1bml Citations

Crystal structure of the catalytic domain of human plasmin complexed with streptokinase.

Science 281 1662-5 (1998)
Cited: 144 times
EuropePMC logo PMID: 9733510

Abstract

Streptokinase is a plasminogen activator widely used in treating blood-clotting disorders. Complexes of streptokinase with human plasminogen can hydrolytically activate other plasminogen molecules to plasmin, which then dissolves blood clots. A similar binding activation mechanism also occurs in some key steps of blood coagulation. The crystal structure of streptokinase complexed with the catalytic unit of human plasmin was solved at 2.9 angstroms. The amino-terminal domain of streptokinase in the complex is hypothesized to enhance the substrate recognition. The carboxyl-terminal domain of streptokinase, which binds near the activation loop of plasminogen, is likely responsible for the contact activation of plasminogen in the complex.

Reviews - 1bml mentioned but not cited (1)

  1. Structural Biology and Protein Engineering of Thrombolytics. Mican J, Toul M, Bednar D, Damborsky J. Comput Struct Biotechnol J 17 917-938 (2019)

Articles - 1bml mentioned but not cited (12)

  1. Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C. EMBO J 23 2325-2335 (2004)
  2. Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning. Xie ZR, Chen J, Wu Y. Sci Rep 7 46622 (2017)
  3. Sulfated, low-molecular-weight lignins are potent inhibitorsof plasmin, in addition to thrombin and factor Xa: Novel opportunity for controlling complex pathologies. Henry BL, Abdel Aziz M, Zhou Q, Desai UR. Thromb Haemost 103 507-515 (2010)
  4. Plasminogen substrate recognition by the streptokinase-plasminogen catalytic complex is facilitated by Arg253, Lys256, and Lys257 in the streptokinase beta-domain and kringle 5 of the substrate. Tharp AC, Laha M, Panizzi P, Thompson MW, Fuentes-Prior P, Bock PE. J Biol Chem 284 19511-19521 (2009)
  5. Crystal structures of a plant trypsin inhibitor from Enterolobium contortisiliquum (EcTI) and of its complex with bovine trypsin. Zhou D, Lobo YA, Batista IF, Marques-Porto R, Gustchina A, Oliva ML, Wlodawer A. PLoS One 8 e62252 (2013)
  6. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  7. The structure of human microplasmin in complex with textilinin-1, an aprotinin-like inhibitor from the Australian brown snake. Millers EK, Johnson LA, Birrell GW, Masci PP, Lavin MF, de Jersey J, Guddat LW. PLoS One 8 e54104 (2013)
  8. Elongated Plant Virus-Based Nanoparticles for Enhanced Delivery of Thrombolytic Therapies. Pitek AS, Wang Y, Gulati S, Gao H, Stewart PL, Simon DI, Steinmetz NF. Mol Pharm 14 3815-3823 (2017)
  9. Identification through combinatorial random and rational mutagenesis of a substrate-interacting exosite in the gamma domain of streptokinase. Yadav S, Aneja R, Kumar P, Datt M, Sinha S, Sahni G. J Biol Chem 286 6458-6469 (2011)
  10. Photonic activation of plasminogen induced by low dose UVB. Correia M, Snabe T, Thiagarajan V, Petersen SB, Campos SR, Baptista AM, Neves-Petersen MT. PLoS One 10 e0116737 (2015)
  11. Activity Regulation by Fibrinogen and Fibrin of Streptokinase from Streptococcus Pyogenes. Huish S, Thelwell C, Longstaff C. PLoS One 12 e0170936 (2017)
  12. Selection of mutant µplasmin for amyloid-β cleavage in vivo. Yang D, Zhu W, Wang Y, Tan F, Ma Z, Gao J, Lin X. Sci Rep 10 12117 (2020)


Reviews citing this publication (27)

  1. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Clin Microbiol Rev 27 264-301 (2014)
  2. Bacterial plasminogen activators and receptors. Lähteenmäki K, Kuusela P, Korhonen TK. FEMS Microbiol Rev 25 531-552 (2001)
  3. Fibrin and fibrinolysis in infection and host defense. Degen JL, Bugge TH, Goguen JD. J Thromb Haemost 5 Suppl 1 24-31 (2007)
  4. Molecular pathogenesis of necrotizing fasciitis. Olsen RJ, Musser JM. Annu Rev Pathol 5 1-31 (2010)
  5. Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. Bhattacharya S, Ploplis VA, Castellino FJ. J Biomed Biotechnol 2012 482096 (2012)
  6. The plasmin-antiplasmin system: structural and functional aspects. Schaller J, Gerber SS. Cell Mol Life Sci 68 785-801 (2011)
  7. Vascular functions of the plasminogen activation system. Fay WP, Garg N, Sunkar M. Arterioscler Thromb Vasc Biol 27 1231-1237 (2007)
  8. New insights into the structure and function of the plasminogen/plasmin system. Law RH, Abu-Ssaydeh D, Whisstock JC. Curr Opin Struct Biol 23 836-841 (2013)
  9. Streptokinase--a clinically useful thrombolytic agent. Banerjee A, Chisti Y, Banerjee UC. Biotechnol Adv 22 287-307 (2004)
  10. Use of the plasminogen activation system by microorganisms. Coleman JL, Benach JL. J Lab Clin Med 134 567-576 (1999)
  11. Genetic risk factors for deep vein thrombosis among Japanese: importance of protein S K196E mutation. Miyata T, Kimura R, Kokubo Y, Sakata T. Int J Hematol 83 217-223 (2006)
  12. Recent advances on plasmin inhibitors for the treatment of fibrinolysis-related disorders. Al-Horani RA, Desai UR. Med Res Rev 34 1168-1216 (2014)
  13. Streptokinase--the drug of choice for thrombolytic therapy. Kunamneni A, Abdelghani TT, Ellaiah P. J Thromb Thrombolysis 23 9-23 (2007)
  14. Plasminogen-binding proteins as an evasion mechanism of the host's innate immunity in infectious diseases. Ayón-Núñez DA, Fragoso G, Bobes RJ, Laclette JP. Biosci Rep 38 BSR20180705 (2018)
  15. Brain-Derived Neurotrophic Factor (BDNF): Novel Insights into Regulation and Genetic Variation. Notaras M, van den Buuse M. Neuroscientist 25 434-454 (2019)
  16. Activity assessment of microbial fibrinolytic enzymes. Kotb E. Appl Microbiol Biotechnol 97 6647-6665 (2013)
  17. Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Peetermans M, Vanassche T, Liesenborghs L, Lijnen RH, Verhamme P. Crit Rev Microbiol 42 866-882 (2016)
  18. Surface loops of trypsin-like serine proteases as determinants of function. Goettig P, Brandstetter H, Magdolen V. Biochimie 166 52-76 (2019)
  19. Serine protease inhibitors to treat inflammation: a patent review (2011-2016). Soualmia F, El Amri C. Expert Opin Ther Pat 28 93-110 (2018)
  20. The structure of thrombin, a chameleon-like proteinase. Bode W. J Thromb Haemost 3 2379-2388 (2005)
  21. Natural and engineered plasmin inhibitors: applications and design strategies. Swedberg JE, Harris JM. Chembiochem 13 336-348 (2012)
  22. Pathogen activators of plasminogen. Verhamme IM, Panizzi PR, Bock PE. J Thromb Haemost 13 Suppl 1 S106-14 (2015)
  23. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Pharmaceutics 15 1056 (2023)
  24. Understanding the fluorescence changes of human plasminogen when it binds the ligand, 6-aminohexanoate: a synthesis. Kornblatt JA. Biochim Biophys Acta 1481 1-10 (2000)
  25. Development and Testing of Thrombolytics in Stroke. Nikitin D, Choi S, Mican J, Toul M, Ryu WS, Damborsky J, Mikulik R, Kim DE. J Stroke 23 12-36 (2021)
  26. All tangled up: interactions of the fibrinolytic and innate immune systems. Whyte CS. Front Med (Lausanne) 10 1212201 (2023)
  27. Plasmin Inhibitor in Health and Diabetes: Role of the Protein as a Therapeutic Target. Alsayejh B, Kietsiriroje N, Almutairi M, Simmons K, Pechlivani N, Ponnambalam S, Ajjan RA. TH Open 6 e396-e407 (2022)

Articles citing this publication (104)

  1. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, Kawabata S, Huber R, Bode W, Bock PE. Nature 425 535-539 (2003)
  2. Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Backes BJ, Harris JL, Leonetti F, Craik CS, Ellman JA. Nat Biotechnol 18 187-193 (2000)
  3. The X-ray crystal structure of full-length human plasminogen. Law RH, Caradoc-Davies T, Cowieson N, Horvath AJ, Quek AJ, Encarnacao JA, Steer D, Cowan A, Zhang Q, Lu BG, Pike RN, Smith AI, Coughlin PB, Whisstock JC. Cell Rep 1 185-190 (2012)
  4. Automated prediction of protein association rate constants. Qin S, Pang X, Zhou HX. Structure 19 1744-1751 (2011)
  5. Natural selection and evolution of streptococcal virulence genes involved in tissue-specific adaptations. Kalia A, Bessen DE. J Bacteriol 186 110-121 (2004)
  6. Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding. Hopfner KP, Lang A, Karcher A, Sichler K, Kopetzki E, Brandstetter H, Huber R, Bode W, Engh RA. Structure 7 989-996 (1999)
  7. Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Lin YS, Yeh TM, Lin CF, Wan SW, Chuang YC, Hsu TK, Liu HS, Liu CC, Anderson R, Lei HY. Exp Biol Med (Maywood) 236 515-523 (2011)
  8. The factor VII zymogen structure reveals reregistration of beta strands during activation. Eigenbrot C, Kirchhofer D, Dennis MS, Santell L, Lazarus RA, Stamos J, Ultsch MH. Structure 9 627-636 (2001)
  9. Crystal structure of the native plasminogen reveals an activation-resistant compact conformation. Xue Y, Bodin C, Olsson K. J Thromb Haemost 10 1385-1396 (2012)
  10. Coevolutionary patterns in plasminogen activation. Gladysheva IP, Turner RB, Sazonova IY, Liu L, Reed GL. Proc Natl Acad Sci U S A 100 9168-9172 (2003)
  11. Novel missense mutations of TMPRSS3 in two consanguineous Tunisian families with non-syndromic autosomal recessive deafness. Masmoudi S, Antonarakis SE, Schwede T, Ghorbel AM, Gratri M, Pappasavas MP, Drira M, Elgaied-Boulila A, Wattenhofer M, Rossier C, Scott HS, Ayadi H, Guipponi M. Hum Mutat 18 101-108 (2001)
  12. Some antiphospholipid antibodies recognize conformational epitopes shared by beta2-glycoprotein I and the homologous catalytic domains of several serine proteases. Lin WS, Chen PC, Yang CD, Cho E, Hahn BH, Grossman J, Hwang KK, Chen PP. Arthritis Rheum 56 1638-1647 (2007)
  13. Structure-function analysis of the reactive site in the first Kunitz-type domain of human tissue factor pathway inhibitor-2. Chand HS, Schmidt AE, Bajaj SP, Kisiel W. J Biol Chem 279 17500-17507 (2004)
  14. Human plasminogen catalytic domain undergoes an unusual conformational change upon activation. Wang X, Terzyan S, Tang J, Loy JA, Lin X, Zhang XC. J Mol Biol 295 903-914 (2000)
  15. The N terminus of mannose 6-phosphate/insulin-like growth factor 2 receptor in regulation of fibrinolysis and cell migration. Leksa V, Godár S, Cebecauer M, Hilgert I, Breuss J, Weidle UH, Horejsí V, Binder BR, Stockinger H. J Biol Chem 277 40575-40582 (2002)
  16. The staphylocoagulase family of zymogen activator and adhesion proteins. Panizzi P, Friedrich R, Fuentes-Prior P, Bode W, Bock PE. Cell Mol Life Sci 61 2793-2798 (2004)
  17. Unfolding and aggregation during the thermal denaturation of streptokinase. Azuaga AI, Dobson CM, Mateo PL, Conejero-Lara F. Eur J Biochem 269 4121-4133 (2002)
  18. A catalytic switch and the conversion of streptokinase to a fibrin-targeted plasminogen activator. Reed GL, Houng AK, Liu L, Parhami-Seren B, Matsueda LH, Wang S, Hedstrom L. Proc Natl Acad Sci U S A 96 8879-8883 (1999)
  19. Negative selectivity and the evolution of protease cascades: the specificity of plasmin for peptide and protein substrates. Hervio LS, Coombs GS, Bergstrom RC, Trivedi K, Corey DR, Madison EL. Chem Biol 7 443-453 (2000)
  20. An active site water network in the plasminogen activator pla from Yersinia pestis. Eren E, Murphy M, Goguen J, van den Berg B. Structure 18 809-818 (2010)
  21. Novel fluorescent prothrombin analogs as probes of staphylocoagulase-prothrombin interactions. Panizzi P, Friedrich R, Fuentes-Prior P, Kroh HK, Briggs J, Tans G, Bode W, Bock PE. J Biol Chem 281 1169-1178 (2006)
  22. Zymogen activation in the streptokinase-plasminogen complex. Ile1 is required for the formation of a functional active site. Wang S, Reed GL, Hedstrom L. Eur J Biochem 267 3994-4001 (2000)
  23. Identification of polyclonal and monoclonal antibodies against tissue plasminogen activator in the antiphospholipid syndrome. Lu CS, Horizon AA, Hwang KK, FitzGerald J, Lin WS, Hahn BH, Wallace DJ, Metzger AL, Weisman MH, Chen PP. Arthritis Rheum 52 4018-4027 (2005)
  24. Crystal structure of earthworm fibrinolytic enzyme component a: revealing the structural determinants of its dual fibrinolytic activity. Tang Y, Liang D, Jiang T, Zhang J, Gui L, Chang W. J Mol Biol 321 57-68 (2002)
  25. Effects of deletion of streptokinase residues 48-59 on plasminogen activation. Wakeham N, Terzyan S, Zhai P, Loy JA, Tang J, Zhang XC. Protein Eng 15 753-761 (2002)
  26. Staphylococcus aureus-induced clotting of plasma is an immune evasion mechanism for persistence within the fibrin network. Loof TG, Goldmann O, Naudin C, Mörgelin M, Neumann Y, Pils MC, Foster SJ, Medina E, Herwald H. Microbiology (Reading) 161 621-627 (2015)
  27. Function of the central domain of streptokinase in substrate plasminogen docking and processing revealed by site-directed mutagenesis. Chaudhary A, Vasudha S, Rajagopal K, Komath SS, Garg N, Yadav M, Mande SC, Sahni G. Protein Sci 8 2791-2805 (1999)
  28. New structural motifs on the chymotrypsin fold and their potential roles in complement factor B. Jing H, Xu Y, Carson M, Moore D, Macon KJ, Volanakis JE, Narayana SV. EMBO J 19 164-173 (2000)
  29. Streptokinase variants from Streptococcus pyogenes isolates display altered plasminogen activation characteristics - implications for pathogenesis. Cook SM, Skora A, Gillen CM, Walker MJ, McArthur JD. Mol Microbiol 86 1052-1062 (2012)
  30. Asp41-His48 region of streptokinase is important in binding to a substrate plasminogen. Kim DM, Lee SJ, Kim IC, Kim ST, Byun SM. Thromb Res 99 93-98 (2000)
  31. Dual control of streptokinase and streptolysin S production by the covRS and fasCAX two-component regulators in Streptococcus dysgalactiae subsp. equisimilis. Steiner K, Malke H. Infect Immun 70 3627-3636 (2002)
  32. Crystal structure of Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in complex with trypsin. Implications for KD1 specificity of inhibition. Schmidt AE, Chand HS, Cascio D, Kisiel W, Bajaj SP. J Biol Chem 280 27832-27838 (2005)
  33. Translation Elongation Factor Tuf of Acinetobacter baumannii Is a Plasminogen-Binding Protein. Koenigs A, Zipfel PF, Kraiczy P. PLoS One 10 e0134418 (2015)
  34. Binding of the COOH-terminal lysine residue of streptokinase to plasmin(ogen) kringles enhances formation of the streptokinase.plasmin(ogen) catalytic complexes. Panizzi P, Boxrud PD, Verhamme IM, Bock PE. J Biol Chem 281 26774-26778 (2006)
  35. Lactoferrin is a natural inhibitor of plasminogen activation. Zwirzitz A, Reiter M, Skrabana R, Ohradanova-Repic A, Majdic O, Gutekova M, Cehlar O, Petrovčíková E, Kutejova E, Stanek G, Stockinger H, Leksa V. J Biol Chem 293 8600-8613 (2018)
  36. Crystal structure of streptokinase beta-domain. Wang X, Tang J, Hunter B, Zhang XC. FEBS Lett 459 85-89 (1999)
  37. Dissecting and designing inhibitor selectivity determinants at the S1 site using an artificial Ala190 protease (Ala190 uPA). Katz BA, Luong C, Ho JD, Somoza JR, Gjerstad E, Tang J, Williams SR, Verner E, Mackman RL, Young WB, Sprengeler PA, Chan H, Mortara K, Janc JW, McGrath ME. J Mol Biol 344 527-547 (2004)
  38. Cloning, expression, sequence analysis, and characterization of streptokinases secreted by porcine and equine isolates of Streptococcus equisimilis. Caballero AR, Lottenberg R, Johnston KH. Infect Immun 67 6478-6486 (1999)
  39. Crystal structure of the beta-chain of human hepatocyte growth factor-like/macrophage stimulating protein. Carafoli F, Chirgadze DY, Blundell TL, Gherardi E. FEBS J 272 5799-5807 (2005)
  40. Structure-function analysis of the streptokinase amino terminus (residues 1-59). Mundada LV, Prorok M, DeFord ME, Figuera M, Castellino FJ, Fay WP. J Biol Chem 278 24421-24427 (2003)
  41. Enhanced production of recombinant streptokinase in Escherichia coli using fed-batch culture. Goyal D, Sahni G, Sahoo DK. Bioresour Technol 100 4468-4474 (2009)
  42. Participation of the Dengue virus in the fibrinolytic process. Monroy V, Ruiz BH. Virus Genes 21 197-208 (2000)
  43. Potent, Selective, Allosteric Inhibition of Human Plasmin by Sulfated Non-Saccharide Glycosaminoglycan Mimetics. Afosah DK, Al-Horani RA, Sankaranarayanan NV, Desai UR. J Med Chem 60 641-657 (2017)
  44. Antibodies against the activated coagulation factor X (FXa) in the antiphospholipid syndrome that interfere with the FXa inactivation by antithrombin. Yang YH, Hwang KK, FitzGerald J, Grossman JM, Taylor M, Hahn BH, Chen PP. J Immunol 177 8219-8225 (2006)
  45. Comment Switching serine protease specificity. Esmon CT, Mather T. Nat Struct Biol 5 933-937 (1998)
  46. Functional differences between Streptococcus pyogenes cluster 1 and cluster 2b streptokinases are determined by their β-domains. Zhang Y, Liang Z, Glinton K, Ploplis VA, Castellino FJ. FEBS Lett 587 1304-1309 (2013)
  47. Identification of a new exosite involved in catalytic turnover by the streptokinase-plasmin activator complex during human plasminogen activation. Aneja R, Datt M, Singh B, Kumar S, Sahni G. J Biol Chem 284 32642-32650 (2009)
  48. Purification and cloning of a streptokinase from Streptococcus uberis. Johnsen LB, Poulsen K, Kilian M, Petersen TE. Infect Immun 67 1072-1078 (1999)
  49. Role of the streptokinase alpha-domain in the interactions of streptokinase with plasminogen and plasmin. Bean RR, Verhamme IM, Bock PE. J Biol Chem 280 7504-7510 (2005)
  50. Structural basis for reduced staphylocoagulase-mediated bovine prothrombin activation. Friedrich R, Panizzi P, Kawabata S, Bode W, Bock PE, Fuentes-Prior P. J Biol Chem 281 1188-1195 (2006)
  51. Rapid binding of plasminogen to streptokinase in a catalytic complex reveals a three-step mechanism. Verhamme IM, Bock PE. J Biol Chem 289 28006-28018 (2014)
  52. Reconstructing the binding site of factor Xa in trypsin reveals ligand-induced structural plasticity. Reyda S, Sohn C, Klebe G, Rall K, Ullmann D, Jakubke HD, Stubbs MT. J Mol Biol 325 963-977 (2003)
  53. Targeting the GPIbα binding site of thrombin to simultaneously induce dual anticoagulant and antiplatelet effects. Mehta AY, Thakkar JN, Mohammed BM, Martin EJ, Brophy DF, Kishimoto T, Desai UR. J Med Chem 57 3030-3039 (2014)
  54. 2-(2-Hydroxy-3-alkoxyphenyl)-1H-benzimidazole-5-carboxamidine derivatives as potent and selective urokinase-type plasminogen activator inhibitors. Mackman RL, Hui HC, Breitenbucher JG, Katz BA, Luong C, Martelli A, McGee D, Radika K, Sendzik M, Spencer JR, Sprengeler PA, Tario J, Verner E, Wang J. Bioorg Med Chem Lett 12 2019-2022 (2002)
  55. Chimerism reveals a role for the streptokinase Beta -domain in nonproteolytic active site formation, substrate, and inhibitor interactions. Gladysheva IP, Sazonova IY, Chowdhry SA, Liu L, Turner RB, Reed GL. J Biol Chem 277 26846-26851 (2002)
  56. Expression and regulation of the streptokinase gene. Malke H, Steiner K, Gase K, Frank C. Methods 21 111-124 (2000)
  57. Structural diversity of streptokinase and activation of human plasminogen. Lizano S, Johnston KH. Infect Immun 73 4451-4453 (2005)
  58. Structure of the complex of the antistasin-type inhibitor bdellastasin with trypsin and modelling of the bdellastasin-microplasmin system. Rester U, Bode W, Moser M, Parry MA, Huber R, Auerswald E. J Mol Biol 293 93-106 (1999)
  59. Complex interactions between bovine plasminogen and streptococcal plasminogen activator PauA. Ward PN, Field TR, Rosey EL, Abu-Median AB, Lincoln RA, Leigh JA. J Mol Biol 342 1101-1114 (2004)
  60. Design of a DNA-Programmed Plasminogen Activator. Mukherjee P, Leman LJ, Griffin JH, Ghadiri MR. J Am Chem Soc 140 15516-15524 (2018)
  61. Mapping of the antigenic regions of streptokinase in humans after streptokinase therapy. Torréns I, Reyes O, Ojalvo AG, Seralena A, Chinea G, Cruz LJ, de la Fuente J. Biochem Biophys Res Commun 259 162-168 (1999)
  62. Residues essential for plasminogen binding by the cation-independent mannose 6-phosphate receptor. Bohnsack RN, Patel M, Olson LJ, Twining SS, Dahms NM. Biochemistry 49 635-644 (2010)
  63. Low-energy ultrasound exposure of the streptokinase molecule may enhance but also attenuate its fibrinolytic properties. Härdig BM, Persson HW, Olsson SB. Thromb Res 117 713-720 (2006)
  64. Rapid-reaction kinetic characterization of the pathway of streptokinase-plasmin catalytic complex formation. Verhamme IM, Bock PE. J Biol Chem 283 26137-26147 (2008)
  65. Reprogrammed streptokinases develop fibrin-targeting and dissolve blood clots with more potency than tissue plasminogen activator. Sazonova IY, McNamee RA, Houng AK, King SM, Hedstrom L, Reed GL. J Thromb Haemost 7 1321-1328 (2009)
  66. Structural elements that govern the substrate specificity of the clot-dissolving enzyme plasmin. Turner RB, Liu L, Sazonova IY, Reed GL. J Biol Chem 277 33068-33074 (2002)
  67. Crystal structure of human factor VIIa/tissue factor in complex with peptide mimetic inhibitor. Kadono S, Sakamoto A, Kikuchi Y, Oh-eda M, Yabuta N, Koga T, Hattori K, Shiraishi T, Haramura M, Kodama H, Esaki T, Sato H, Watanabe Y, Itoh S, Ohta M, Kozono T. Biochem Biophys Res Commun 324 1227-1233 (2004)
  68. Full time course kinetics of the streptokinase-plasminogen activation pathway. Nolan M, Bouldin SD, Bock PE. J Biol Chem 288 29482-29493 (2013)
  69. Streptococcus uberis plasminogen activator (SUPA) activates human plasminogen through novel species-specific and fibrin-targeted mechanisms. Zhang Y, Gladysheva IP, Houng AK, Reed GL. J Biol Chem 287 19171-19176 (2012)
  70. Variable region in streptococcal M-proteins provides stable binding with host fibrinogen for plasminogen-mediated bacterial invasion. Glinton K, Beck J, Liang Z, Qiu C, Lee SW, Ploplis VA, Castellino FJ. J Biol Chem 292 6775-6785 (2017)
  71. Antithrombotic Effects of Five Organic Extracts of Bangladeshi Plants In Vitro and Mechanisms in In Silico Models. Mahmud S, Akhter S, Rahman MA, Aklima J, Akhter S, Merry SR, Jubair SM, Dash R, Emran TB. Evid Based Complement Alternat Med 2015 782742 (2015)
  72. Multidomain structure of a recombinant streptokinase. A differential scanning calorimetry study. Beldarraín A, López-Lacomba JL, Kutyshenko VP, Serrano R, Cortijo M. J Protein Chem 20 9-17 (2001)
  73. PEGylation of Truncated Streptokinase Leads to Formulation of a Useful Drug with Ameliorated Attributes. Sawhney P, Katare K, Sahni G. PLoS One 11 e0155831 (2016)
  74. Specificity role of the streptokinase C-terminal domain in plasminogen activation. Kim DM, Lee SJ, Yoon SK, Byun SM. Biochem Biophys Res Commun 290 585-588 (2002)
  75. Structural consideration of the formation of the activation complex between the staphylokinase-like streptococcal plasminogen activator PadA and bovine plasminogen. Ward PN, Abu-Median AB, Leigh JA. J Mol Biol 381 734-747 (2008)
  76. The effects of hydrostatic pressure on the conformation of plasminogen. Kornblatt JA, Kornblatt MJ, Clery C, Balny C. Eur J Biochem 265 120-126 (1999)
  77. Affinity panning of peptide libraries using anti-streptokinase monoclonal antibodies: selection of an inhibitor of plasmin(ogen) active site. Parhami-Seren B, Krudysz J, Tsantili P. J Immunol Methods 267 185-198 (2002)
  78. Enhanced plasminogen activation by staphylokinase in the presence of streptokinase beta/betagamma domains: plasminogen kringles play a role. Dahiya M, Rajamohan G, Dikshit KL. FEBS Lett 579 1565-1572 (2005)
  79. Intermolecular interactions in staphylokinase-plasmin(ogen) bimolecular complex: function of His43 and Tyr44. Dahiya M, Singh S, Rajamohan G, Sethi D, Ashish, Dikshit KL. FEBS Lett 585 1814-1820 (2011)
  80. Probing conformational and functional states of human hepatocyte growth factor by a panel of monoclonal antibodies. Umitsu M, Sakai K, Ogasawara S, Kaneko MK, Asaki R, Tamura-Kawakami K, Kato Y, Matsumoto K, Takagi J. Sci Rep 6 33149 (2016)
  81. Autolytic degradation of ocriplasmin: a complex mechanism unraveled by mutational analysis. Noppen B, Fonteyn L, Aerts F, De Vriese A, De Maeyer M, Le Floch F, Barbeaux P, Zwaal R, Vanhove M. Protein Eng Des Sel 27 215-223 (2014)
  82. Predicting subsite interactions of plasmin with substrates and inhibitors through computational docking analysis. Gohda K, Teno N, Wanaka K, Tsuda Y. J Enzyme Inhib Med Chem 27 571-577 (2012)
  83. Prevalence of circulating antibodies against a streptokinase C-terminal peptide in normal blood donors. Ojalvo AG, Pozo L, Labarta V, Torréns I. Biochem Biophys Res Commun 263 454-459 (1999)
  84. Pro42 and Val45 of staphylokinase modulate intermolecular interactions of His43-Tyr44 pair and specificity of staphylokinase-plasmin activator complex. Singh S, Ashish, Dikshit KL. FEBS Lett 586 653-658 (2012)
  85. Sequence and kinetic analyses of streptokinase from two group G streptococci with high fibrin-dependent plasminogen activities and the identification of novel altered amino acids as potential hot spots. Keramati M, Aslani MM, Khatami S, Roohvand F. Biotechnol Lett 39 889-895 (2017)
  86. The human alpha(2)-plasmin inhibitor: functional characterization of the unique plasmin(ogen)-binding region. Gerber SS, Lejon S, Locher M, Schaller J. Cell Mol Life Sci 67 1505-1518 (2010)
  87. Characterization of Lys-698-to-Met substitution in human plasminogen catalytic domain. Terzyan S, Wakeham N, Zhai P, Rodgers K, Zhang XC. Proteins 56 277-284 (2004)
  88. Computational simulations assessment of mutations impact on streptokinase (SK) from a group G streptococci with enhanced activity - insights into the functional roles of structural dynamics flexibility of SK and stabilization of SK-μplasmin catalytic complex. Kazemi F, Arab SS, Mohajel N, Keramati M, Niknam N, Aslani MM, Roohvand F. J Biomol Struct Dyn 37 1944-1955 (2019)
  89. Fibrin-targeted plasminogen activation by plasminogen activator, PadA, from Streptococcus dysgalactiae. Singh S, Bhando T, Dikshit KL. Protein Sci 23 714-722 (2014)
  90. Streptococcus co-opts a conformational lock in human plasminogen to facilitate streptokinase cleavage and bacterial virulence. Ayinuola YA, Brito-Robinson T, Ayinuola O, Beck JE, Cruz-Topete D, Lee SW, Ploplis VA, Castellino FJ. J Biol Chem 296 100099 (2021)
  91. Structural correlates of a functional streptokinase antigenic epitope: serine 138 is an essential residue for antibody binding. Parhami-Seren B, Seavey M, Krudysz J, Tsantili P. J Immunol Methods 272 93-105 (2003)
  92. A mutant streptokinase lacking the C-terminal 42 amino acids is less reactive with preexisting antibodies in patient sera. Torréns I, Ojalvo AG, Seralena A, Pupo E, Lugo V, Páez R. Biochem Biophys Res Commun 266 230-236 (1999)
  93. Expression and characterization of the intact N-terminal domain of streptokinase. Azuaga AI, Woodruff ND, Conejero-Lara F, Cox VF, Smith RA, Dobson CM. Protein Sci 8 443-446 (1999)
  94. Ionic modulation of the effects of heparin and 6-aminohexanoic acid on plasminogen activation by streptokinase: the role of ionic strength, divalent cations and chloride. Guinn L, Johnson J, Doctor VM. Eur J Drug Metab Pharmacokinet 28 161-166 (2003)
  95. Linoleic and palmitoleic acid block streptokinase-mediated plasminogen activation and reduce severity of invasive group A streptococcal infection. Rox K, Jansen R, Loof TG, Gillen CM, Bernecker S, Walker MJ, Chhatwal GS, Müller R. Sci Rep 7 11798 (2017)
  96. Plasmin immunization preferentially induces potentially prothrombotic IgG anticardiolipin antibodies in MRL/MpJ mice. Ede K, Hwang KK, Wu CC, Wu M, Yang YH, Lin WS, Chien D, Chen PC, Tsao BP, McCurdy DK, Chen PP. Arthritis Rheum 60 3108-3117 (2009)
  97. Purification and characterization of mutant miniPlasmin for thrombolytic therapy. Lin X, Wang Y, Zhang Y, Huang B, Lin JJ, Hallock SJ, Yu H, Shao H, Yan J, Huang B, Zhang XC, Cao W, Xu X, Lin X. Thromb J 11 2 (2013)
  98. Contribution of Streptokinase-Domains from Groups G and A (SK2a) Streptococci in Amidolytic/Proteolytic Activities and Fibrin-Dependent Plasminogen activation: A Domain-Exchange Study Rafipour M, Keramati M, Aslani MM, Arashkia A, Roohvand F. Iran Biomed J 24 15-23 (2020)
  99. Engineering streptokinase for generation of active site-labeled plasminogen analogs. Laha M, Panizzi P, Nahrendorf M, Bock PE. Anal Biochem 415 105-115 (2011)
  100. Induction of catalytic activity of plasminogen by monoclonal antibody IV-Ic in the presence of divalent metal cations and alpha2-antiplasmin. Sokolovskaya LI, Slominskii AY, Volkov GL. Biochemistry (Mosc) 71 627-633 (2006)
  101. No association between dysplasminogenemia with p.Ala620Thr mutation and atypical hemolytic uremic syndrome. Miyata T, Uchida Y, Yoshida Y, Kato H, Matsumoto M, Kokame K, Fujimura Y, Nangaku M. Int J Hematol 104 223-227 (2016)
  102. Bilobed shape of PadA reveals the connectivity from single to multi-domain bacterial plasminogen activators. Singh S, Rathore YS, Bhando T, Hade MD, Ashish, Dikshit KL. Int J Biol Macromol 78 370-378 (2015)
  103. Inhibition of Fibrinolysis by Streptococcal Phage LysinSM1. Ji HJ, Zhi Y, Lee JH, Ahn KB, Seo HS, Sullam PM. mBio 12 e0074621 (2021)
  104. Profiling the immune responses of human patients treated with recombinant streptokinase after myocardial infarct. Reyes O, Torrens I, Ojalvo AG, Seralena A, Garay HE. Mol Divers 8 251-256 (2004)