J. 93 2781-2790 (2007)
  71. A different structural feature for carbonic anhydrases in human erythrocytes. Demir N, Demir Y, Bakan E, Küfrevioğlu OI. Prep. Biochem. Biotechnol. 27 279-287 (1997)
  72. The structural comparison between membrane-associated human carbonic anhydrases provides insights into drug design of selective inhibitors. Alterio V, Pan P, Parkkila S, Buonanno M, Supuran CT, Monti SM, De Simone G. Biopolymers 101 769-778 (2014)
  73. Reshaping the folding energy landscape of human carbonic anhydrase II by a single point genetic mutation Pro237His. Jiang Y, Su JT, Zhang J, Wei X, Yan YB, Zhou HM. Int. J. Biochem. Cell Biol. 40 776-788 (2008)
  74. The unique structure of carbonic anhydrase αCA1 from Chlamydomonas reinhardtii. Suzuki K, Yang SY, Shimizu S, Morishita EC, Jiang J, Zhang F, Hoque MM, Sato Y, Tsunoda M, Sekiguchi T, Takénaka A. Acta Crystallogr. D Biol. Crystallogr. 67 894-901 (2011)
  75. X-ray crystallographic and kinetic investigations of 6-sulfamoyl-saccharin as a carbonic anhydrase inhibitor. Alterio V, Tanc M, Ivanova J, Zalubovskis R, Vozny I, Monti SM, Di Fiore A, De Simone G, Supuran CT. Org. Biomol. Chem. 13 4064-4069 (2015)
  76. Carbonic anhydrase from Vicia canencens leaves. Demir Y, Demir N, Küfrevioğlu OI. Prep. Biochem. Biotechnol. 29 235-244 (1999)
  77. The anticonvulsant sulfamide JNJ-26990990 and its S,S-dioxide analog strongly inhibit carbonic anhydrases: solution and X-ray crystallographic studies. Di Fiore A, De Simone G, Alterio V, Riccio V, Winum JY, Carta F, Supuran CT. Org. Biomol. Chem. 14 4853-4858 (2016)
  78. Carbonic anhydrases and their biotechnological applications. Boone CD, Habibzadegan A, Gill S, McKenna R. Biomolecules 3 553-562 (2013)
  79. Modeling the structure and proton transfer pathways of the mutant His-107-Tyr of human carbonic anhydrase II. Halder P, Taraphder S. J Mol Model 19 289-298 (2013)
  80. GroEL-induced topological dislocation of a substrate protein β-sheet core: a solution EPR spin-spin distance study. Owenius R, Jarl A, Jonsson BH, Carlsson U, Hammarström P. J Chem Biol 3 127-139 (2010)
  81. Binding affinity of substituted ureido-benzenesulfonamide ligands to the carbonic anhydrase receptor: a theoretical study of enzyme inhibition. Sahu C, Sen K, Pakhira S, Mondal B, Das AK. J Comput Chem 34 1907-1916 (2013)
  82. Carbonic anhydrase mimics for enhanced CO2 absorption in an amine-based capture solvent. Kelsey RA, Miller DA, Parkin SR, Liu K, Remias JE, Yang Y, Lightstone FC, Liu K, Lippert CA, Odom SA. Dalton Trans 45 324-333 (2016)
  83. Bile Acid Conjugated DNA Chimera that Conditionally Inhibits Carbonic Anhydrase-II in the Presence of MicroRNA-21. Chu X, Battle CH, Zhang N, Aryal GH, Mottamal M, Jayawickramarajah J. Bioconjug. Chem. 26 1606-1612 (2015)
  84. Prediction of distal residue participation in enzyme catalysis. Brodkin HR, DeLateur NA, Somarowthu S, Mills CL, Novak WR, Beuning PJ, Ringe D, Ondrechen MJ. Protein Sci. 24 762-778 (2015)
  85. Stabilization of anionic and neutral forms of a fluorophoric ligand at the active site of human carbonic anhydrase I. Manokaran S, Banerjee J, Mallik S, Srivastava DK. Biochim. Biophys. Acta 1804 1965-1973 (2010)
  86. Specific non-local interactions are not necessary for recovering native protein dynamics. Dasgupta B, Kasahara K, Kamiya N, Nakamura H, Kinjo AR. PLoS ONE 9 e91347 (2014)
  87. Sulfamates of methyl triterpenoates are effective and competitive inhibitors of carbonic anhydrase II. Schwarz S, Sommerwerk S, Lucas SD, Heller L, Csuk R. Eur J Med Chem 86 95-102 (2014)
  88. Two novel CAII mutations causing carbonic anhydrase II deficiency syndrome in two unrelated Chinese families. Pang Q, Qi X, Jiang Y, Wang O, Li M, Xing X, Dong J, Xia W. Metab Brain Dis 30 989-997 (2015)
  89. Identification of putative unfolding intermediates of the mutant His-107-tyr of human carbonic anhydrase II in a multidimensional property space. Halder P, Taraphder S. Proteins 84 726-743 (2016)
  90. Benzoxaborole as a new chemotype for carbonic anhydrase inhibition. Alterio V, Cadoni R, Esposito D, Vullo D, Fiore AD, Monti SM, Caporale A, Ruvo M, Sechi M, Dumy P, Supuran CT, De Simone G, Winum JY. Chem. Commun. (Camb.) 52 11983-11986 (2016)


Related citations provided by authors (4)

  1. Crystallographic Studies of Inhibitor Binding Sites in Human Carbonic Anhydrase II. A Pentacoordinated Binding of the Scn-Ion to the Zinc at High Ph. Eriksson AE, Kylsten PM, Jones TA, Liljas A Proteins 4 283- (1988)
  2. Structural Relationship of Human Erythrocyte Carbonic Anhydrase Isozymes B and C. Notstrand B, Vaara I, Kannan KK Isozymes-Molecular Structure 1 575- (1975)
  3. Crystal Structure of Human Erythrocyte Carbonic Anhydrase C. Vi. The Three-Dimensional Structure at High Resolution in Relation to Other Mammalian Carbonic Anhydrases. Kannan KK, Liljas A, Waara I, Bergsten P-C, Lovgren S, Strandberg B, Bengtsson U, Carlbom U, Fridborg K, Jarup L, Petef M Cold Spring Harb. Symp. Quant. Biol. 36 221- (1972)
  4. Crystal Structure of Human Carbonic Anhydrase C. Liljas A, Kannan KK, Bergsten P-C, Waara I, Fridborg K, Strandberg B, Carlbom U, Jarup L, Lovgren S, Petef M Nature New Biol. 235 131- (1972)