1bpr Citations

NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction.

Biochemistry 37 7929-40 (1998)
Cited: 80 times
EuropePMC logo PMID: 9609686

Abstract

The solution structure of the 21 kDa substrate-binding domain of the Escherichia coli Hsp70-chaperone protein DnaK (DnaK 386-561) has been determined to a precision of 1.00 A (backbone of the beta-domain) from 1075 experimental restraints obtained from multinuclear, multidimensional NMR experiments. The domain is observed to bind to its own C-terminus and offers a preview of the interaction of this chaperone with other proteins. The bound protein region is tightly held at a single amino acid position (a leucyl residue) that is buried in a deep pocket lined with conserved hydrophobic residues. A second hydrophobic binding site was identified using paramagnetically labeled peptides. It is located in a region close to the N-terminus of the domain and may constitute the allosteric region that links substrate-binding affinity with nucleotide binding in the Hsp70 chaperones.

Articles - 1bpr mentioned but not cited (6)

  1. Structural basis of interdomain communication in the Hsc70 chaperone. Jiang J, Prasad K, Lafer EM, Sousa R. Mol Cell 20 513-524 (2005)
  2. Identification of protein interfaces between α-synuclein, the principal component of Lewy bodies in Parkinson disease, and the molecular chaperones human Hsc70 and the yeast Ssa1p. Redeker V, Pemberton S, Bienvenut W, Bousset L, Melki R. J Biol Chem 287 32630-32639 (2012)
  3. The C-terminal GGAP motif of Hsp70 mediates substrate recognition and stress response in yeast. Gong W, Hu W, Xu L, Wu H, Wu S, Zhang H, Wang J, Jones GW, Perrett S. J Biol Chem 293 17663-17675 (2018)
  4. Impact of subdomain D1 of the short form S1b of the human prolactin receptor on its inhibitory action on the function of the long form of the receptor induced by prolactin. Kang JH, Hassan SA, Zhao P, Tsai-Morris CH, Dufau ML. Biochim Biophys Acta 1840 2272-2280 (2014)
  5. The β6/β7 region of the Hsp70 substrate-binding domain mediates heat-shock response and prion propagation. Xu L, Gong W, Cusack SA, Wu H, Loovers HM, Zhang H, Perrett S, Jones GW. Cell Mol Life Sci 75 1445-1459 (2018)
  6. Abstracts from the Second International Conference on Heat-Shock Proteins in Immune Response, 8-12 October 2000 Farmington, CT USA Cell Stress Chaperones 5 373-397 (2000)


Reviews citing this publication (14)

  1. Hsp70 chaperones: cellular functions and molecular mechanism. Mayer MP, Bukau B. Cell Mol Life Sci 62 670-684 (2005)
  2. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Stricher F, Macri C, Ruff M, Muller S. Autophagy 9 1937-1954 (2013)
  3. Recognition between flexible protein molecules: induced and assisted folding. Demchenko AP. J Mol Recognit 14 42-61 (2001)
  4. Allostery in the Hsp70 chaperone proteins. Zuiderweg ER, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, Ahmad A. Top Curr Chem 328 99-153 (2013)
  5. Molecular basis for interactions of the DnaK chaperone with substrates. Mayer MP, Rüdiger S, Bukau B. Biol Chem 381 877-885 (2000)
  6. Hsp70 protein complexes as drug targets. Assimon VA, Gillies AT, Rauch JN, Gestwicki JE. Curr Pharm Des 19 404-417 (2013)
  7. The remarkable multivalency of the Hsp70 chaperones. Zuiderweg ER, Hightower LE, Gestwicki JE. Cell Stress Chaperones 22 173-189 (2017)
  8. Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Kimmins S, MacRae TH. Cell Stress Chaperones 5 76-86 (2000)
  9. Dynamical Structures of Hsp70 and Hsp70-Hsp40 Complexes. Alderson TR, Kim JH, Markley JL. Structure 24 1014-1030 (2016)
  10. Intra-molecular pathways of allosteric control in Hsp70s. Mayer MP. Philos Trans R Soc Lond B Biol Sci 373 (2018)
  11. Protein folding and unfolding by Escherichia coli chaperones and chaperonins. Gottesman ME, Hendrickson WA. Curr Opin Microbiol 3 197-202 (2000)
  12. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Liu Q, Liang C, Zhou L. Protein Sci 29 378-390 (2020)
  13. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. Burmann BM, Hiller S. Prog Nucl Magn Reson Spectrosc 86-87 41-64 (2015)
  14. A History of Molecular Chaperone Structures in the Protein Data Bank. Bascos NAD, Landry SJ. Int J Mol Sci 20 (2019)

Articles citing this publication (60)

  1. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER. Proc Natl Acad Sci U S A 106 8471-8476 (2009)
  2. Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X, Xu H, Yang J, Wong JL, Vorvis C, Hendrickson WA, Zhou L, Liu Q. Nat Struct Mol Biol 20 900-907 (2013)
  3. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L, Gimenez LE, Jin S, Taylor AB, Demeler B, Morano KA, Hart PJ, Valpuesta JM, Lafer EM, Sousa R. Mol Cell 31 232-243 (2008)
  4. Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Schlecht R, Erbse AH, Bukau B, Mayer MP. Nat Struct Mol Biol 18 345-351 (2011)
  5. Active site-directed protein regulation. Kobe B, Kemp BE. Nature 402 373-376 (1999)
  6. Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling. Montgomery DL, Morimoto RI, Gierasch LM. J Mol Biol 286 915-932 (1999)
  7. High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70. Morshauser RC, Hu W, Wang H, Pang Y, Flynn GC, Zuiderweg ER. J Mol Biol 289 1387-1403 (1999)
  8. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. Mayer MP, Laufen T, Paal K, McCarty JS, Bukau B. J Mol Biol 289 1131-1144 (1999)
  9. Single amino acid substitutions on the surface of Escherichia coli maltose-binding protein can have a profound impact on the solubility of fusion proteins. Fox JD, Kapust RB, Waugh DS. Protein Sci 10 622-630 (2001)
  10. Allostery in Hsp70 chaperones is transduced by subdomain rotations. Bhattacharya A, Kurochkin AV, Yip GN, Zhang Y, Bertelsen EB, Zuiderweg ER. J Mol Biol 388 475-490 (2009)
  11. Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. Cupp-Vickery JR, Peterson JC, Ta DT, Vickery LE. J Mol Biol 342 1265-1278 (2004)
  12. The solution structure of the bacterial HSP70 chaperone protein domain DnaK(393-507) in complex with the peptide NRLLLTG. Stevens SY, Cai S, Pellecchia M, Zuiderweg ER. Protein Sci 12 2588-2596 (2003)
  13. Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron-sulfur cluster assembly protein IscU. Silberg JJ, Tapley TL, Hoff KG, Vickery LE. J Biol Chem 279 53924-53931 (2004)
  14. Interaction of murine BiP/GRP78 with the DnaJ homologue MTJ1. Chevalier M, Rhee H, Elguindi EC, Blond SY. J Biol Chem 275 19620-19627 (2000)
  15. Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate. Zhang P, Leu JI, Murphy ME, George DL, Marmorstein R. PLoS One 9 e103518 (2014)
  16. Divergent functional properties of the ribosome-associated molecular chaperone Ssb compared with other Hsp70s. Pfund C, Huang P, Lopez-Hoyo N, Craig EA. Mol Biol Cell 12 3773-3782 (2001)
  17. Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch. Rüdiger S, Mayer MP, Schneider-Mergener J, Bukau B. J Mol Biol 304 245-251 (2000)
  18. NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism. Revington M, Holder TM, Zuiderweg ER. J Biol Chem 279 33958-33967 (2004)
  19. The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity. Vijayalakshmi J, Mukhergee MK, Graumann J, Jakob U, Saper MA. Structure 9 367-375 (2001)
  20. The Hsp70 interdomain linker is a dynamic switch that enables allosteric communication between two structured domains. English CA, Sherman W, Meng W, Gierasch LM. J Biol Chem 292 14765-14774 (2017)
  21. Homology model and potential virus-capsid binding site of a putative HEV receptor Grp78. Yu H, Li S, Yang C, Wei M, Song C, Zheng Z, Gu Y, Du H, Zhang J, Xia N. J Mol Model 17 987-995 (2011)
  22. The novolactone natural product disrupts the allosteric regulation of Hsp70. Hassan AQ, Kirby CA, Zhou W, Schuhmann T, Kityk R, Kipp DR, Baird J, Chen J, Chen Y, Chung F, Hoepfner D, Movva NR, Pagliarini R, Petersen F, Quinn C, Quinn D, Riedl R, Schmitt EK, Schitter A, Stams T, Studer C, Fortin PD, Mayer MP, Sadlish H. Chem Biol 22 87-97 (2015)
  23. Solution structure and stability of the anti-sigma factor AsiA: implications for novel functions. Urbauer JL, Simeonov MF, Urbauer RJ, Adelman K, Gilmore JM, Brody EN. Proc Natl Acad Sci U S A 99 1831-1835 (2002)
  24. Structural basis for the inhibition of HSP70 and DnaK chaperones by small-molecule targeting of a C-terminal allosteric pocket. Leu JI, Zhang P, Murphy ME, Marmorstein R, George DL. ACS Chem Biol 9 2508-2516 (2014)
  25. Topology and dynamics of the 10 kDa C-terminal domain of DnaK in solution. Bertelsen EB, Zhou H, Lowry DF, Flynn GC, Dahlquist FW. Protein Sci 8 343-354 (1999)
  26. Giardia lamblia expresses a proteobacterial-like DnaK homolog. Morrison HG, Roger AJ, Nystul TG, Gillin FD, Sogin ML. Mol Biol Evol 18 530-541 (2001)
  27. The functional cycle and regulation of the Thermus thermophilus DnaK chaperone system. Klostermeier D, Seidel R, Reinstein J. J Mol Biol 287 511-525 (1999)
  28. Isolation, expression, and characterization of fully functional nontoxic BiP/GRP78 mutants. King LS, Berg M, Chevalier M, Carey A, Elguindi EC, Blond SY. Protein Expr Purif 22 148-158 (2001)
  29. A GrpE mutant containing the NH(2)-terminal "tail" region is able to displace bound polypeptide substrate from DnaK. Mehl AF, Heskett LD, Neal KM. Biochem Biophys Res Commun 282 562-569 (2001)
  30. Structural dynamics of the DnaK-peptide complex. Popp S, Packschies L, Radzwill N, Vogel KP, Steinhoff HJ, Reinstein J. J Mol Biol 347 1039-1052 (2005)
  31. The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain. Moro F, Fernández-Sáiz V, Muga A. Protein Sci 15 223-233 (2006)
  32. A novel variant of the MHC-linked hsp70, hsp70-hom, is associated with rheumatoid arthritis. Jenkins SC, March RE, Campbell RD, Milner CM. Tissue Antigens 56 38-44 (2000)
  33. Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli. Kedzierska S, Chesnokova LS, Witt SN, Zolkiewski M. Arch Biochem Biophys 444 61-65 (2005)
  34. A mutation in dnaK causes stabilization of the heat shock sigma factor σ32, accumulation of heat shock proteins and increase in toluene-resistance in Pseudomonas putida. Kobayashi Y, Ohtsu I, Fujimura M, Fukumori F. Environ Microbiol 13 2007-2017 (2011)
  35. Human Stress-inducible Hsp70 Has a High Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by Cochaperone Binding. Trcka F, Durech M, Vankova P, Chmelik J, Martinkova V, Hausner J, Kadek A, Marcoux J, Klumpler T, Vojtesek B, Muller P, Man P. Mol Cell Proteomics 18 320-337 (2019)
  36. Role of the C-terminal region of mouse inducible Hsp72 in the recognition of peptide substrate for chaperone activity. Ohno M, Kitabatake N, Tani F. FEBS Lett 576 381-386 (2004)
  37. The effect of mutating arginine-469 on the substrate binding and refolding activities of 70-kDa heat shock cognate protein. Chang TC, Hsiao CD, Wu SJ, Wang C. Arch Biochem Biophys 386 30-36 (2001)
  38. Crystal structure of the C-terminal three-helix bundle subdomain of C. elegans Hsp70. Worrall LJ, Walkinshaw MD. Biochem Biophys Res Commun 357 105-110 (2007)
  39. Direct inter-subdomain interactions switch between the closed and open forms of the Hsp70 nucleotide-binding domain in the nucleotide-free state. Shida M, Arakawa A, Ishii R, Kishishita S, Takagi T, Kukimoto-Niino M, Sugano S, Tanaka A, Shirouzu M, Yokoyama S. Acta Crystallogr D Biol Crystallogr 66 223-232 (2010)
  40. The lid domain of Caenorhabditis elegans Hsc70 influences ATP turnover, cofactor binding and protein folding activity. Sun L, Edelmann FT, Kaiser CJ, Papsdorf K, Gaiser AM, Richter K. PLoS One 7 e33980 (2012)
  41. The substrate binding domain of DnaK facilitates slow protein refolding. Tanaka N, Nakao S, Wadai H, Ikeda S, Chatellier J, Kunugi S. Proc Natl Acad Sci U S A 99 15398-15403 (2002)
  42. Conformational properties of bacterial DnaK and yeast mitochondrial Hsp70. Role of the divergent C-terminal alpha-helical subdomain. Moro F, Fernández-Sáiz V, Slutsky O, Azem A, Muga A. FEBS J 272 3184-3196 (2005)
  43. Enterovirus 71 induces dsRNA/PKR-dependent cytoplasmic redistribution of GRP78/BiP to promote viral replication. Jheng JR, Wang SC, Jheng CR, Horng JT. Emerg Microbes Infect 5 e23 (2016)
  44. Gene expression and biochemical characterization of Azotobacter vinelandii cyclophilins and Protein Interaction Studies of the cytoplasmic isoform with dnaK and lpxH. Dimou M, Venieraki A, Liakopoulos G, Kouri ED, Tampakaki A, Katinakis P. J Mol Microbiol Biotechnol 20 176-190 (2011)
  45. Nanomechanics of the substrate binding domain of Hsp70 determine its allosteric ATP-induced conformational change. Mandal SS, Merz DR, Buchsteiner M, Dima RI, Rief M, Žoldák G. Proc Natl Acad Sci U S A 114 6040-6045 (2017)
  46. Rational design of novel peptidic DnaK ligands. Liebscher M, Haupt K, Yu C, Jahreis G, Lücke C, Schiene-Fischer C. Chembiochem 11 1727-1737 (2010)
  47. The solution structure of the C-terminal domain of the Mu B transposition protein. Hung LH, Chaconas G, Shaw GS. EMBO J 19 5625-5634 (2000)
  48. DnaK/DnaJ/GrpE of Hsp70 system have differing effects on alpha-synuclein fibrillation involved in Parkinson's disease. Ahmad A. Int J Biol Macromol 46 275-279 (2010)
  49. Substrate Binding Switches the Conformation at the Lynchpin Site in the Substrate-Binding Domain of Human Hsp70 to Enable Allosteric Interdomain Communication. Umehara K, Hoshikawa M, Tochio N, Tate SI. Molecules 23 (2018)
  50. S-Glutathionylation of human inducible Hsp70 reveals a regulatory mechanism involving the C-terminal α-helical lid. Yang J, Zhang H, Gong W, Liu Z, Wu H, Hu W, Chen X, Wang L, Wu S, Chen C, Perrett S. J Biol Chem 295 8302-8324 (2020)
  51. An unexpected second binding site for polypeptide substrates is essential for Hsp70 chaperone activity. Li H, Zhu H, Sarbeng EB, Liu Q, Tian X, Yang Y, Lyons C, Zhou L, Liu Q. J Biol Chem 295 584-596 (2020)
  52. Magnetization transfer via residual dipolar couplings: application to proton-proton correlations in partially aligned proteins. Pellecchia M, Vander Kooi CW, Keliikuli K, Zuiderweg ER. J Magn Reson 143 435-439 (2000)
  53. Overproduction and biophysical characterization of human HSP70 proteins. Boswell-Casteel RC, Johnson JM, Duggan KD, Tsutsui Y, Hays FA. Protein Expr Purif 106 57-65 (2015)
  54. Caenorhabditis elegans Hsp70-1 expresses highly in bacteria, is sufficiently soluble, and has a catalytic constant similar to Hsc70 and BiP. Odunuga OO, Bollinger SA, Choi KH, Polvadore EI. Protein Expr Purif 82 132-137 (2012)
  55. Identification of Hsc70 binding sites in mitochondrial aspartate aminotransferase. Artigues A, Iriarte A, Martinez-Carrion M. Arch Biochem Biophys 450 30-38 (2006)
  56. A cluster of diagnostic Hsp68 amino acid sites that are identified in Drosophila from the melanogaster species group are concentrated around beta-sheet residues involved with substrate binding. Kellett M, McKechnie SW. Genome 48 226-233 (2005)
  57. Effect of evolution of the C-terminal region on chaperone activity of Hsp70. Zhang H, Hu H, Wu S, Perrett S. Protein Sci 32 e4549 (2023)
  58. Bioinformatic and Functional Characterization of Hsp70s in Myxococcus xanthus. Pan Z, Zhang Z, Zhuo L, Wan TY, Li YZ. mSphere 6 (2021)
  59. Direct observation of chemo-mechanical coupling in DnaK by single-molecule force experiments. Singh A, Rief M, Žoldák G. Biophys J 121 4729-4739 (2022)
  60. X-ray diffraction analysis of a crystal of HscA from Escherichia coli. Aoto PC, Ta DT, Cupp-Vickery JR, Vickery LE. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 715-717 (2005)