1buh Citations

Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1.

Abstract

The 2.6 Angstrom crystal structure for human cyclin-dependent kinase 2(CDK2) in complex with CksHs1, a human homolog of essential yeast cell cycle-regulatory proteins suc1 and Cks1, reveals that CksHs1 binds via all four beta strands to the kinase C-terminal lobe. This interface is biologically critical, based upon mutational analysis, but far from the CDK2 N-terminal lobe, cyclin, and regulatory phosphorylation sites. CDK2 binds the Cks single domain conformation and interacts with conserved hydrophobic residues plus His-60 and Glu-63 in their closed beta-hinge motif conformation. The beta hinge opening to form the Cks beta-interchanged dimer sterically precludes CDK2 binding, providing a possible mechanism regulating CDK2-Cks interactions. One face of the complex exposes the sequence-conserved phosphate-binding region on Cks and the ATP-binding site on CDK2, suggesting that CKs may target CDK2 to other phosphoproteins during the cell cycle.

Reviews - 1buh mentioned but not cited (4)

  1. Physicochemical mechanisms of protein regulation by phosphorylation. Nishi H, Shaytan A, Panchenko AR. Front Genet 5 270 (2014)
  2. Structural insights into the functional diversity of the CDK-cyclin family. Wood DJ, Endicott JA. Open Biol 8 180112 (2018)
  3. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)
  4. What lessons can be learned from studying the folding of homologous proteins? Nickson AA, Clarke J. Methods 52 38-50 (2010)

Articles - 1buh mentioned but not cited (34)

  1. Benchmarking and analysis of protein docking performance in Rosetta v3.2. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, Gray JJ. PLoS One 6 e22477 (2011)
  2. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  3. Deamidation of human proteins. Robinson NE, Robinson AB. Proc Natl Acad Sci U S A 98 12409-12413 (2001)
  4. Protein-protein docking using region-based 3D Zernike descriptors. Venkatraman V, Yang YD, Sael L, Kihara D. BMC Bioinformatics 10 407 (2009)
  5. Multisite phosphorylation networks as signal processors for Cdk1. Kõivomägi M, Ord M, Iofik A, Valk E, Venta R, Faustova I, Kivi R, Balog ER, Rubin SM, Loog M. Nat Struct Mol Biol 20 1415-1424 (2013)
  6. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Brown NR, Korolchuk S, Martin MP, Stanley WA, Moukhametzianov R, Noble MEM, Endicott JA. Nat Commun 6 6769 (2015)
  7. Cks confers specificity to phosphorylation-dependent CDK signaling pathways. McGrath DA, Balog ER, Kõivomägi M, Lucena R, Mai MV, Hirschi A, Kellogg DR, Loog M, Rubin SM. Nat Struct Mol Biol 20 1407-1414 (2013)
  8. Protein docking prediction using predicted protein-protein interface. Li B, Kihara D. BMC Bioinformatics 13 7 (2012)
  9. Encounter complexes and dimensionality reduction in protein-protein association. Kozakov D, Li K, Hall DR, Beglov D, Zheng J, Vakili P, Schueler-Furman O, Paschalidis ICh, Clore GM, Vajda S. Elife 3 e01370 (2014)
  10. Differences in the Conformational Energy Landscape of CDK1 and CDK2 Suggest a Mechanism for Achieving Selective CDK Inhibition. Wood DJ, Korolchuk S, Tatum NJ, Wang LZ, Endicott JA, Noble MEM, Martin MP. Cell Chem Biol 26 121-130.e5 (2019)
  11. MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data. Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y. Protein Pept Lett 21 766-778 (2014)
  12. Designing coarse grained-and atom based-potentials for protein-protein docking. Tobi D. BMC Struct Biol 10 40 (2010)
  13. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Padhorny D, Kazennov A, Zerbe BS, Porter KA, Xia B, Mottarella SE, Kholodov Y, Ritchie DW, Vajda S, Kozakov D. Proc Natl Acad Sci U S A 113 E4286-93 (2016)
  14. Binding-site assessment by virtual fragment screening. Huang N, Jacobson MP. PLoS One 5 e10109 (2010)
  15. Prediction of protein-binding areas by small-world residue networks and application to docking. Pons C, Glaser F, Fernandez-Recio J. BMC Bioinformatics 12 378 (2011)
  16. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  17. Prediction of Protein-Protein Interaction Sites Using Convolutional Neural Network and Improved Data Sets. Xie Z, Deng X, Shu K. Int J Mol Sci 21 E467 (2020)
  18. Structure-based druggability assessment of the mammalian structural proteome with inclusion of light protein flexibility. Loving KA, Lin A, Cheng AC. PLoS Comput Biol 10 e1003741 (2014)
  19. Structural deformation upon protein-protein interaction: a structural alphabet approach. Martin J, Regad L, Lecornet H, Camproux AC. BMC Struct Biol 8 12 (2008)
  20. Attention mechanism enhanced LSTM with residual architecture and its application for protein-protein interaction residue pairs prediction. Liu J, Gong X. BMC Bioinformatics 20 609 (2019)
  21. Identification of Druggable Kinase Target Conformations Using Markov Model Metastable States Analysis of apo-Abl. Paul F, Meng Y, Roux B. J Chem Theory Comput 16 1896-1912 (2020)
  22. Problems of robustness in Poisson-Boltzmann binding free energies. Harris RC, Mackoy T, Fenley MO. J Chem Theory Comput 11 705-712 (2015)
  23. How to use not-always-reliable binding site information in protein-protein docking prediction. Li L, Huang Y, Xiao Y. PLoS One 8 e75936 (2013)
  24. Protein docking by Rotation-Based Uniform Sampling (RotBUS) with fast computing of intermolecular contact distance and residue desolvation. Solernou A, Fernandez-Recio J. BMC Bioinformatics 11 352 (2010)
  25. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures. Maheshwari S, Brylinski M. BMC Struct Biol 15 23 (2015)
  26. Focused grid-based resampling for protein docking and mapping. Mamonov AB, Moghadasi M, Mirzaei H, Zarbafian S, Grove LE, Bohnuud T, Vakili P, Ch Paschalidis I, Vajda S, Kozakov D. J Comput Chem 37 961-970 (2016)
  27. Polyphony: superposition independent methods for ensemble-based drug discovery. Pitt WR, Montalvão RW, Blundell TL. BMC Bioinformatics 15 324 (2014)
  28. Specificity of broad protein interaction surfaces for proteins with multiple binding partners. Uchikoga N, Matsuzaki Y, Ohue M, Akiyama Y. Biophys Physicobiol 13 105-115 (2016)
  29. The Prozone Effect Accounts for the Paradoxical Function of the Cdk-Binding Protein Suc1/Cks. Ha SH, Kim SY, Ferrell JE. Cell Rep 14 1408-1421 (2016)
  30. Applying Side-chain Flexibility in Motifs for Protein Docking. Liu H, Lin F, Yang JL, Wang HR, Liu XL. Genomics Insights 8 1-10 (2015)
  31. Cryo-EM structure of SKP1-SKP2-CKS1 in complex with CDK2-cyclin A-p27KIP1. Rowland RJ, Heath R, Maskell D, Thompson RF, Ranson NA, Blaza JN, Endicott JA, Noble MEM, Salamina M. Sci Rep 13 10718 (2023)
  32. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints. Uchikoga N, Matsuzaki Y, Ohue M, Hirokawa T, Akiyama Y. PLoS One 8 e69365 (2013)
  33. Sampling the conformation of protein surface residues for flexible protein docking. Francis-Lyon P, Gu S, Hass J, Amenta N, Koehl P. BMC Bioinformatics 11 575 (2010)
  34. research-article Expanding the ligandable proteome by paralog hopping with covalent probes. Zhang Y, Liu Z, Hirschi M, Brodsky O, Johnson E, Won SJ, Nagata A, Petroski MD, Majmudar JD, Niessen S, VanArsdale T, Gilbert AM, Hayward MM, Stewart AE, Nager AR, Melillo B, Cravatt B. bioRxiv 2024.01.18.576274 (2024)


Reviews citing this publication (29)

  1. Cyclin-dependent kinases: engines, clocks, and microprocessors. Morgan DO. Annu Rev Cell Dev Biol 13 261-291 (1997)
  2. Mechanisms of specificity in protein phosphorylation. Ubersax JA, Ferrell JE. Nat Rev Mol Cell Biol 8 530-541 (2007)
  3. The SCF ubiquitin ligase: insights into a molecular machine. Cardozo T, Pagano M. Nat Rev Mol Cell Biol 5 739-751 (2004)
  4. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Mendenhall MD, Hodge AE. Microbiol Mol Biol Rev 62 1191-1243 (1998)
  5. The plant cell cycle. Dewitte W, Murray JA. Annu Rev Plant Biol 54 235-264 (2003)
  6. Roles of ubiquitin-mediated proteolysis in cell cycle control. Hershko A. Curr Opin Cell Biol 9 788-799 (1997)
  7. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Sivakumar S, Gorbsky GJ. Nat Rev Mol Cell Biol 16 82-94 (2015)
  8. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Reinhardt HC, Yaffe MB. Nat Rev Mol Cell Biol 14 563-580 (2013)
  9. Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback. Ferrell JE, Ha SH. Trends Biochem Sci 39 556-569 (2014)
  10. Evolution of protein structures and functions. Kinch LN, Grishin NV. Curr Opin Struct Biol 12 400-408 (2002)
  11. MYC Oncogene Contributions to Release of Cell Cycle Brakes. García-Gutiérrez L, Delgado MD, León J. Genes (Basel) 10 E244 (2019)
  12. Cell cycle: reaching for a role for the Cks proteins. Pines J. Curr Biol 6 1399-1402 (1996)
  13. Cyclin-dependent kinases: inhibition and substrate recognition. Endicott JA, Noble ME, Tucker JA. Curr Opin Struct Biol 9 738-744 (1999)
  14. Protein folding and three-dimensional domain swapping: a strained relationship? Newcomer ME. Curr Opin Struct Biol 12 48-53 (2002)
  15. Plant D-type cyclins and the control of G1 progression. Oakenfull EA, Riou-Khamlichi C, Murray JA. Philos Trans R Soc Lond B Biol Sci 357 749-760 (2002)
  16. Protein destruction: adapting roles for Cks proteins. Harper JW. Curr Biol 11 R431-5 (2001)
  17. The dynamics of cyclin dependent kinase structure. Morgan DO. Curr Opin Cell Biol 8 767-772 (1996)
  18. The third dimension for protein interactions and complexes. Aloy P, Russell RB, Russell RB. Trends Biochem Sci 27 633-638 (2002)
  19. Cyclin-dependent kinase homologues of Plasmodium falciparum. Doerig C, Endicott J, Chakrabarti D. Int J Parasitol 32 1575-1585 (2002)
  20. Down-regulation of Cdk inhibitor p27 in oral squamous cell carcinoma. Kudo Y, Kitajima S, Ogawa I, Miyauchi M, Takata T. Oral Oncol 41 105-116 (2005)
  21. Molecular mechanisms of the phospho-dependent prolyl cis/trans isomerase Pin1. Lippens G, Landrieu I, Smet C. FEBS J 274 5211-5222 (2007)
  22. Regulatory modules: Coupling protein stability to phopshoregulation during cell division. Holt LJ. FEBS Lett 586 2773-2777 (2012)
  23. Regulation of cyclin-dependent kinases in Arabidopsis thaliana. Stals H, Casteels P, Van Montagu M, Inzé D. Plant Mol Biol 43 583-593 (2000)
  24. The protein kinase activity modulation sites: mechanisms for cellular regulation - targets for therapeutic intervention. Engh RA, Bossemeyer D. Adv Enzyme Regul 41 121-149 (2001)
  25. Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes. Cardozo T, Pagano M. BMC Biochem 8 Suppl 1 S9 (2007)
  26. Loss of cks1 homeostasis deregulates cell division cycle. Krishnan A, Nair SA, Pillai MR. J Cell Mol Med 14 154-164 (2010)
  27. Perspectives for cancer therapies with cdk2 inhibitors. Wadler S. Drug Resist Updat 4 347-367 (2001)
  28. Substrate-specific regulation of ubiquitination by the anaphase-promoting complex. Song L, Rape M. Cell Cycle 10 52-56 (2011)
  29. Mechanisms for the temporal regulation of substrate ubiquitination by the anaphase-promoting complex/cyclosome. Bansal S, Tiwari S. Cell Div 14 14 (2019)

Articles citing this publication (108)

  1. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS, Blethrow J, Shimizu E, Tsien JZ, Schultz PG, Rose MD, Wood JL, Morgan DO, Shokat KM. Nature 407 395-401 (2000)
  2. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ. Cell 90 859-869 (1997)
  3. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Körner R, Greff Z, Kéri G, Stemmann O, Mann M. Mol Cell 31 438-448 (2008)
  4. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A. Nat Cell Biol 3 321-324 (2001)
  5. A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, Krek TW, Reed SI. Mol Cell 7 639-650 (2001)
  6. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. Niefind K, Guerra B, Ermakowa I, Issinger OG. EMBO J 20 5320-5331 (2001)
  7. A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Tong L, Pav S, White DM, Rogers S, Crane KM, Cywin CL, Brown ML, Pargellis CA. Nat Struct Biol 4 311-316 (1997)
  8. Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC, Pearl LH. EMBO J 22 494-501 (2003)
  9. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Hao B, Zheng N, Schulman BA, Wu G, Miller JJ, Pagano M, Pavletich NP. Mol Cell 20 9-19 (2005)
  10. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Tedesco D, Lukas J, Reed SI. Genes Dev 16 2946-2957 (2002)
  11. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Phys Chem Chem Phys 18 22129-22139 (2016)
  12. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, DePamphilis CW, Ma H. Plant Physiol 135 1084-1099 (2004)
  13. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Wolthuis R, Clay-Farrace L, van Zon W, Yekezare M, Koop L, Ogink J, Medema R, Pines J. Mol Cell 30 290-302 (2008)
  14. Isolation and characterization of human orthologs of yeast CCR4-NOT complex subunits. Albert TK, Lemaire M, van Berkum NL, Gentz R, Collart MA, Timmers HT. Nucleic Acids Res 28 809-817 (2000)
  15. Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2. Song H, Hanlon N, Brown NR, Noble ME, Johnson LN, Barford D. Mol Cell 7 615-626 (2001)
  16. Xe-p9, a Xenopus Suc1/Cks protein, is essential for the Cdc2-dependent phosphorylation of the anaphase- promoting complex at mitosis. Patra D, Dunphy WG. Genes Dev 12 2549-2559 (1998)
  17. Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Kannan N, Neuwald AF. Protein Sci 13 2059-2077 (2004)
  18. A cell-cycle-regulated kinase activity phosphorylates plant retinoblastoma protein and contains, in Arabidopsis, a CDKA/cyclin D complex. Boniotti MB, Gutierrez C. Plant J 28 341-350 (2001)
  19. Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast. Morris MC, Kaiser P, Rudyak S, Baskerville C, Watson MH, Reed SI. Nature 423 1009-1013 (2003)
  20. Cyclin-dependent kinase-associated proteins Cks1 and Cks2 are essential during early embryogenesis and for cell cycle progression in somatic cells. Martinsson-Ahlzén HS, Liberal V, Grünenfelder B, Chaves SR, Spruck CH, Reed SI. Mol Cell Biol 28 5698-5709 (2008)
  21. The Conserved Kinases CDK-1, GSK-3, KIN-19, and MBK-2 Promote OMA-1 Destruction to Regulate the Oocyte-to-Embryo Transition in C. elegans. Shirayama M, Soto MC, Ishidate T, Kim S, Nakamura K, Bei Y, van den Heuvel S, Mello CC. Curr Biol 16 47-55 (2006)
  22. The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles. Honda R, Lowe ED, Dubinina E, Skamnaki V, Cook A, Brown NR, Johnson LN. EMBO J 24 452-463 (2005)
  23. Cyclin-dependent kinase and Cks/Suc1 interact with the proteasome in yeast to control proteolysis of M-phase targets. Kaiser P, Moncollin V, Clarke DJ, Watson MH, Bertolaet BL, Reed SI, Bailly E. Genes Dev 13 1190-1202 (1999)
  24. How cyclin A destruction escapes the spindle assembly checkpoint. Di Fiore B, Pines J. J Cell Biol 190 501-509 (2010)
  25. A mitotic kinase TOPK enhances Cdk1/cyclin B1-dependent phosphorylation of PRC1 and promotes cytokinesis. Abe Y, Takeuchi T, Kagawa-Miki L, Ueda N, Shigemoto K, Yasukawa M, Kito K. J Mol Biol 370 231-245 (2007)
  26. PIER: protein interface recognition for structural proteomics. Kufareva I, Budagyan L, Raush E, Totrov M, Abagyan R. Proteins 67 400-417 (2007)
  27. The Arabidopsis Cks1At protein binds the cyclin-dependent kinases Cdc2aAt and Cdc2bAt. De Veylder L, Segers G, Glab N, Casteels P, Van Montagu M, Inzé D. FEBS Lett 412 446-452 (1997)
  28. The gene for the ataxia-telangiectasia variant, Nijmegen breakage syndrome, maps to a 1-cM interval on chromosome 8q21. Saar K, Chrzanowska KH, Stumm M, Jung M, Nürnberg G, Wienker TF, Seemanová E, Wegner RD, Reis A, Sperling K. Am J Hum Genet 60 605-610 (1997)
  29. Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. Boruc J, Mylle E, Duda M, De Clercq R, Rombauts S, Geelen D, Hilson P, Inzé D, Van Damme D, Russinova E. Plant Physiol 152 553-565 (2010)
  30. Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly. Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, Klügel M, Scott DC, Ovaa H, Kleiger G, Schulman BA. Nature 590 671-676 (2021)
  31. Cyclin-dependent kinase subunit (Cks) 1 or Cks2 overexpression overrides the DNA damage response barrier triggered by activated oncoproteins. Liberal V, Martinsson-Ahlzén HS, Liberal J, Spruck CH, Widschwendter M, McGowan CH, Reed SI. Proc Natl Acad Sci U S A 109 2754-2759 (2012)
  32. Role of Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2 in promoting p27 degradation. Kitajima S, Kudo Y, Ogawa I, Bashir T, Kitagawa M, Miyauchi M, Pagano M, Takata T. Am J Pathol 165 2147-2155 (2004)
  33. Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition. Holton S, Merckx A, Burgess D, Doerig C, Noble M, Endicott J. Structure 11 1329-1337 (2003)
  34. CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression. De Veylder L, Beemster GT, Beeckman T, Inzé D. Plant J 25 617-626 (2001)
  35. Cks1 is required for G(1) cyclin-cyclin-dependent kinase activity in budding yeast. Reynard GJ, Reynolds W, Verma R, Deshaies RJ. Mol Cell Biol 20 5858-5864 (2000)
  36. Pfmrk, a MO15-related protein kinase from Plasmodium falciparum. Gene cloning, sequence, stage-specific expression and chromosome localization. Li JL, Robson KJ, Chen JL, Targett GA, Baker DA. Eur J Biochem 241 805-813 (1996)
  37. The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A. Luciani MG, Hutchins JR, Zheleva D, Hupp TR. J Mol Biol 300 503-518 (2000)
  38. Domain swapping in the sporulation response regulator Spo0A. Lewis RJ, Muchová K, Brannigan JA, Barák I, Leonard G, Wilkinson AJ. J Mol Biol 297 757-770 (2000)
  39. PEA-15 binding to ERK1/2 MAPKs is required for its modulation of integrin activation. Chou FL, Hill JM, Hsieh JC, Pouyssegur J, Brunet A, Glading A, Uberall F, Ramos JW, Werner MH, Ginsberg MH. J Biol Chem 278 52587-52597 (2003)
  40. A kinase-independent function of Cks1 and Cdk1 in regulation of transcription. Yu VP, Baskerville C, Grünenfelder B, Reed SI. Mol Cell 17 145-151 (2005)
  41. A Whi7-anchored loop controls the G1 Cdk-cyclin complex at start. Yahya G, Parisi E, Flores A, Gallego C, Aldea M. Mol Cell 53 115-126 (2014)
  42. A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia. Tranier S, Iobbi-Nivol C, Birck C, Ilbert M, Mortier-Barrière I, Méjean V, Samama JP. Structure 11 165-174 (2003)
  43. Phosphorylation by a cyclin-dependent kinase modulates DNA binding of the Arabidopsis heat-shock transcription factor HSF1 in vitro. Reindl A, Schöffl F, Schell J, Koncz C, Bakó L. Plant Physiol 115 93-100 (1997)
  44. Role of Suc1 in the activation of the cyclosome by protein kinase Cdk1/cyclin B. Shteinberg M, Hershko A. Biochem Biophys Res Commun 257 12-18 (1999)
  45. p38alpha MAP kinase C-terminal domain binding pocket characterized by crystallographic and computational analyses. Perry JJ, Harris RM, Moiani D, Olson AJ, Tainer JA. J Mol Biol 391 1-11 (2009)
  46. The folding pathway of the cell-cycle regulatory protein p13suc1: clues for the mechanism of domain swapping. Schymkowitz JW, Rousseau F, Irvine LR, Itzhaki LS. Structure 8 89-100 (2000)
  47. ckshs expression is linked to cell proliferation in normal and malignant human lymphoid cells. Urbanowicz-Kachnowicz I, Baghdassarian N, Nakache C, Gracia D, Mekki Y, Bryon PA, Ffrench M. Int J Cancer 82 98-104 (1999)
  48. The CDK subunit CKS2 counteracts CKS1 to control cyclin A/CDK2 activity in maintaining replicative fidelity and neurodevelopment. Frontini M, Kukalev A, Leo E, Ng YM, Cervantes M, Cheng CW, Holic R, Dormann D, Tse E, Pommier Y, Yu V. Dev Cell 23 356-370 (2012)
  49. General co-expression vectors for the overexpression of heterodimeric protein complexes in Escherichia coli. Dzivenu OK, Park HH, Wu H. Protein Expr Purif 38 1-8 (2004)
  50. Stability and folding of the cell cycle regulatory protein, p13(suc1). Rousseau F, Schymkowitz JW, Sánchez del Pino M, Itzhaki LS. J Mol Biol 284 503-519 (1998)
  51. Characterization of the unfolding pathway of the cell-cycle protein p13suc1 by molecular dynamics simulations: implications for domain swapping. Alonso DO, Alm E, Daggett V. Structure 8 101-110 (2000)
  52. Crystal structure and mutational analysis of the Saccharomyces cerevisiae cell cycle regulatory protein Cks1: implications for domain swapping, anion binding and protein interactions. Bourne Y, Watson MH, Arvai AS, Bernstein SL, Reed SI, Tainer JA. Structure 8 841-850 (2000)
  53. Protein-protein interactions involved in the recognition of p27 by E3 ubiquitin ligase. Xu K, Belunis C, Chu W, Weber D, Podlaski F, Huang KS, Reed SI, Vassilev LT. Biochem J 371 957-964 (2003)
  54. Clinical and biological impact of cyclin-dependent kinase subunit 2 in esophageal squamous cell carcinoma. Kita Y, Nishizono Y, Okumura H, Uchikado Y, Sasaki K, Matsumoto M, Setoyama T, Tanoue K, Omoto I, Mori S, Owaki T, Ishigami S, Nakagawa H, Tanaka F, Mimori K, Mori M, Natsugoe S. Oncol Rep 31 1986-1992 (2014)
  55. Cks1: Structure, Emerging Roles and Implications in Multiple Cancers. Khattar V, Thottassery JV. J Cancer Ther 4 1341-1354 (2013)
  56. Mutational analysis of two Arabidopsis thaliana cyclin-dependent kinases in fission yeast. Porceddu A, De Veylder L, Hayles J, Van Montagu M, Inzé D, Mironov V. FEBS Lett 446 182-188 (1999)
  57. Rapamycin blocks IL-2-driven T cell cycle progression while preserving T cell survival. Gonzalez J, Harris T, Childs G, Prystowsky MB. Blood Cells Mol Dis 27 572-585 (2001)
  58. Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16. Dixon-Clarke SE, Shehata SN, Krojer T, Sharpe TD, von Delft F, Sakamoto K, Bullock AN. Biochem J 474 699-713 (2017)
  59. A Synthetic Dosage Lethal Genetic Interaction Between CKS1B and PLK1 Is Conserved in Yeast and Human Cancer Cells. Reid RJ, Du X, Sunjevaric I, Rayannavar V, Dittmar J, Bryant E, Maurer M, Rothstein R. Genetics 204 807-819 (2016)
  60. EtCRK2, a cyclin-dependent kinase gene expressed during the sexual and asexual phases of the Eimeria tenella life cycle. Kinnaird JH, Bumstead JM, Mann DJ, Ryan R, Shirley MW, Shiels BR, Tomley FM. Int J Parasitol 34 683-692 (2004)
  61. A pre-anaphase role for a Cks/Suc1 in acentrosomal spindle formation of Drosophila female meiosis. Pearson NJ, Cullen CF, Dzhindzhev NS, Ohkura H. EMBO Rep 6 1058-1063 (2005)
  62. Cyclin-stimulated binding of Cks proteins to cyclin-dependent kinases. Egan EA, Solomon MJ. Mol Cell Biol 18 3659-3667 (1998)
  63. Development and validation of a method for profiling post-translational modification activities using protein microarrays. Del Rincón SV, Rogers J, Widschwendter M, Sun D, Sieburg HB, Spruck C. PLoS One 5 e11332 (2010)
  64. The long form of CDK2 arises via alternative splicing and forms an active protein kinase with cyclins A and E. Ellenrieder C, Bartosch B, Lee GY, Murphy M, Sweeney C, Hergersberg M, Carrington M, Jaussi R, Hunt T. DNA Cell Biol 20 413-423 (2001)
  65. Cooperative organization in a macromolecular complex. Seeliger MA, Breward SE, Friedler A, Schon O, Itzhaki LS. Nat Struct Biol 10 718-724 (2003)
  66. Role of conformational heterogeneity in domain swapping and adapter function of the Cks proteins. Seeliger MA, Spichty M, Kelly SE, Bycroft M, Freund SM, Karplus M, Itzhaki LS. J Biol Chem 280 30448-30459 (2005)
  67. Sequence conservation provides the best prediction of the role of proline residues in p13suc1. Schymkowitz JW, Rousseau F, Itzhaki LS. J Mol Biol 301 199-204 (2000)
  68. Cks1 is degraded via the ubiquitin-proteasome pathway in a cell cycle-dependent manner. Hattori T, Kitagawa K, Uchida C, Oda T, Kitagawa M. Genes Cells 8 889-896 (2003)
  69. Cks1 is required for tumor cell proliferation but not sufficient to induce hematopoietic malignancies. Kratzat S, Nikolova V, Miething C, Hoellein A, Schoeffmann S, Gorka O, Pietschmann E, Illert AL, Ruland J, Peschel C, Nilsson J, Duyster J, Keller U. PLoS One 7 e37433 (2012)
  70. Expansion of cyclin D and CDK1 paralogs in Oikopleura dioica, a chordate employing diverse cell cycle variants. Campsteijn C, Ovrebø JI, Karlsen BO, Thompson EM. Mol Biol Evol 29 487-502 (2012)
  71. Yet another "active" pseudokinase, Erb3. Taylor SS, Kornev AP. Proc Natl Acad Sci U S A 107 8047-8048 (2010)
  72. Protein-protein docking with dynamic residue protonation states. Kilambi KP, Reddy K, Gray JJ. PLoS Comput Biol 10 e1004018 (2014)
  73. The crystal structure of the protein kinase HIPK2 reveals a unique architecture of its CMGC-insert region. Agnew C, Liu L, Liu S, Xu W, You L, Yeung W, Kannan N, Jablons D, Jura N. J Biol Chem 294 13545-13559 (2019)
  74. Cks overexpression enhances chemotherapeutic efficacy by overriding DNA damage checkpoints. del Rincón SV, Widschwendter M, Sun D, Ekholm-Reed S, Tat J, Teixeira LK, Ellederova Z, Grolieres E, Reed SI, Spruck C. Oncogene 34 1961-1967 (2015)
  75. Ectopic expression of cdc2/cdc28 kinase subunit Homo sapiens 1 uncouples cyclin B metabolism from the mitotic spindle cell cycle checkpoint. Hixon ML, Flores AI, Wagner MW, Gualberto A. Mol Cell Biol 18 6224-6237 (1998)
  76. Analysis of meiosis and cell cycle genes of the facultatively asexual pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae). Srinivasan DG, Fenton B, Jaubert-Possamai S, Jaouannet M. Insect Mol Biol 19 Suppl 2 229-239 (2010)
  77. Functional study of genes essential for autogamy and nuclear reorganization in Paramecium. Nowak JK, Gromadka R, Juszczuk M, Jerka-Dziadosz M, Maliszewska K, Mucchielli MH, Gout JF, Arnaiz O, Agier N, Tang T, Aggerbeck LP, Cohen J, Delacroix H, Sperling L, Herbert CJ, Zagulski M, Bétermier M. Eukaryot Cell 10 363-372 (2011)
  78. Cks1 promotion of S phase entry and proliferation is independent of p27Kip1 suppression. Hoellein A, Graf S, Bassermann F, Schoeffmann S, Platz U, Hölzlwimmer G, Kröger M, Peschel C, Oostendorp R, Quintanilla-Fend L, Keller U. Mol Cell Biol 32 2416-2427 (2012)
  79. Knowledge-based modeling of peptides at protein interfaces: PiPreD. Oliva B, Fernandez-Fuentes N. Bioinformatics 31 1405-1410 (2015)
  80. Cyclin B3 activates the Anaphase-Promoting Complex/Cyclosome in meiosis and mitosis. Garrido D, Bourouh M, Bonneil É, Thibault P, Swan A, Archambault V. PLoS Genet 16 e1009184 (2020)
  81. Multiscale Monte Carlo Sampling of Protein Sidechains: Application to Binding Pocket Flexibility. Nilmeier J, Jacobson M. J Chem Theory Comput 4 835-846 (2008)
  82. Solution NMR study of the monomeric form of p13suc1 protein sheds light on the hinge region determining the affinity for a phosphorylated substrate. Odaert B, Landrieu I, Dijkstra K, Schuurman-Wolters G, Casteels P, Wieruszeski JM, Inze D, Scheek R, Lippens G. J Biol Chem 277 12375-12381 (2002)
  83. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth. Pavlides SC, Lecanda J, Daubriac J, Pandya UM, Gama P, Blank S, Mittal K, Shukla P, Gold LI. Cell Cycle 15 931-947 (2016)
  84. The cyclin dependent kinase subunit Cks1 is required for infection-associated development of the rice blast fungus Magnaporthe oryzae. Yue X, Que Y, Deng S, Xu L, Oses-Ruiz M, Talbot NJ, Peng Y, Wang Z. Environ Microbiol 19 3959-3981 (2017)
  85. Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2. Gu J, Bourne PE. BMC Bioinformatics 8 45 (2007)
  86. Molecular modeling and dynamics simulation of human cyclin-dependent kinase 3 complexed with inhibitors. Perez PC, Caceres RA, Canduri F, de Azevedo WF. Comput Biol Med 39 130-140 (2009)
  87. CKS1 Germ Line Exclusion Is Essential for the Transition from Meiosis to Early Embryonic Development. Ellederova Z, Del Rincon S, Koncicka M, Susor A, Kubelka M, Sun D, Spruck C. Mol Cell Biol 39 e00590-18 (2019)
  88. Characterization of novel mutations at the Schizosaccharomyces pombe cdc2 regulatory phosphorylation site, tyrosine 15. Gould KL, Feoktistova A. Mol Biol Cell 7 1573-1586 (1996)
  89. Characterization of the interactions between human cdc25C, cdks, cyclins and cdk-cyclin complexes. Morris MC, Divita G. J Mol Biol 286 475-487 (1999)
  90. Cks1 activates transcription by binding to the ubiquitylated proteasome. Holic R, Kukalev A, Lane S, Andress EJ, Lau I, Yu CW, Edelmann MJ, Kessler BM, Yu VP. Mol Cell Biol 30 3894-3901 (2010)
  91. Targeting Conformational Activation of CDK2 Kinase. Pellerano M, Tcherniuk S, Perals C, Ngoc Van TN, Garcin E, Mahuteau-Betzer F, Teulade-Fichou MP, Morris MC. Biotechnol J 12 (2017)
  92. Trypanosoma cruzi Tcp12CKS1 interacts with parasite CRKs and rescues the p13SUC1 fission yeast mutant. Muñoz MJ, Santori MI, Rojas F, Gómez EB, Téllez-Iñón MT. Mol Biochem Parasitol 147 154-162 (2006)
  93. A Gaussian network model study suggests that structural fluctuations are higher for inactive states than active states of protein kinases. Kalaivani R, Srinivasan N. Mol Biosyst 11 1079-1095 (2015)
  94. Molecular cloning and characterisation of p15(CDK-BP), a novel CDK-binding protein. Vogel L, Baratte B, Détivaud L, Azzi L, Leopold P, Meijer L. Biochim Biophys Acta 1589 219-231 (2002)
  95. Tampering with cell division by using small-molecule inhibitors of CDK-CKS protein interactions. Hamdi A, Lesnard A, Suzanne P, Robert T, Miteva MA, Pellerano M, Didier B, Ficko-Blean E, Lobstein A, Hibert M, Rault S, Morris MC, Colas P. Chembiochem 16 432-439 (2015)
  96. A Quantitative Tri-fluorescent Yeast Two-hybrid System: From Flow Cytometry to In cellula Affinities. Cluet D, Amri I, Vergier B, Léault J, Audibert A, Grosjean C, Calabrési D, Spichty M. Mol Cell Proteomics 19 701-715 (2020)
  97. CKS Proteins Promote Checkpoint Recovery by Stimulating Phosphorylation of Treslin. Mu R, Tat J, Zamudio R, Zhang Y, Yates JR, Kumagai A, Dunphy WG, Reed SI. Mol Cell Biol 37 e00344-17 (2017)
  98. Characterization of a novel cdk1-related kinase. Détivaud L, Pettit GR, Meijer L. Eur J Biochem 264 55-66 (1999)
  99. Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis. Amador E, López-Pacheco K, Morales N, Coria R, López-Villaseñor I. Parasitology 144 571-582 (2017)
  100. Homology modeling and molecular dynamics study of GSK3/SHAGGY-like kinase. Xiao JF, Li ZS, Sun M, Zhang Y, Sun CC. Comput Biol Chem 28 179-188 (2004)
  101. Morphogenesis signaling components influence cell cycle regulation by cyclin dependent kinase. Tobe BT, Kitazono AA, Garcia JS, Gerber RA, Bevis BJ, Choy JS, Chasman D, Kron SJ. Cell Div 4 12 (2009)
  102. Regulation and New Treatment Strategies in Breast Cancer. Ferraiuolo RM, Wagner KU. J Life Sci (Westlake Village) 1 23-38 (2019)
  103. SSSCPreds: Deep Neural Network-Based Software for the Prediction of Conformational Variability and Application to SARS-CoV-2. Izumi H, Nafie LA, Dukor RK. ACS Omega 5 30556-30567 (2020)
  104. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Enzyme Res 2011 356093 (2011)
  105. Bipartite binding of the N terminus of Skp2 to cyclin A. Kelso S, Orlicky S, Beenstock J, Ceccarelli DF, Kurinov I, Gish G, Sicheri F. Structure 29 975-988.e5 (2021)
  106. CKS1B promotes the progression of hepatocellular carcinoma by activating JAK/STAT3 signal pathway. Liu X, Zhao D. Anim Cells Syst (Seoul) 25 227-234 (2021)
  107. CKS protein overexpression renders tumors susceptible to a chemotherapeutic strategy that protects normal tissues. Tat J, Loriot C, Henze M, Spruck C, Felding BH, Reed SI. Oncotarget 8 114911-114923 (2017)
  108. Understanding and predicting protein assemblies with 3D structures. Aloy P, Russell RB, Russell RB. Comp Funct Genomics 4 410-415 (2003)