1c26 Citations

Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms.

Science 267 1498-502 (1995)
Cited: 314 times
EuropePMC logo PMID: 7878469

Abstract

The p53 protein is a tetrameric transcription factor that plays a central role in the prevention of neoplastic transformation. Oligomerization appears to be essential for the tumor suppressing activity of p53 because oligomerization-deficient p53 mutants cannot suppress the growth of carcinoma cell lines. The crystal structure of the tetramerization domain of p53 (residues 325 to 356) was determined at 1.7 angstrom resolution and refined to a crystallographic R factor of 19.2 percent. The monomer, which consists of a beta strand and an alpha helix, associates with a second monomer across an antiparallel beta sheet and an antiparallel helix-helix interface to form a dimer. Two of these dimers associate across a second and distinct parallel helix-helix interface to form the tetramer.

Reviews - 1c26 mentioned but not cited (10)

  1. The tumor suppressor p53: from structures to drug discovery. Joerger AC, Fersht AR. Cold Spring Harb Perspect Biol 2 a000919 (2010)
  2. The rebel angel: mutant p53 as the driving oncogene in breast cancer. Walerych D, Napoli M, Collavin L, Del Sal G. Carcinogenesis 33 2007-2017 (2012)
  3. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Chem Rev 114 6844-6879 (2014)
  4. Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Xu Z, Pone EJ, Al-Qahtani A, Park SR, Zan H, Casali P. Crit Rev Immunol 27 367-397 (2007)
  5. The supramolecular chemistry of β-sheets. Cheng PN, Pham JD, Nowick JS. J Am Chem Soc 135 5477-5492 (2013)
  6. Mutant TP53 posttranslational modifications: challenges and opportunities. Nguyen TA, Menendez D, Resnick MA, Anderson CW. Hum Mutat 35 738-755 (2014)
  7. Structure and apoptotic function of p73. Yoon MK, Ha JH, Lee MS, Chi SW. BMB Rep 48 81-90 (2015)
  8. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Wang H, Guo M, Wei H, Chen Y. Signal Transduct Target Ther 8 92 (2023)
  9. Fuzzy protein theory for disordered proteins. Fuxreiter M. Biochem Soc Trans 48 2557-2564 (2020)
  10. Potential of rescue and reactivation of tumor suppressor p53 for cancer therapy. Hibino E, Hiroaki H. Biophys Rev 14 267-275 (2022)

Articles - 1c26 mentioned but not cited (26)

  1. Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex. Tidow H, Melero R, Mylonas E, Freund SM, Grossmann JG, Carazo JM, Svergun DI, Valle M, Fersht AR. Proc Natl Acad Sci U S A 104 12324-12329 (2007)
  2. Simultaneous prediction of protein folding and docking at high resolution. Das R, André I, Shen Y, Wu Y, Lemak A, Bansal S, Arrowsmith CH, Szyperski T, Baker D. Proc Natl Acad Sci U S A 106 18978-18983 (2009)
  3. Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Joerger AC, Rajagopalan S, Natan E, Veprintsev DB, Robinson CV, Fersht AR. Proc Natl Acad Sci U S A 106 17705-17710 (2009)
  4. IDconverter and IDClight: conversion and annotation of gene and protein IDs. Alibés A, Yankilevich P, Cañada A, Díaz-Uriarte R. BMC Bioinformatics 8 9 (2007)
  5. The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. Okorokov AL, Sherman MB, Plisson C, Grinkevich V, Sigmundsson K, Selivanova G, Milner J, Orlova EV. EMBO J 25 5191-5200 (2006)
  6. Persistent homology analysis of protein structure, flexibility, and folding. Xia K, Wei GW. Int J Numer Method Biomed Eng 30 814-844 (2014)
  7. p53 Oligomerization is essential for its C-terminal lysine acetylation. Itahana Y, Ke H, Zhang Y. J Biol Chem 284 5158-5164 (2009)
  8. Intrinsically disordered regions of p53 family are highly diversified in evolution. Xue B, Brown CJ, Dunker AK, Uversky VN. Biochim Biophys Acta 1834 725-738 (2013)
  9. Determination of the structures of symmetric protein oligomers from NMR chemical shifts and residual dipolar couplings. Sgourakis NG, Lange OF, DiMaio F, André I, Fitzkee NC, Rossi P, Montelione GT, Bax A, Baker D. J Am Chem Soc 133 6288-6298 (2011)
  10. Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Higashimoto Y, Asanomi Y, Takakusagi S, Lewis MS, Uosaki K, Durell SR, Anderson CW, Appella E, Sakaguchi K. Biochemistry 45 1608-1619 (2006)
  11. Multiscale multiphysics and multidomain models--flexibility and rigidity. Xia K, Opron K, Wei GW. J Chem Phys 139 194109 (2013)
  12. Traditional biomolecular structure determination by NMR spectroscopy allows for major errors. Nabuurs SB, Spronk CA, Vuister GW, Vriend G. PLoS Comput Biol 2 e9 (2006)
  13. Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments. Akob DM, Mills HJ, Gihring TM, Kerkhof L, Stucki JW, Anastácio AS, Chin KJ, Küsel K, Palumbo AV, Watson DB, Kostka JE. Appl Environ Microbiol 74 3159-3170 (2008)
  14. Quaternary structure of the specific p53-DNA complex reveals the mechanism of p53 mutant dominance. Aramayo R, Sherman MB, Brownless K, Lurz R, Okorokov AL, Orlova EV. Nucleic Acids Res 39 8960-8971 (2011)
  15. Sequence-based prediction of protein binding mode landscapes. Horvath A, Miskei M, Ambrus V, Vendruscolo M, Fuxreiter M. PLoS Comput Biol 16 e1007864 (2020)
  16. Structure and kinetic stability of the p63 tetramerization domain. Natan E, Joerger AC. J Mol Biol 415 503-513 (2012)
  17. Tracing the evolution of the p53 tetramerization domain. Joerger AC, Wilcken R, Andreeva A. Structure 22 1301-1310 (2014)
  18. A super-potent tetramerized ACE2 protein displays enhanced neutralization of SARS-CoV-2 virus infection. Miller A, Leach A, Thomas J, McAndrew C, Bentley E, Mattiuzzo G, John L, Mirazimi A, Harris G, Gamage N, Carr S, Ali H, Van Montfort R, Rabbitts T. Sci Rep 11 10617 (2021)
  19. Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. Natan E, Endoh T, Haim-Vilmovsky L, Flock T, Chalancon G, Hopper JTS, Kintses B, Horvath P, Daruka L, Fekete G, Pál C, Papp B, Oszi E, Magyar Z, Marsh JA, Elcock AH, Babu MM, Robinson CV, Sugimoto N, Teichmann SA. Nat Struct Mol Biol 25 279-288 (2018)
  20. Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene. Doffe F, Carbonnier V, Tissier M, Leroy B, Martins I, Mattsson JSM, Micke P, Pavlova S, Pospisilova S, Smardova J, Joerger AC, Wiman KG, Kroemer G, Soussi T. Cell Death Differ 28 1477-1492 (2021)
  21. Multimeric antibodies with increased valency surpassing functional affinity and potency thresholds using novel formats. Miller A, Carr S, Rabbitts T, Ali H. MAbs 12 1752529 (2020)
  22. A fluid salt-bridging cluster and the stabilization of p53. Lwin TZ, Durant JJ, Bashford D. J Mol Biol 373 1334-1347 (2007)
  23. Tracing the protectors path from the germ line to the genome. Coutandin D, Ou HD, Löhr F, Dötsch V. Proc Natl Acad Sci U S A 107 15318-15325 (2010)
  24. Analysis of the TP53 Deleterious Single Nucleotide Polymorphisms Impact on Estrogen Receptor Alpha-p53 Interaction: A Machine Learning Approach. Chitrala KN, Nagarkatti M, Nagarkatti P, Yeguvapalli S. Int J Mol Sci 20 E2962 (2019)
  25. FuzPred: a web server for the sequence-based prediction of the context-dependent binding modes of proteins. Hatos A, Teixeira JMC, Barrera-Vilarmau S, Horvath A, Tosatto SCE, Vendruscolo M, Fuxreiter M. Nucleic Acids Res 51 W198-W206 (2023)
  26. Deep Molecular and In Silico Protein Analysis of p53 Alteration in Myelodysplastic Neoplasia and Acute Myeloid Leukemia. Madarász K, Mótyán JA, Bedekovics J, Miltényi Z, Ujfalusi A, Méhes G, Mokánszki A. Cells 11 3475 (2022)


Reviews citing this publication (67)

  1. p53, the cellular gatekeeper for growth and division. Levine AJ. Cell 88 323-331 (1997)
  2. The p53 pathway. Prives C, Hall PA. J Pathol 187 112-126 (1999)
  3. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. Uversky VN, Oldfield CJ, Dunker AK. J Mol Recognit 18 343-384 (2005)
  4. Structural biology of the tumor suppressor p53. Joerger AC, Fersht AR. Annu Rev Biochem 77 557-582 (2008)
  5. Twenty years of p53 research: structural and functional aspects of the p53 protein. May P, May E. Oncogene 18 7621-7636 (1999)
  6. MDM2--master regulator of the p53 tumor suppressor protein. Momand J, Wu HH, Dasgupta G. Gene 242 15-29 (2000)
  7. Rescuing the function of mutant p53. Bullock AN, Fersht AR. Nat Rev Cancer 1 68-76 (2001)
  8. Transcriptional regulation by p53: one protein, many possibilities. Laptenko O, Prives C. Cell Death Differ 13 951-961 (2006)
  9. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Joerger AC, Fersht AR. Annu Rev Biochem 85 375-404 (2016)
  10. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Joerger AC, Fersht AR. Oncogene 26 2226-2242 (2007)
  11. p53 in growth control and neoplasia. Gottlieb TM, Oren M. Biochim Biophys Acta 1287 77-102 (1996)
  12. Li-Fraumeni syndrome--a molecular and clinical review. Varley JM, Evans DG, Birch JM. Br J Cancer 76 1-14 (1997)
  13. The origins and evolution of the p53 family of genes. Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, Levine AJ. Cold Spring Harb Perspect Biol 2 a001198 (2010)
  14. Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Uversky VN. Chem Soc Rev 40 1623-1634 (2011)
  15. The role of tetramerization in p53 function. Chène P. Oncogene 20 2611-2617 (2001)
  16. The p53 Pathway in Glioblastoma. Zhang Y, Dube C, Gibert M, Cruickshanks N, Wang B, Coughlan M, Yang Y, Setiady I, Deveau C, Saoud K, Grello C, Oxford M, Yuan F, Abounader R. Cancers (Basel) 10 E297 (2018)
  17. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Jimenez GS, Khan SH, Stommel JM, Wahl GM. Oncogene 18 7656-7665 (1999)
  18. p53 mutation spectrum and load: the generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer. Hussain SP, Harris CC. Mutat Res 428 23-32 (1999)
  19. The emerging p53 gene family. Kaelin WG. J Natl Cancer Inst 91 594-598 (1999)
  20. Strategies for manipulating the p53 pathway in the treatment of human cancer. Hupp TR, Lane DP, Ball KL. Biochem J 352 Pt 1 1-17 (2000)
  21. Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar. Ogata K, Sato K, Tahirov TH. Curr Opin Struct Biol 13 40-48 (2003)
  22. Transcriptional Regulation by Wild-Type and Cancer-Related Mutant Forms of p53. Pfister NT, Prives C. Cold Spring Harb Perspect Med 7 a026054 (2017)
  23. P53 and IGFBP-3: apoptosis and cancer protection. Grimberg A. Mol Genet Metab 70 85-98 (2000)
  24. p53 Isoforms and Their Implications in Cancer. Vieler M, Sanyal S. Cancers (Basel) 10 E288 (2018)
  25. The 1995 Walter Hubert Lecture--molecular epidemiology of human cancer: insights from the mutational analysis of the p53 tumour-suppressor gene. Harris CC. Br J Cancer 73 261-269 (1996)
  26. p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis. Hussain SP, Harris CC. J Nippon Med Sch 73 54-64 (2006)
  27. FOXP3 ensembles in T-cell regulation. Li B, Samanta A, Song X, Furuuchi K, Iacono KT, Kennedy S, Katsumata M, Saouaf SJ, Greene MI. Immunol Rev 212 99-113 (2006)
  28. p53: emerging roles in stem cells, development and beyond. Jain AK, Barton MC. Development 145 dev158360 (2018)
  29. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Kamada R, Toguchi Y, Nomura T, Imagawa T, Sakaguchi K. Biopolymers 106 598-612 (2016)
  30. The Li-Fraumeni syndrome: an inherited susceptibility to cancer. Evans SC, Lozano G. Mol Med Today 3 390-395 (1997)
  31. p53--a natural cancer killer: structural insights and therapeutic concepts. Römer L, Klein C, Dehner A, Kessler H, Buchner J. Angew Chem Int Ed Engl 45 6440-6460 (2006)
  32. Drug discovery and mutant p53. Maslon MM, Hupp TR. Trends Cell Biol 20 542-555 (2010)
  33. Diffusion NMR spectroscopy: folding and aggregation of domains in p53. Dehner A, Kessler H. Chembiochem 6 1550-1565 (2005)
  34. Structural biology of the p53 tumour suppressor. Okorokov AL, Orlova EV. Curr Opin Struct Biol 19 197-202 (2009)
  35. Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy. Gronenborn AM, Clore GM. Crit Rev Biochem Mol Biol 30 351-385 (1995)
  36. Versatile functions of p53 protein in multicellular organisms. Chumakov PM. Biochemistry (Mosc) 72 1399-1421 (2007)
  37. p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Gencel-Augusto J, Lozano G. Genes Dev 34 1128-1146 (2020)
  38. Microbial-based therapy of cancer: current progress and future prospects. Bernardes N, Seruca R, Chakrabarty AM, Fialho AM. Bioeng Bugs 1 178-190 (2010)
  39. Exploiting the p53 pathway for the diagnosis and therapy of human cancer. Lane DP. Cold Spring Harb Symp Quant Biol 70 489-497 (2005)
  40. Allosteric modulation of protein oligomerization: an emerging approach to drug design. Gabizon R, Friedler A. Front Chem 2 9 (2014)
  41. Structural Evolution and Dynamics of the p53 Proteins. Chillemi G, Kehrloesser S, Bernassola F, Desideri A, Dötsch V, Levine AJ, Melino G. Cold Spring Harb Perspect Med 7 a028308 (2017)
  42. The Status of p53 Oligomeric and Aggregation States in Cancer. de Oliveira GAP, Petronilho EC, Pedrote MM, Marques MA, Vieira TCRG, Cino EA, Silva JL. Biomolecules 10 E548 (2020)
  43. DNA Damaged Induced Cell Death in Oocytes. Gebel J, Tuppi M, Sänger N, Schumacher B, Dötsch V. Molecules 25 E5714 (2020)
  44. Energetics of oligomeric protein folding and association. Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, Almey JJ, Meiering EM. Arch Biochem Biophys 531 44-64 (2013)
  45. Spontaneous and inherited TP53 genetic alterations. Levine AJ. Oncogene 40 5975-5983 (2021)
  46. The changing face of p53 in head and neck cancer. Partridge M, Costea DE, Huang X. Int J Oral Maxillofac Surg 36 1123-1138 (2007)
  47. Mouse bites dogma: how mouse models are changing our views of how P53 is regulated in vivo. Wahl GM. Cell Death Differ 13 973-983 (2006)
  48. Control mechanisms in germ cells mediated by p53 family proteins. Gebel J, Tuppi M, Krauskopf K, Coutandin D, Pitzius S, Kehrloesser S, Osterburg C, Dötsch V. J Cell Sci jcs.204859 (2017)
  49. Roles of p53 Family Structure and Function in Non-Canonical Response Element Binding and Activation. Cai BH, Chao CF, Huang HC, Lee HY, Kannagi R, Chen JY. Int J Mol Sci 20 E3681 (2019)
  50. The genotypes and phenotypes of missense mutations in the proline domain of the p53 protein. Hoyos D, Greenbaum B, Levine AJ. Cell Death Differ 29 938-945 (2022)
  51. Pathways of apoptosis and the modulation of cell death in cancer. Fisher DE. Hematol Oncol Clin North Am 15 931-56, ix (2001)
  52. Molecular dynamic simulation insights into the normal state and restoration of p53 function. Fu T, Min H, Xu Y, Chen J, Li G. Int J Mol Sci 13 9709-9740 (2012)
  53. Structural diversity of p63 and p73 isoforms. Osterburg C, Dötsch V. Cell Death Differ 29 921-937 (2022)
  54. p53: From Fundamental Biology to Clinical Applications in Cancer. Capuozzo M, Santorsola M, Bocchetti M, Perri F, Cascella M, Granata V, Celotto V, Gualillo O, Cossu AM, Nasti G, Caraglia M, Ottaiano A. Biology (Basel) 11 1325 (2022)
  55. The challenge of p53: linking biochemistry, biology, and patient management. Bray SE, Schorl C, Hall PA. Stem Cells 16 248-260 (1998)
  56. The p53 tumour suppressor protein. Hickman ES, Helin K. Biotechnol Genet Eng Rev 17 179-211 (2000)
  57. The S100B Protein and Partners in Adipocyte Response to Cold Stress and Adaptive Thermogenesis: Facts, Hypotheses, and Perspectives. Baudier J, Gentil BJ. Biomolecules 10 E843 (2020)
  58. p53/p73 Protein Network in Colorectal Cancer and Other Human Malignancies. Horvat A, Tadijan A, Vlašić I, Slade N. Cancers (Basel) 13 2885 (2021)
  59. New trends in macromolecular X-ray crystallography. Wery JP, Schevitz RW. Curr Opin Chem Biol 1 365-369 (1997)
  60. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Front Mol Biosci 9 944955 (2022)
  61. Rely on Each Other: DNA Binding Cooperativity Shapes p53 Functions in Tumor Suppression and Cancer Therapy. Timofeev O, Stiewe T. Cancers (Basel) 13 2422 (2021)
  62. P53 protein and the diseases in central nervous system. Lei L, Lu Q, Ma G, Li T, Deng J, Li W. Front Genet 13 1051395 (2022)
  63. Interactions of HIV-1 proteins as targets for developing anti-HIV-1 peptides. Chandra K, Maes M, Friedler A. Future Med Chem 7 1055-1077 (2015)
  64. Tissue specificity and spatio-temporal dynamics of the p53 transcriptional program. Pant V, Sun C, Lozano G. Cell Death Differ 30 897-905 (2023)
  65. New phase therapeutic pursuits for targeted drug delivery in glioblastoma multiforme. Singh M, Jindal D, Agarwal V, Pathak D, Sharma M, Pancham P, Mani S, Rachana. Explor Target Antitumor Ther 3 866-888 (2022)
  66. Peptide and protein chemistry approaches to study the tumor suppressor protein p53. Chatterjee C, Singh SK. Org Biomol Chem 20 5500-5509 (2022)
  67. Utilizing NMR to study the structure of growth-inhibitory proteins. Marassi F. Methods Mol Biol 223 3-15 (2003)

Articles citing this publication (211)

  1. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G. Cell 119 861-872 (2004)
  2. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C. Proc Natl Acad Sci U S A 100 8424-8429 (2003)
  3. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL. Mol Cell Biol 19 1202-1209 (1999)
  4. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. Rüdiger S, Germeroth L, Schneider-Mergener J, Bukau B. EMBO J 16 1501-1507 (1997)
  5. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M, Pramanik A, Selivanova G. Nat Med 10 1321-1328 (2004)
  6. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM. EMBO J 18 1660-1672 (1999)
  7. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD. Cell 108 345-356 (2002)
  8. Drosophila p53 binds a damage response element at the reaper locus. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Cell 101 103-113 (2000)
  9. Attributes of short linear motifs. Davey NE, Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H, Gibson TJ. Mol Biosyst 8 268-281 (2012)
  10. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB. Mol Cell 4 153-166 (1999)
  11. Identification and classification of p53-regulated genes. Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B. Proc Natl Acad Sci U S A 96 14517-14522 (1999)
  12. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S, Whittaker K, Demsky M, Fisher WW, Buchman A, Duyk G, Friedman L, Prives C, Kopczynski C. Cell 101 91-101 (2000)
  13. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Ribeiro RC, Sandrini F, Figueiredo B, Zambetti GP, Michalkiewicz E, Lafferty AR, DeLacerda L, Rabin M, Cadwell C, Sampaio G, Cat I, Stratakis CA, Sandrini R. Proc Natl Acad Sci U S A 98 9330-9335 (2001)
  14. Structural basis of DNA recognition by p53 tetramers. Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE, Shakked Z. Mol Cell 22 741-753 (2006)
  15. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Di Como CJ, Gaiddon C, Prives C. Mol Cell Biol 19 1438-1449 (1999)
  16. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Jayaraman J, Prives C. Cell 81 1021-1029 (1995)
  17. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. Shieh SY, Taya Y, Prives C. EMBO J 18 1815-1823 (1999)
  18. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Joerger AC, Ang HC, Fersht AR. Proc Natl Acad Sci U S A 103 15056-15061 (2006)
  19. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S, Di Croce L, Giavara S, Matteucci C, Gobbi A, Bianchini A, Colombo E, Schiavoni I, Badaracco G, Hu X, Lazar MA, Landsberger N, Nervi C, Pelicci PG. Mol Cell 5 811-820 (2000)
  20. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Bauer MF, Sirrenberg C, Neupert W, Brunner M. Cell 87 33-41 (1996)
  21. Cooperative binding of tetrameric p53 to DNA. Weinberg RL, Veprintsev DB, Fersht AR. J Mol Biol 341 1145-1159 (2004)
  22. p53 contains large unstructured regions in its native state. Bell S, Klein C, Müller L, Hansen S, Buchner J. J Mol Biol 322 917-927 (2002)
  23. How p53 binds DNA as a tetramer. McLure KG, Lee PW. EMBO J 17 3342-3350 (1998)
  24. Identification and characterization of a p53 homologue in Drosophila melanogaster. Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A, Yandell MD, Pavletich NP, Young MW, Levine AJ. Proc Natl Acad Sci U S A 97 7301-7306 (2000)
  25. The N-terminal domain of p53 is natively unfolded. Dawson R, Müller L, Dehner A, Klein C, Kessler H, Buchner J. J Mol Biol 332 1131-1141 (2003)
  26. Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP. Mol Cell Biol 18 3735-3743 (1998)
  27. Improvements and extensions in the conformational database potential for the refinement of NMR and X-ray structures of proteins and nucleic acids. Kuszewski J, Gronenborn AM, Clore GM. J Magn Reson 125 171-177 (1997)
  28. Drosophila p53 preserves genomic stability by regulating cell death. Sogame N, Kim M, Abrams JM. Proc Natl Acad Sci U S A 100 4696-4701 (2003)
  29. How many mutant p53 molecules are needed to inactivate a tetramer? Chan WM, Siu WY, Lau A, Poon RY. Mol Cell Biol 24 3536-3551 (2004)
  30. Mechanistic insights into maintenance of high p53 acetylation by PTEN. Li AG, Piluso LG, Cai X, Wei G, Sellers WR, Liu X. Mol Cell 23 575-587 (2006)
  31. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Poulsen H, Nilsson J, Damgaard CK, Egebjerg J, Kjems J. Mol Cell Biol 21 7862-7871 (2001)
  32. Design of multivalent complexes using the barnase*barstar module. Deyev SM, Waibel R, Lebedenko EN, Schubiger AP, Plückthun A. Nat Biotechnol 21 1486-1492 (2003)
  33. Adenovirus E1B 55K represses p53 activation in vitro. Martin ME, Berk AJ. J Virol 72 3146-3154 (1998)
  34. The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Reed M, Woelker B, Wang P, Wang Y, Anderson ME, Tegtmeyer P. Proc Natl Acad Sci U S A 92 9455-9459 (1995)
  35. Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain. Mateu MG, Fersht AR. EMBO J 17 2748-2758 (1998)
  36. DNA damage in oocytes induces a switch of the quality control factor TAp63α from dimer to tetramer. Deutsch GB, Zielonka EM, Coutandin D, Weber TA, Schäfer B, Hannewald J, Luh LM, Durst FG, Ibrahim M, Hoffmann J, Niesen FH, Sentürk A, Kunkel H, Brutschy B, Schleiff E, Knapp S, Acker-Palmer A, Grez M, McKeon F, Dötsch V. Cell 144 566-576 (2011)
  37. Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. You H, Yamamoto K, Mak TW. Proc Natl Acad Sci U S A 103 9051-9056 (2006)
  38. A role for Groucho tetramerization in transcriptional repression. Chen G, Nguyen PH, Courey AJ. Mol Cell Biol 18 7259-7268 (1998)
  39. Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. Ang HC, Joerger AC, Mayer S, Fersht AR. J Biol Chem 281 21934-21941 (2006)
  40. The V122I cardiomyopathy variant of transthyretin increases the velocity of rate-limiting tetramer dissociation, resulting in accelerated amyloidosis. Jiang X, Buxbaum JN, Kelly JW. Proc Natl Acad Sci U S A 98 14943-14948 (2001)
  41. Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Martin AC, Facchiano AM, Cuff AL, Hernandez-Boussard T, Olivier M, Hainaut P, Thornton JM. Hum Mutat 19 149-164 (2002)
  42. Inhibition of DNA topoisomerase II alpha gene expression by the p53 tumor suppressor. Wang Q, Zambetti GP, Suttle DP. Mol Cell Biol 17 389-397 (1997)
  43. Structure of the p53 core domain dimer bound to DNA. Ho WC, Fitzgerald MX, Marmorstein R. J Biol Chem 281 20494-20502 (2006)
  44. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53. Jordan JJ, Menendez D, Inga A, Noureddine M, Bell DA, Resnick MA. PLoS Genet 4 e1000104 (2008)
  45. Four p53 DNA-binding domain peptides bind natural p53-response elements and bend the DNA. Balagurumoorthy P, Sakamoto H, Lewis MS, Zambrano N, Clore GM, Gronenborn AM, Appella E, Harrington RE. Proc Natl Acad Sci U S A 92 8591-8595 (1995)
  46. Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles. Matheny CJ, Speck ME, Cushing PR, Zhou Y, Corpora T, Regan M, Newman M, Roudaia L, Speck CL, Gu TL, Griffey SM, Bushweller JH, Speck NA. EMBO J 26 1163-1175 (2007)
  47. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. Léveillard T, Andera L, Bissonnette N, Schaeffer L, Bracco L, Egly JM, Wasylyk B. EMBO J 15 1615-1624 (1996)
  48. Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers. Craig AL, Burch L, Vojtesek B, Mikutowska J, Thompson A, Hupp TR. Biochem J 342 ( Pt 1) 133-141 (1999)
  49. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities. Yi F, Saha A, Murakami M, Kumar P, Knight JS, Cai Q, Choudhuri T, Robertson ES. Virology 388 236-247 (2009)
  50. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. Petty TJ, Emamzadah S, Costantino L, Petkova I, Stavridi ES, Saven JG, Vauthey E, Halazonetis TD. EMBO J 30 2167-2176 (2011)
  51. Regulation of DNA binding of p53 by its C-terminal domain. Weinberg RL, Freund SM, Veprintsev DB, Bycroft M, Fersht AR. J Mol Biol 342 801-811 (2004)
  52. Structural evolution of C-terminal domains in the p53 family. Ou HD, Löhr F, Vogel V, Mäntele W, Dötsch V. EMBO J 26 3463-3473 (2007)
  53. Correlation of levels of folded recombinant p53 in escherichia coli with thermodynamic stability in vitro. Mayer S, Rüdiger S, Ang HC, Joerger AC, Fersht AR. J Mol Biol 372 268-276 (2007)
  54. Identification of p53 sequence elements that are required for MDM2-mediated nuclear export. Gu J, Nie L, Wiederschain D, Yuan ZM. Mol Cell Biol 21 8533-8546 (2001)
  55. Recognition of the tumor suppressor protein p53 and other protein targets by the calcium-binding protein S100B. Wilder PT, Lin J, Bair CL, Charpentier TH, Yang D, Liriano M, Varney KM, Lee A, Oppenheim AB, Adhya S, Carrier F, Weber DJ. Biochim Biophys Acta 1763 1284-1297 (2006)
  56. Regulation of p53 tetramerization and nuclear export by ARC. Foo RS, Nam YJ, Ostreicher MJ, Metzl MD, Whelan RS, Peng CF, Ashton AW, Fu W, Mani K, Chin SF, Provenzano E, Ellis I, Figg N, Pinder S, Bennett MR, Caldas C, Kitsis RN. Proc Natl Acad Sci U S A 104 20826-20831 (2007)
  57. Additive effect of multiple pharmacological chaperones on maturation of CFTR processing mutants. Wang Y, Loo TW, Bartlett MC, Clarke DM. Biochem J 406 257-263 (2007)
  58. Crystal structure of a p53 core tetramer bound to DNA. Malecka KA, Ho WC, Marmorstein R. Oncogene 28 325-333 (2009)
  59. Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains. Venot C, Maratrat M, Sierra V, Conseiller E, Debussche L. Oncogene 18 2405-2410 (1999)
  60. Identification of an additional negative regulatory region for p53 sequence-specific DNA binding. Müller-Tiemann BF, Halazonetis TD, Elting JJ. Proc Natl Acad Sci U S A 95 6079-6084 (1998)
  61. Interaction of the p53 DNA-binding domain with its n-terminal extension modulates the stability of the p53 tetramer. Natan E, Baloglu C, Pagel K, Freund SM, Morgner N, Robinson CV, Fersht AR, Joerger AC. J Mol Biol 409 358-368 (2011)
  62. Conservation of DNA-binding specificity and oligomerisation properties within the p53 family. Brandt T, Petrovich M, Joerger AC, Veprintsev DB. BMC Genomics 10 628 (2009)
  63. C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Fekry B, Jeffries KA, Esmaeilniakooshkghazi A, Szulc ZM, Knagge KJ, Kirchner DR, Horita DA, Krupenko SA, Krupenko NI. Nat Commun 9 4149 (2018)
  64. Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA. Melero R, Rajagopalan S, Lázaro M, Joerger AC, Brandt T, Veprintsev DB, Lasso G, Gil D, Scheres SH, Carazo JM, Fersht AR, Valle M. Proc Natl Acad Sci U S A 108 557-562 (2011)
  65. p53 SUMOylation promotes its nuclear export by facilitating its release from the nuclear export receptor CRM1. Santiago A, Li D, Zhao LY, Godsey A, Liao D. Mol Biol Cell 24 2739-2752 (2013)
  66. Conformational stability and activity of p73 require a second helix in the tetramerization domain. Coutandin D, Löhr F, Niesen FH, Ikeya T, Weber TA, Schäfer B, Zielonka EM, Bullock AN, Yang A, Güntert P, Knapp S, McKeon F, Ou HD, Dötsch V. Cell Death Differ 16 1582-1589 (2009)
  67. NAD+ modulates p53 DNA binding specificity and function. McLure KG, Takagi M, Kastan MB. Mol Cell Biol 24 9958-9967 (2004)
  68. Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization. Mateu MG, Fersht AR. Proc Natl Acad Sci U S A 96 3595-3599 (1999)
  69. Stability and structural recovery of the tetramerization domain of p53-R337H mutant induced by a designed templating ligand. Gordo S, Martos V, Santos E, Menéndez M, Bo C, Giralt E, de Mendoza J. Proc Natl Acad Sci U S A 105 16426-16431 (2008)
  70. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant. Lee AS, Galea C, DiGiammarino EL, Jun B, Murti G, Ribeiro RC, Zambetti G, Schultz CP, Kriwacki RW. J Mol Biol 327 699-709 (2003)
  71. Cytoplasmic p53 polypeptide is associated with ribosomes. Fontoura BM, Atienza CA, Sorokina EA, Morimoto T, Carroll RB. Mol Cell Biol 17 3146-3154 (1997)
  72. Design of a molecular support for cryo-EM structure determination. Martin TG, Bharat TA, Joerger AC, Bai XC, Praetorius F, Fersht AR, Dietz H, Scheres SH. Proc Natl Acad Sci U S A 113 E7456-E7463 (2016)
  73. Letter Interhelical angles in the solution structure of the oligomerization domain of p53: correction. Clore GM, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appella E, Gronenborn AM. Science 267 1515-1516 (1995)
  74. One billion years of p53/p63/p73 evolution. Belyi VA, Levine AJ. Proc Natl Acad Sci U S A 106 17609-17610 (2009)
  75. Reversal of in vitro p53 squelching by both TFIIB and TFIID. Liu X, Berk AJ. Mol Cell Biol 15 6474-6478 (1995)
  76. Hsp90 is essential for restoring cellular functions of temperature-sensitive p53 mutant protein but not for stabilization and activation of wild-type p53: implications for cancer therapy. Müller P, Ceskova P, Vojtesek B. J Biol Chem 280 6682-6691 (2005)
  77. Sliding of p53 along DNA can be modulated by its oligomeric state and by cross-talks between its constituent domains. Khazanov N, Levy Y. J Mol Biol 408 335-355 (2011)
  78. Poliovirus 3C protease-mediated degradation of transcriptional activator p53 requires a cellular activity. Weidman MK, Yalamanchili P, Ng B, Tsai W, Dasgupta A. Virology 291 260-271 (2001)
  79. Coordination between cell cycle progression and cell fate decision by the p53 and E2F1 pathways in response to DNA damage. Zhang XP, Zhang XP, Liu F, Wang W. J Biol Chem 285 31571-31580 (2010)
  80. Nitration of the tumor suppressor protein p53 at tyrosine 327 promotes p53 oligomerization and activation. Yakovlev VA, Bayden AS, Graves PR, Kellogg GE, Mikkelsen RB. Biochemistry 49 5331-5339 (2010)
  81. Cooperative binding of p53 to DNA: regulation by protein-protein interactions through a double salt bridge. Dehner A, Klein C, Hansen S, Müller L, Buchner J, Schwaiger M, Kessler H. Angew Chem Int Ed Engl 44 5247-5251 (2005)
  82. Functional features of RUNX1 mutants in acute transformation of chronic myeloid leukemia and their contribution to inducing murine full-blown leukemia. Zhao LJ, Wang YY, Li G, Ma LY, Xiong SM, Weng XQ, Zhang WN, Wu B, Chen Z, Chen SJ. Blood 119 2873-2882 (2012)
  83. p53 binding to nucleosomal DNA depends on the rotational positioning of DNA response element. Sahu G, Wang D, Chen CB, Zhurkin VB, Harrington RE, Appella E, Hager GL, Nagaich AK. J Biol Chem 285 1321-1332 (2010)
  84. Analysis of the oligomeric state and transactivation potential of TAp73α. Luh LM, Kehrloesser S, Deutsch GB, Gebel J, Coutandin D, Schäfer B, Agostini M, Melino G, Dötsch V. Cell Death Differ 20 1008-1016 (2013)
  85. Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin. De Grandis V, Bizzarri AR, Cannistraro S. J Mol Recognit 20 215-226 (2007)
  86. Genome-wide mapping indicates that p73 and p63 co-occupy target sites and have similar dna-binding profiles in vivo. Yang A, Zhu Z, Kettenbach A, Kapranov P, McKeon F, Gingeras TR, Struhl K. PLoS One 5 e11572 (2010)
  87. p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Fischer NW, Prodeus A, Malkin D, Gariépy J. Cell Cycle 15 3210-3219 (2016)
  88. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. Kamada R, Nomura T, Anderson CW, Sakaguchi K. J Biol Chem 286 252-258 (2011)
  89. The (1-63) region of the p53 transactivation domain aggregates in vitro into cytotoxic amyloid assemblies. Rigacci S, Bucciantini M, Relini A, Pesce A, Gliozzi A, Berti A, Stefani M. Biophys J 94 3635-3646 (2008)
  90. The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain. D'Abramo M, Bešker N, Desideri A, Levine AJ, Melino G, Chillemi G. Oncogene 35 3272-3281 (2016)
  91. Effects of mutant p53 expression on human 15-lipoxygenase-promoter activity and murine 12/15-lipoxygenase gene expression: evidence that 15-lipoxygenase is a mutator gene. Kelavkar UP, Badr KF. Proc Natl Acad Sci U S A 96 4378-4383 (1999)
  92. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50/Rta lytic switch protein functions as a tetramer. Bu W, Carroll KD, Palmeri D, Lukac DM. J Virol 81 5788-5806 (2007)
  93. The effect of cholesterol and monosialoganglioside (GM1) on the release and aggregation of amyloid beta-peptide from liposomes prepared from brain membrane-like lipids. Tashima Y, Oe R, Lee S, Sugihara G, Chambers EJ, Takahashi M, Yamada T. J Biol Chem 279 17587-17595 (2004)
  94. Hydrophobic side-chain size is a determinant of the three-dimensional structure of the p53 oligomerization domain. McCoy M, Stavridi ES, Waterman JL, Wieczorek AM, Opella SJ, Halazonetis TD. EMBO J 16 6230-6236 (1997)
  95. Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ. Schumacher MA, Zeng W. Proc Natl Acad Sci U S A 113 4988-4993 (2016)
  96. An ATP/ADP-dependent molecular switch regulates the stability of p53-DNA complexes. Okorokov AL, Milner J. Mol Cell Biol 19 7501-7510 (1999)
  97. Dimerization of the p53 oligomerization domain: identification of a folding nucleus by molecular dynamics simulations. Chong LT, Snow CD, Rhee YM, Pande VS. J Mol Biol 345 869-878 (2005)
  98. Domain-domain interactions in full-length p53 and a specific DNA complex probed by methyl NMR spectroscopy. Bista M, Bista M, Freund SM, Fersht AR. Proc Natl Acad Sci U S A 109 15752-15756 (2012)
  99. Effect of phosphorylation on the structure and fold of transactivation domain of p53. Kar S, Sakaguchi K, Shimohigashi Y, Samaddar S, Banerjee R, Basu G, Swaminathan V, Kundu TK, Roy S. J Biol Chem 277 15579-15585 (2002)
  100. Preferential binding of tumor suppressor p53 to positively or negatively supercoiled DNA involves the C-terminal domain. Mazur SJ, Sakaguchi K, Appella E, Wang XW, Harris CC, Bohr VA. J Mol Biol 292 241-249 (1999)
  101. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function. Lubin DJ, Butler JS, Loh SN. J Mol Biol 395 705-716 (2010)
  102. Protein kinase CK2 interacts with a multi-protein binding domain of p53. Götz C, Scholtes P, Prowald A, Schuster N, Nastainczyk W, Montenarh M. Mol Cell Biochem 191 111-120 (1999)
  103. In vitro structure-function analysis of the beta-strand 326-333 of human p53. Chène P, Mittl P, Grütter M. J Mol Biol 273 873-881 (1997)
  104. Mdm2 binding to a conformationally sensitive domain on p53 can be modulated by RNA. Burch LR, Midgley CA, Currie RA, Lane DP, Hupp TR. FEBS Lett 472 93-98 (2000)
  105. Modulation of p53 activity by IkappaBalpha: evidence suggesting a common phylogeny between NF-kappaB and p53 transcription factors. Dreyfus DH, Nagasawa M, Gelfand EW, Ghoda LY. BMC Immunol 6 12 (2005)
  106. Refolding and structural characterization of the human p53 tumor suppressor protein. Bell S, Hansen S, Buchner J. Biophys Chem 96 243-257 (2002)
  107. The in vitro phosphorylation of p53 by calcium-dependent protein kinase C--characterization of a protein-kinase-C-binding site on p53. Delphin C, Huang KP, Scotto C, Chapel A, Vincon M, Chambaz E, Garin J, Baudier J. Eur J Biochem 245 684-692 (1997)
  108. The nucleolar protein Myb-binding protein 1A (MYBBP1A) enhances p53 tetramerization and acetylation in response to nucleolar disruption. Ono W, Hayashi Y, Yokoyama W, Kuroda T, Kishimoto H, Ito I, Kimura K, Akaogi K, Waku T, Yanagisawa J. J Biol Chem 289 4928-4940 (2014)
  109. Discrimination of DNA binding sites by mutant p53 proteins. Thukral SK, Lu Y, Blain GC, Harvey TS, Jacobsen VL. Mol Cell Biol 15 5196-5202 (1995)
  110. ORF73 of herpesvirus saimiri, a viral homolog of Kaposi's sarcoma-associated herpesvirus, modulates the two cellular tumor suppressor proteins p53 and pRb. Borah S, Verma SC, Robertson ES. J Virol 78 10336-10347 (2004)
  111. The oligomerization domain of p53: crystal structure of the trigonal form. Miller M, Lubkowski J, Rao JK, Danishefsky AT, Omichinski JG, Sakaguchi K, Sakamoto H, Appella E, Gronenborn AM, Clore GM. FEBS Lett 399 166-170 (1996)
  112. p53 tumor suppressor protein stability and transcriptional activity are targeted by Kaposi's sarcoma-associated herpesvirus-encoded viral interferon regulatory factor 3. Baresova P, Musilova J, Pitha PM, Lubyova B. Mol Cell Biol 34 386-399 (2014)
  113. Oligomerization of the tetramerization domain of p53 probed by two- and three-color single-molecule FRET. Chung HS, Meng F, Kim JY, McHale K, Gopich IV, Louis JM. Proc Natl Acad Sci U S A 114 E6812-E6821 (2017)
  114. Several regions of p53 are involved in repression of RNA polymerase III transcription. Stein T, Crighton D, Warnock LJ, Milner J, White RJ. Oncogene 21 5540-5547 (2002)
  115. Virus-derived platforms for visualizing protein associations inside cells. Miller CL, Arnold MM, Broering TJ, Eichwald C, Kim J, Dinoso JB, Nibert ML. Mol Cell Proteomics 6 1027-1038 (2007)
  116. p53 binds to cisplatin-damaged DNA. Wetzel CC, Berberich SJ. Biochim Biophys Acta 1517 392-397 (2001)
  117. Loss-of-function genetic screening identifies a cluster of ribosomal proteins regulating p53 function. Castro ME, Leal JF, Lleonart ME, Ramon Y Cajal S, Carnero A. Carcinogenesis 29 1343-1350 (2008)
  118. Novel strategies to mimic transmembrane tumor necrosis factor-dependent activation of tumor necrosis factor receptor 2. Fischer R, Marsal J, Guttà C, Eisler SA, Peters N, Bethea JR, Pfizenmaier K, Kontermann RE. Sci Rep 7 6607 (2017)
  119. B1 oligomerization regulates PML nuclear body biogenesis and leukemogenesis. Li Y, Ma X, Chen Z, Wu H, Wang P, Wu W, Cheng N, Zeng L, Zhang H, Cai X, Chen SJ, Chen Z, Meng G. Nat Commun 10 3789 (2019)
  120. Backbone dynamics of the oligomerization domain of p53 determined from 15N NMR relaxation measurements. Clubb RT, Omichinski JG, Sakaguchi K, Appella E, Gronenborn AM, Clore GM. Protein Sci 4 855-862 (1995)
  121. CTS1: a p53-derived chimeric tumor suppressor gene with enhanced in vitro apoptotic properties. Conseiller E, Debussche L, Landais D, Venot C, Maratrat M, Sierra V, Tocque B, Bracco L. J Clin Invest 101 120-127 (1998)
  122. Characterization of p53 mutants identified in human tumors with a missense mutation in the tetramerization domain. Rollenhagen C, Chène P. Int J Cancer 78 372-376 (1998)
  123. Comparison of the protein-protein interfaces in the p53-DNA crystal structures: towards elucidation of the biological interface. Ma B, Pan Y, Gunasekaran K, Venkataraghavan RB, Levine AJ, Nussinov R. Proc Natl Acad Sci U S A 102 3988-3993 (2005)
  124. Converting cancer genes into killer genes. Da Costa LT, Jen J, He TC, Chan TA, Kinzler KW, Vogelstein B. Proc Natl Acad Sci U S A 93 4192-4196 (1996)
  125. Likelihood models of somatic mutation and codon substitution in cancer genes. Yang Z, Ro S, Rannala B. Genetics 165 695-705 (2003)
  126. Presence of dominant negative mutation of TP53 is a risk of early recurrence in oral cancer. Hassan NM, Tada M, Hamada J, Kashiwazaki H, Kameyama T, Akhter R, Akhter R, Yamazaki Y, Yano M, Inoue N, Moriuchi T. Cancer Lett 270 108-119 (2008)
  127. Regulation of the DNA binding of p53 by its interaction with protein kinase CK2. Prowald A, Schuster N, Montenarh M. FEBS Lett 408 99-104 (1997)
  128. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain. Drees BL, Grotkopp EK, Nelson HC. J Mol Biol 273 61-74 (1997)
  129. The essential transfer protein TraM binds to DNA as a tetramer. Verdino P, Keller W, Strohmaier H, Bischof K, Lindner H, Koraimann G. J Biol Chem 274 37421-37428 (1999)
  130. Assignment of 1H(N), 15N, 13C(alpha), 13CO and 13C(beta) resonances in a 67 kDa p53 dimer using 4D-TROSY NMR spectroscopy. Mulder FA, Ayed A, Yang D, Arrowsmith CH, Kay LE. J Biomol NMR 18 173-176 (2000)
  131. Expression of full-length p53 and its isoform Deltap53 in breast carcinomas in relation to mutation status and clinical parameters. Baumbusch LO, Myhre S, Langerød A, Bergamaschi A, Geisler SB, Lønning PE, Deppert W, Dornreiter I, Børresen-Dale AL. Mol Cancer 5 47 (2006)
  132. Factors governing loss and rescue of DNA binding upon single and double mutations in the p53 core domain. Wright JD, Noskov SY, Lim C. Nucleic Acids Res 30 1563-1574 (2002)
  133. In vitro evolution of thermostable p53 variants. Matsumura I, Ellington AD. Protein Sci 8 731-740 (1999)
  134. Mutant TRP53 exerts a target gene-selective dominant-negative effect to drive tumor development. Aubrey BJ, Janic A, Chen Y, Chang C, Lieschke EC, Diepstraten ST, Kueh AJ, Bernardini JP, Dewson G, O'Reilly LA, Whitehead L, Voss AK, Smyth GK, Strasser A, Kelly GL. Genes Dev 32 1420-1429 (2018)
  135. Precise characterisation of monoclonal antibodies to the C-terminal region of p53 protein using the PEPSCAN ELISA technique and a new non-radioactive gel shift assay. Pospísilová S, Brázda V, Amrichová J, Kamermeierová R, Palecek E, Vojtesek B. J Immunol Methods 237 51-64 (2000)
  136. Analysis of molecular interactions of the p53-family p51(p63) gene products in a yeast two-hybrid system: homotypic and heterotypic interactions and association with p53-regulatory factors. Kojima T, Ikawa Y, Katoh I. Biochem Biophys Res Commun 281 1170-1175 (2001)
  137. Factors influencing protein tyrosine nitration--structure-based predictive models. Bayden AS, Yakovlev VA, Graves PR, Mikkelsen RB, Kellogg GE. Free Radic Biol Med 50 749-762 (2011)
  138. PCAF is a coactivator for p73-mediated transactivation. Zhao LY, Liu Y, Bertos NR, Yang XJ, Liao D. Oncogene 22 8316-8329 (2003)
  139. The screening of the second-site suppressor mutations of the common p53 mutants. Otsuka K, Kato S, Kakudo Y, Mashiko S, Shibata H, Ishioka C. Int J Cancer 121 559-566 (2007)
  140. Wild-type and cancer-related p53 proteins are preferentially degraded by MDM2 as dimers rather than tetramers. Katz C, Low-Calle AM, Choe JH, Laptenko O, Tong D, Joseph-Chowdhury JN, Garofalo F, Zhu Y, Friedler A, Prives C. Genes Dev 32 430-447 (2018)
  141. A unified assembly mode revealed by the structures of tetrameric L27 domain complexes formed by mLin-2/mLin-7 and Patj/Pals1 scaffold proteins. Feng W, Long JF, Zhang M. Proc Natl Acad Sci U S A 102 6861-6866 (2005)
  142. Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils. Galea C, Bowman P, Kriwacki RW. Protein Sci 14 2993-3003 (2005)
  143. Function, oligomerization, and conformation of tumor-associated p53 proteins with mutated C-terminus. Atz J, Wagner P, Roemer K. J Cell Biochem 76 572-584 (2000)
  144. Modeling multi-component protein-DNA complexes: the role of bending and dimerization in the complex of p53 dimers with DNA. Lebrun A, Lavery R, Weinstein H. Protein Eng 14 233-243 (2001)
  145. Oligomerization is not essential for growth suppression by p53 in p53-deficient osteosarcoma Saos-2 cells. Ishioka C, Shimodaira H, Englert C, Shimada A, Osada M, Jia LQ, Suzuki T, Gamo M, Kanamaru R. Biochem Biophys Res Commun 232 54-60 (1997)
  146. Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure. Nomura T, Kamada R, Ito I, Chuman Y, Shimohigashi Y, Sakaguchi K. Biopolymers 91 78-84 (2009)
  147. Specific recognition of p53 tetramers by peptides derived from p53 interacting proteins. Gabizon R, Brandt T, Sukenik S, Lahav N, Lebendiker M, Shalev DE, Veprintsev D, Friedler A. PLoS One 7 e38060 (2012)
  148. Tandem dimerization of the human p53 tetramerization domain stabilizes a primary dimer intermediate and dramatically enhances its oligomeric stability. Poon GM, Brokx RD, Sung M, Gariépy J. J Mol Biol 365 1217-1231 (2007)
  149. An Integrated Mass Spectrometry Based Approach to Probe the Structure of the Full-Length Wild-Type Tetrameric p53 Tumor Suppressor. Arlt C, Flegler V, Ihling CH, Schäfer M, Thondorf I, Sinz A. Angew Chem Int Ed Engl 56 275-279 (2017)
  150. Tetramerization-defects of p53 result in aberrant ubiquitylation and transcriptional activity. Lang V, Pallara C, Zabala A, Lobato-Gil S, Lopitz-Otsoa F, Farrás R, Hjerpe R, Torres-Ramos M, Zabaleta L, Blattner C, Hay RT, Barrio R, Carracedo A, Fernandez-Recio J, Rodríguez MS, Aillet F. Mol Oncol 8 1026-1042 (2014)
  151. News Tumor-specific mutations in p53: the acid test. Hainaut P. Nat Med 8 21-23 (2002)
  152. cDNA cloning and expression analysis of flounder p53 tumour suppressor gene. Cachot J, Galgani F, Vincent F. Comp Biochem Physiol B Biochem Mol Biol 121 235-242 (1998)
  153. p53 and the ribosomal protein L5 participate in high molecular mass complex formation with protein kinase CK2 in murine teratocarcinoma cell line F9 after serum stimulation and cisplatin treatment. Guerra B, Issinger OG. FEBS Lett 434 115-120 (1998)
  154. A non-random deletion in the p53 gene in oral squamous cell carcinoma. Nylander K, Schildt EB, Eriksson M, Magnusson A, Mehle C, Roos G. Br J Cancer 73 1381-1386 (1996)
  155. Guinea pig p53 mRNA: identification of new elements in coding and untranslated regions and their functional and evolutionary implications. D'erchia AM, Pesole G, Tullo A, Saccone C, Sbisà E. Genomics 58 50-64 (1999)
  156. Modelling the interaction between the p53 DNA-binding domain and the p28 peptide fragment of Azurin. Santini S, Bizzarri AR, Cannistraro S. J Mol Recognit 24 1043-1055 (2011)
  157. An antiparallel four-helix bundle orients the high-affinity RNA binding sites in hnRNP C: a mechanism for RNA chaperonin activity. Shahied L, Braswell EH, LeStourgeon WM, Krezel AM. J Mol Biol 305 817-828 (2001)
  158. Atomic force microscopy visualizes ATP-dependent dissociation of multimeric TATA-binding protein before translocation into the cell nucleus. Oberleithner H, Schneider S, Bustamante JO. Pflugers Arch 432 839-844 (1996)
  159. Differential control of transcription by DNA-bound cyclins. Kim TY, Kaelin WG. Mol Biol Cell 12 2207-2217 (2001)
  160. Enhancement of transcriptional activity of mutant p53 tumor suppressor protein through stabilization of tetramer formation by calix[6]arene derivatives. Kamada R, Yoshino W, Nomura T, Chuman Y, Imagawa T, Suzuki T, Sakaguchi K. Bioorg Med Chem Lett 20 4412-4415 (2010)
  161. Evaluation of transcriptional activity of p53 in individual living mammalian cells. Imagawa T, Terai T, Yamada Y, Kamada R, Sakaguchi K. Anal Biochem 387 249-256 (2009)
  162. Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat. Gabizon R, Mor M, Rosenberg MM, Britan L, Hayouka Z, Kotler M, Shalev DE, Friedler A. Biopolymers 90 105-116 (2008)
  163. Cellular characterisation of p53 mutants with a single missense mutation in the beta-strand 326-333 and correlation of their cellular activities with in vitro properties. Chène P, Bechter E. J Mol Biol 288 891-897 (1999)
  164. Genomic profiling of multiple sequentially acquired tumor metastatic sites from an "exceptional responder" lung adenocarcinoma patient reveals extensive genomic heterogeneity and novel somatic variants driving treatment response. Biswas R, Gao S, Cultraro CM, Maity TK, Venugopalan A, Abdullaev Z, Shaytan AK, Carter CA, Thomas A, Rajan A, Song Y, Pitts S, Chen K, Bass S, Boland J, Hanada KI, Chen J, Meltzer PS, Panchenko AR, Yang JC, Pack S, Giaccone G, Schrump DS, Khan J, Guha U. Cold Spring Harb Mol Case Stud 2 a001263 (2016)
  165. Kinetic computational alanine scanning: application to p53 oligomerization. Chong LT, Swope WC, Pitera JW, Pande VS. J Mol Biol 357 1039-1049 (2006)
  166. Patented small molecule inhibitors of p53-MDM2 interaction. Deng J, Dayam R, Neamati N. Expert Opin Ther Pat 16 165-188 (2006)
  167. Thermal unfolding simulations of a multimeric protein--transition state and unfolding pathways. Duan J, Nilsson L. Proteins 59 170-182 (2005)
  168. Transient stability of the helical pattern of region F19-L22 of the N-terminal domain of p53: a molecular dynamics simulation study. Espinoza-Fonseca LM, Trujillo-Ferrara JG. Biochem Biophys Res Commun 343 110-116 (2006)
  169. Change in oligomerization specificity of the p53 tetramerization domain by hydrophobic amino acid substitutions. Stavridi ES, Chehab NH, Caruso LC, Halazonetis TD. Protein Sci 8 1773-1779 (1999)
  170. Hydrogen exchange of the tetramerization domain of the human tumour suppressor p53 probed by denaturants and temperature. Neira JL, Mateu MG. Eur J Biochem 268 4868-4877 (2001)
  171. TA*p63 and GTAp63 achieve tighter transcriptional regulation in quality control by converting an inhibitory element into an additional transactivation domain. Pitzius S, Osterburg C, Gebel J, Tascher G, Schäfer B, Zhou H, Münch C, Dötsch V. Cell Death Dis 10 686 (2019)
  172. The Role of Wild-Type p53 in Cisplatin-Induced Chk2 Phosphorylation and the Inhibition of Platinum Resistance with a Chk2 Inhibitor. Liang X, Guo Y, Figg WD, Fojo AT, Mueller MD, Yu JJ. Chemother Res Pract 2011 715469 (2011)
  173. The contribution of the Trp/Met/Phe residues to physical interactions of p53 with cellular proteins. Ma B, Pan Y, Gunasekaran K, Keskin O, Venkataraghavan RB, Levine AJ, Nussinov R. Phys Biol 2 S56-66 (2005)
  174. Cooperative fluctuations point to the dimerization interface of p53 core domain. Kantarci N, Doruker P, Haliloglu T. Biophys J 91 421-432 (2006)
  175. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach. Mora P, Carbajo RJ, Pineda-Lucena A, Sánchez del Pino MM, Pérez-Payá E. Proteins 71 1670-1685 (2008)
  176. p53 codon 72 proline/arginine polymorphism and autoimmune thyroid diseases. Chen RH, Chang CT, Wang TY, Huang WL, Tsai CH, Tsai FJ. J Clin Lab Anal 22 321-326 (2008)
  177. Coordination between p21 and DDB2 in the cellular response to UV radiation. Li H, Zhang XP, Liu F. PLoS One 8 e80111 (2013)
  178. Regulation of p53 oligomerization by Ras superfamily protein RBEL1A. Lui K, Sheikh MS, Huang Y. Genes Cancer 6 307-316 (2015)
  179. Stable production of peptide antigens in transgenic tobacco chloroplasts by fusion to the p53 tetramerisation domain. Ortigosa SM, Fernández-San Millán A, Veramendi J. Transgenic Res 19 703-709 (2010)
  180. Chemical synthesis of phosphorylated peptides of the carboxy-terminal domain of human p53 by a segment condensation method. Sakamoto H, Kodama H, Higashimoto Y, Kondo M, Lewis MS, Anderson CW, Appella E, Sakaguchi K. Int J Pept Protein Res 48 429-442 (1996)
  181. Conformational detection of p53's oligomeric state by FlAsH Fluorescence. Webber TM, Allen AC, Ma WK, Molloy RG, Kettelkamp CN, Dow CA, Gage MJ. Biochem Biophys Res Commun 384 66-70 (2009)
  182. Coordination of miR-192 and miR-22 in p53-Mediated Cell Fate Decision. Sun CY, Zhang XP, Wang W. Int J Mol Sci 20 E4768 (2019)
  183. Differential regulation of E2F transcription factors by p53 tumor suppressor protein. Vaishnav YN, Pant V. DNA Cell Biol 18 911-922 (1999)
  184. Involvement of miR-605 and miR-34a in the DNA damage response promotes apoptosis induction. Zhou CH, Zhang XP, Liu F, Wang W. Biophys J 106 1792-1800 (2014)
  185. Targeting TNF-alpha with a tetravalent mini-antibody TNF-TeAb. Liu M, Wang X, Yin C, Zhang Z, Lin Q, Zhen Y, Huang H. Biochem J 406 237-246 (2007)
  186. p53 unfolding detected by CD but not by tryptophan fluorescence. Nichols NM, Matthews KS. Biochem Biophys Res Commun 288 111-115 (2001)
  187. Interplay between Mdm2 and HIPK2 in the DNA damage response. Zhang XP, Liu F, Wang W. J R Soc Interface 11 20140319 (2014)
  188. Quaternary structure of p53: the light at the end of the tunnel. Shakked Z. Proc Natl Acad Sci U S A 104 12231-12232 (2007)
  189. Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain. Heering J, Jonker HR, Löhr F, Schwalbe H, Dötsch V. Protein Sci 25 410-422 (2016)
  190. High-resolution protein-protein interaction mapping using all-versus-all sequencing (AVA-Seq). Andrews SS, Schaefer-Ramadan S, Al-Thani NM, Ahmed I, Mohamoud YA, Malek JA. J Biol Chem 294 11549-11558 (2019)
  191. Re-engineered p53 chimera with enhanced homo-oligomerization that maintains tumor suppressor activity. Okal A, Cornillie S, Matissek SJ, Matissek KJ, Cheatham TE, Lim CS. Mol Pharm 11 2442-2452 (2014)
  192. The Common Germline TP53-R337H Mutation Is Hypomorphic and Confers Incomplete Penetrance and Late Tumor Onset in a Mouse Model. Jeffers JR, Pinto EM, Rehg JE, Clay MR, Wang J, Neale G, Heath RJ, Lozano G, Lalli E, Figueiredo BC, Pappo AS, Rodriguez-Galindo C, Chen W, Pounds S, Ribeiro RC, Zambetti GP. Cancer Res 81 2442-2456 (2021)
  193. The tetravalent anti-DR5 antibody without cross-linking direct induces apoptosis of cancer cells. Liu F, Si Y, Liu G, Li S, Zhang J, Ma Y. Biomed Pharmacother 70 41-45 (2015)
  194. Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR. Krois AS, Park S, Martinez-Yamout MA, Dyson HJ, Wright PE. Biochemistry 61 2709-2719 (2022)
  195. Oligomerization of Mutant p53 R273H is not Required for Gain-of-Function Chromatin Associated Activities. Annor GK, Elshabassy N, Lundine D, Conde DG, Xiao G, Ellison V, Bargonetti J. Front Cell Dev Biol 9 772315 (2021)
  196. Probing phenylalanine environments in oligomeric structures with pentafluorophenylalanine and cyclohexylalanine. Nomura T, Kamada R, Ito I, Sakamoto K, Chuman Y, Ishimori K, Shimohigashi Y, Sakaguchi K. Biopolymers 95 410-419 (2011)
  197. cDNA cloning and immunological characterization of rabbit p53. Le Goas F, May P, Ronco P, Caron de Fromentel C. Gene 185 169-173 (1997)
  198. Influence of the N-terminal region on the oligomerisation between human and Xenopus laevis p53. Chène P. J Mol Biol 288 883-890 (1999)
  199. Meanfield approach to the thermodynamics of protein-solvent systems with application to p53. Völkel AR, Noolandi J. Biophys J 80 1524-1537 (2001)
  200. A switch-like dynamic mechanism for the initiation of replicative senescence. Zhang QH, Tian XJ, Liu F, Wang W. FEBS Lett 588 4369-4374 (2014)
  201. Form of human p53 protein during nuclear transport in Xenopus laevis embryos. Hara T, Arai K, Koike K. Exp Cell Res 258 152-161 (2000)
  202. Structural Basis of Mutation-Dependent p53 Tetramerization Deficiency. Rigoli M, Spagnolli G, Lorengo G, Monti P, Potestio R, Biasini E, Inga A. Int J Mol Sci 23 7960 (2022)
  203. Structural assessment of the full-length wild-type tumor suppressor protein p53 by mass spectrometry-guided computational modeling. Di Ianni A, Tüting C, Kipping M, Ihling CH, Köppen J, Iacobucci C, Arlt C, Kastritis PL, Sinz A. Sci Rep 13 8497 (2023)
  204. p53: balancing tumour suppression and implications for the clinic. Buganim Y, Rotter V. Eur J Cancer 45 Suppl 1 217-234 (2009)
  205. A Quantitative Systems Approach to Define Novel Effects of Tumour p53 Mutations on Binding Oncoprotein MDM2. Fuentes M, Srivastava S, Gronenborn AM, LaBaer J. Int J Mol Sci 23 53 (2021)
  206. A molecular mechanism for the "digital" response of p53 to stress. Safieh J, Chazan A, Saleem H, Vyas P, Danin-Poleg Y, Ron D, Haran TE. Proc Natl Acad Sci U S A 120 e2305713120 (2023)
  207. Characterization on the oncogenic effect of the missense mutations of p53 via machine learning. Pan Q, Portelli S, Nguyen TB, Ascher DB. Brief Bioinform 25 bbad428 (2023)
  208. Elephant TP53-RETROGENE 9 induces transcription-independent apoptosis at the mitochondria. Preston AJ, Rogers A, Sharp M, Mitchell G, Toruno C, Barney BB, Donovan LN, Bly J, Kennington R, Payne E, Iovino A, Furukawa G, Robinson R, Shamloo B, Buccilli M, Anders R, Eckstein S, Fedak EA, Wright T, Maley CC, Kiso WK, Schmitt D, Malkin D, Schiffman JD, Abegglen LM. Cell Death Discov 9 66 (2023)
  209. Low Energy Conformations for S100 Binding Peptide from the Negative Regulatory Domain of p53. Carty RP, Lin B, Fridman D, Pincus MR. Protein J 37 510-517 (2018)
  210. Most Probable Druggable Pockets in Mutant p53-Arg175His Clusters Extracted from Gaussian Accelerated Molecular Dynamics Simulations. Mustafa M, Gharaibeh M. Protein J 41 27-43 (2022)
  211. Planck-Benzinger thermal work function: thermodynamic characterization of the carboxy-terminus of p53 peptide fragments. Chun PW, Lewis MS. Protein J 29 617-630 (2010)