1bk2 Citations

Obligatory steps in protein folding and the conformational diversity of the transition state.

Nat. Struct. Biol. 5 721-9 (1998)
Cited: 113 times
EuropePMC logo PMID: 9699637

Abstract

We have analyzed the existence of obligatory steps in the folding reaction of the alpha-spectrin SH3 domain by mutating Asp 48 (D48G), which is at position i+3 of an isolated two-residue type II' beta-turn. Calorimetry and X-ray analysis show an entropic stabilizing effect resulting from local changes at the dihedral angles of the beta-turn. Kinetic analysis of D48G shows that this beta-turn is fully formed in the transition state, while there is no evidence of its formation in an isolated fragment. Introduction of several mutations in the D48G protein reveals that the local stabilization has not significantly altered the transition state ensemble. All these results, together with previous analysis of other alpha-spectrin and src SH3 mutants, indicate that: (i) in the folding reaction there could be obligatory steps which are not necessarily part of the folding nucleus; (ii) transition state ensembles in beta-sheet proteins could be quite defined and conformationally restricted ('mechanic folding nucleus'); and (iii) transition state ensembles in some proteins could be evolutionarily conserved.

Articles - 1bk2 mentioned but not cited (3)

  1. A method for optimizing potential-energy functions by a hierarchical design of the potential-energy landscape: application to the UNRES force field. Liwo A, Arłukowicz P, Czaplewski C, Ołdziej S, Pillardy J, Scheraga HA. Proc. Natl. Acad. Sci. U.S.A. 99 1937-1942 (2002)
  2. Folding free energy function selects native-like protein sequences in the core but not on the surface. Jaramillo A, Wernisch L, Héry S, Wodak SJ. Proc. Natl. Acad. Sci. U.S.A. 99 13554-13559 (2002)
  3. A knowledge-based structure-discriminating function that requires only main-chain atom coordinates. Makino Y, Itoh N. BMC Struct. Biol. 8 46 (2008)


Reviews citing this publication (30)

  1. Folding funnels, binding funnels, and protein function. Tsai CJ, Kumar S, Ma B, Nussinov R. Protein Sci. 8 1181-1190 (1999)
  2. Is protein folding hierarchic? II. Folding intermediates and transition states. Baldwin RL, Rose GD. Trends Biochem. Sci. 24 77-83 (1999)
  3. The fundamentals of protein folding: bringing together theory and experiment. Dobson CM, Karplus M. Curr. Opin. Struct. Biol. 9 92-101 (1999)
  4. Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet. Shakhnovich E. Chem. Rev. 106 1559-1588 (2006)
  5. Protein folding theory: from lattice to all-atom models. Mirny L, Shakhnovich E. Annu Rev Biophys Biomol Struct 30 361-396 (2001)
  6. Mechanisms of protein folding. Grantcharova V, Alm EJ, Baker D, Horwich AL. Curr. Opin. Struct. Biol. 11 70-82 (2001)
  7. Deciphering the timescales and mechanisms of protein folding using minimal off-lattice models. Thirumalai D, Klimov DK. Curr. Opin. Struct. Biol. 9 197-207 (1999)
  8. Matching theory and experiment in protein folding. Alm E, Baker D. Curr. Opin. Struct. Biol. 9 189-196 (1999)
  9. From computer simulations to human disease: emerging themes in protein folding. Radford SE, Dobson CM. Cell 97 291-298 (1999)
  10. Keeping it in the family: folding studies of related proteins. Gunasekaran K, Eyles SJ, Hagler AT, Gierasch LM. Curr. Opin. Struct. Biol. 11 83-93 (2001)
  11. Protein folding mechanisms: new methods and emerging ideas. Brockwell DJ, Smith DA, Radford SE. Curr. Opin. Struct. Biol. 10 16-25 (2000)
  12. Designing proteins from the inside out. Ventura S, Serrano L. Proteins 56 1-10 (2004)
  13. Protein design based on folding models. Guerois R, Serrano L. Curr. Opin. Struct. Biol. 11 101-106 (2001)
  14. Interaction of kinesin motors, microtubules, and MAPs. Marx A, Müller J, Mandelkow EM, Hoenger A, Mandelkow E. J. Muscle Res. Cell. Motil. 27 125-137 (2006)
  15. HIV-1 protease folding and the design of drugs which do not create resistance. Broglia R, Levy Y, Tiana G. Curr. Opin. Struct. Biol. 18 60-66 (2008)
  16. HIV-1 protease folding and the design of drugs which do not create resistance. Broglia R, Levy Y, Tiana G. Curr. Opin. Struct. Biol. 18 60-66 (2008)
  17. Interaction of kinesin motors, microtubules, and MAPs. Marx A, Müller J, Mandelkow EM, Hoenger A, Mandelkow E. J. Muscle Res. Cell. Motil. 27 125-137 (2006)
  18. Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet. Shakhnovich E. Chem. Rev. 106 1559-1588 (2006)
  19. Designing proteins from the inside out. Ventura S, Serrano L. Proteins 56 1-10 (2004)
  20. Mechanisms of protein folding. Grantcharova V, Alm EJ, Baker D, Horwich AL. Curr. Opin. Struct. Biol. 11 70-82 (2001)
  21. Protein folding theory: from lattice to all-atom models. Mirny L, Shakhnovich E. Annu Rev Biophys Biomol Struct 30 361-396 (2001)
  22. Protein design based on folding models. Guerois R, Serrano L. Curr. Opin. Struct. Biol. 11 101-106 (2001)
  23. Keeping it in the family: folding studies of related proteins. Gunasekaran K, Eyles SJ, Hagler AT, Gierasch LM. Curr. Opin. Struct. Biol. 11 83-93 (2001)
  24. Protein folding mechanisms: new methods and emerging ideas. Brockwell DJ, Smith DA, Radford SE. Curr. Opin. Struct. Biol. 10 16-25 (2000)
  25. The fundamentals of protein folding: bringing together theory and experiment. Dobson CM, Karplus M. Curr. Opin. Struct. Biol. 9 92-101 (1999)
  26. Is protein folding hierarchic? II. Folding intermediates and transition states. Baldwin RL, Rose GD. Trends Biochem. Sci. 24 77-83 (1999)
  27. From computer simulations to human disease: emerging themes in protein folding. Radford SE, Dobson CM. Cell 97 291-298 (1999)
  28. Matching theory and experiment in protein folding. Alm E, Baker D. Curr. Opin. Struct. Biol. 9 189-196 (1999)
  29. Deciphering the timescales and mechanisms of protein folding using minimal off-lattice models. Thirumalai D, Klimov DK. Curr. Opin. Struct. Biol. 9 197-207 (1999)
  30. Folding funnels, binding funnels, and protein function. Tsai CJ, Kumar S, Ma B, Nussinov R. Protein Sci. 8 1181-1190 (1999)

Articles citing this publication (80)

  1. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Cheung MS, García AE, Onuchic JN. Proc. Natl. Acad. Sci. U.S.A. 99 685-690 (2002)
  2. Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Alm E, Baker D. Proc. Natl. Acad. Sci. U.S.A. 96 11305-11310 (1999)
  3. A theoretical search for folding/unfolding nuclei in three-dimensional protein structures. Galzitskaya OV, Finkelstein AV. Proc. Natl. Acad. Sci. U.S.A. 96 11299-11304 (1999)
  4. The origins of asymmetry in the folding transition states of protein L and protein G. Karanicolas J, Brooks CL 3rd. Protein Sci. 11 2351-2361 (2002)
  5. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Grantcharova VP, Riddle DS, Santiago JV, Baker D. Nat. Struct. Biol. 5 714-720 (1998)
  6. Structure-function-folding relationship in a WW domain. Jäger M, Zhang Y, Bieschke J, Nguyen H, Dendle M, Bowman ME, Noel JP, Gruebele M, Kelly JW. Proc. Natl. Acad. Sci. U.S.A. 103 10648-10653 (2006)
  7. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Larson SM, Davidson AR. Protein Sci. 9 2170-2180 (2000)
  8. The fast protein folding problem. Gruebele M. Annu Rev Phys Chem 50 485-516 (1999)
  9. From snapshot to movie: phi analysis of protein folding transition states taken one step further. Ternström T, Mayor U, Akke M, Oliveberg M. Proc. Natl. Acad. Sci. U.S.A. 96 14854-14859 (1999)
  10. Folding studies of immunoglobulin-like beta-sandwich proteins suggest that they share a common folding pathway. Clarke J, Cota E, Fowler SB, Hamill SJ. Structure 7 1145-1153 (1999)
  11. Constructing, verifying, and dissecting the folding transition state of chymotrypsin inhibitor 2 with all-atom simulations. Li L, Shakhnovich EI. Proc. Natl. Acad. Sci. U.S.A. 98 13014-13018 (2001)
  12. Direct molecular dynamics observation of protein folding transition state ensemble. Ding F, Dokholyan NV, Buldyrev SV, Stanley HE, Shakhnovich EI. Biophys. J. 83 3525-3532 (2002)
  13. Solvent effects on the energy landscapes and folding kinetics of polyalanine. Levy Y, Jortner J, Becker OM. Proc. Natl. Acad. Sci. U.S.A. 98 2188-2193 (2001)
  14. Transition state heterogeneity in GCN4 coiled coil folding studied by using multisite mutations and crosslinking. Moran LB, Schneider JP, Kentsis A, Reddy GA, Sosnick TR. Proc. Natl. Acad. Sci. U.S.A. 96 10699-10704 (1999)
  15. Long-range order in the src SH3 folding transition state. Grantcharova VP, Riddle DS, Baker D. Proc. Natl. Acad. Sci. U.S.A. 97 7084-7089 (2000)
  16. Landscape approaches for determining the ensemble of folding transition states: success and failure hinge on the degree of frustration. Nymeyer H, Socci ND, Onuchic JN. Proc. Natl. Acad. Sci. U.S.A. 97 634-639 (2000)
  17. Microscopic evidence for a minus-end-directed power stroke in the kinesin motor ncd. Wendt TG, Volkmann N, Skiniotis G, Goldie KN, Müller J, Mandelkow E, Hoenger A. EMBO J. 21 5969-5978 (2002)
  18. Differences in the folding transition state of ubiquitin indicated by phi and psi analyses. Sosnick TR, Dothager RS, Krantz BA. Proc. Natl. Acad. Sci. U.S.A. 101 17377-17382 (2004)
  19. Using flexible loop mimetics to extend phi-value analysis to secondary structure interactions. Ferguson N, Pires JR, Toepert F, Johnson CM, Pan YP, Volkmer-Engert R, Schneider-Mergener J, Daggett V, Oschkinat H, Fersht A. Proc. Natl. Acad. Sci. U.S.A. 98 13008-13013 (2001)
  20. Point mutations and sequence variability in proteins: redistributions of preexisting populations. Sinha N, Nussinov R. Proc. Natl. Acad. Sci. U.S.A. 98 3139-3144 (2001)
  21. Investigation of routes and funnels in protein folding by free energy functional methods. Plotkin SS, Onuchic JN. Proc. Natl. Acad. Sci. U.S.A. 97 6509-6514 (2000)
  22. Dramatic acceleration of protein folding by stabilization of a nonnative backbone conformation. Di Nardo AA, Korzhnev DM, Stogios PJ, Zarrine-Afsar A, Kay LE, Davidson AR. Proc. Natl. Acad. Sci. U.S.A. 101 7954-7959 (2004)
  23. Nucleotide-induced conformations in the neck region of dimeric kinesin. Skiniotis G, Surrey T, Altmann S, Gross H, Song YH, Mandelkow E, Hoenger A. EMBO J. 22 1518-1528 (2003)
  24. Identification of the minimal protein-folding nucleus through loop-entropy perturbations. Lindberg MO, Haglund E, Hubner IA, Shakhnovich EI, Oliveberg M. Proc. Natl. Acad. Sci. U.S.A. 103 4083-4088 (2006)
  25. Unspecific hydrophobic stabilization of folding transition states. Viguera AR, Vega C, Serrano L. Proc. Natl. Acad. Sci. U.S.A. 99 5349-5354 (2002)
  26. Folding of beta-sandwich proteins: three-state transition of a fibronectin type III module. Cota E, Clarke J. Protein Sci. 9 112-120 (2000)
  27. Prediction of protein tertiary structure using PROFESY, a novel method based on fragment assembly and conformational space annealing. Lee J, Kim SY, Joo K, Kim I, Lee J. Proteins 56 704-714 (2004)
  28. A specific transition state for S-peptide combining with folded S-protein and then refolding. Goldberg JM, Baldwin RL. Proc. Natl. Acad. Sci. U.S.A. 96 2019-2024 (1999)
  29. Understanding the determinants of stability and folding of small globular proteins from their energetics. Tiana G, Simona F, De Mori GM, Broglia RA, Colombo G. Protein Sci. 13 113-124 (2004)
  30. Computer simulations of protein folding by targeted molecular dynamics. Ferrara P, Apostolakis J, Caflisch A. Proteins 39 252-260 (2000)
  31. The design of a hyperstable mutant of the Abp1p SH3 domain by sequence alignment analysis. Rath A, Davidson AR. Protein Sci. 9 2457-2469 (2000)
  32. Evaluating beta-turn mimics as beta-sheet folding nucleators. Fuller AA, Du D, Liu F, Davoren JE, Bhabha G, Kroon G, Case DA, Dyson HJ, Powers ET, Wipf P, Gruebele M, Kelly JW. Proc. Natl. Acad. Sci. U.S.A. 106 11067-11072 (2009)
  33. Sequence of events in folding mechanism: beyond the Go model. Sutto L, Tiana G, Broglia RA. Protein Sci. 15 1638-1652 (2006)
  34. Comment Satisfying turns in folding transitions. Gruebele M, Wolynes PG. Nat. Struct. Biol. 5 662-665 (1998)
  35. Quantifying the structural requirements of the folding transition state of protein A and other systems. Baxa MC, Freed KF, Sosnick TR. J. Mol. Biol. 381 1362-1381 (2008)
  36. Computational modeling of protein mutant stability: analysis and optimization of statistical potentials and structural features reveal insights into prediction model development. Parthiban V, Gromiha MM, Abhinandan M, Schomburg D. BMC Struct. Biol. 7 54 (2007)
  37. Sparsely populated folding intermediates of the Fyn SH3 domain: matching native-centric essential dynamics and experiment. Ollerenshaw JE, Kaya H, Chan HS, Kay LE. Proc. Natl. Acad. Sci. U.S.A. 101 14748-14753 (2004)
  38. Folding and stability of the three-stranded beta-sheet peptide Betanova: insights from molecular dynamics simulations. Colombo G, Roccatano D, Mark AE. Proteins 46 380-392 (2002)
  39. Role of a solvent-exposed aromatic cluster in the folding of Escherichia coli CspA. Rodriguez HM, Vu DM, Gregoret LM. Protein Sci. 9 1993-2000 (2000)
  40. Environmental conditions affect the kinetics of nucleation of amyloid fibrils and determine their morphology. Morel B, Varela L, Azuaga AI, Conejero-Lara F. Biophys. J. 99 3801-3810 (2010)
  41. beta-Hairpins, alpha-helices, and the intermediates among the secondary structures in the energy landscape of a peptide from a distal beta-hairpin of SH3 domain. Ikeda K, Galzitskaya OV, Nakamura H, Higo J. J Comput Chem 24 310-318 (2003)
  42. Mechanism of protein folding. Nölting B, Andert K. Proteins 41 288-298 (2000)
  43. Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy. Chevelkov V, Fink U, Reif B. J. Biomol. NMR 45 197-206 (2009)
  44. Structural basis of Robo proline-rich motif recognition by the srGAP1 Src homology 3 domain in the Slit-Robo signaling pathway. Li X, Chen Y, Liu Y, Gao J, Gao F, Bartlam M, Wu JY, Rao Z. J. Biol. Chem. 281 28430-28437 (2006)
  45. Thermodynamic and structural characterization of Asn and Ala residues in the disallowed II' region of the Ramachandran plot. Vega MC, Martínez JC, Serrano L. Protein Sci. 9 2322-2328 (2000)
  46. Anabaena apoflavodoxin hydrogen exchange: on the stable exchange core of the alpha/beta(21345) flavodoxin-like family. Langdon GM, Jiménez MA, Genzor CG, Maldonado S, Sancho J, Rico M. Proteins 43 476-488 (2001)
  47. Identification of a conserved aggregation-prone intermediate state in the folding pathways of Spc-SH3 amyloidogenic variants. Krobath H, Estácio SG, Faísca PF, Shakhnovich EI. J. Mol. Biol. 422 705-722 (2012)
  48. Testing simplified proteins models of the hPin1 WW domain. Cecconi F, Guardiani C, Livi R. Biophys. J. 91 694-704 (2006)
  49. Roles of physical interactions in determining protein-folding mechanisms: molecular simulation of protein G and alpha spectrin SH3. Lee SY, Fujitsuka Y, Kim DH, Takada S. Proteins 55 128-138 (2004)
  50. Insights into protein aggregation by NMR characterization of insoluble SH3 mutants solubilized in salt-free water. Liu J, Song J. PLoS ONE 4 e7805 (2009)
  51. Detection and characterization of partially unfolded oligomers of the SH3 domain of alpha-spectrin. Casares S, Sadqi M, López-Mayorga O, Conejero-Lara F, van Nuland NA. Biophys. J. 86 2403-2413 (2004)
  52. Folding specificity induced by loop stiffness. Spagnolo L, Ventura S, Serrano L. Protein Sci. 12 1473-1482 (2003)
  53. Deciphering the role of the thermodynamic and kinetic stabilities of SH3 domains on their aggregation inside bacteria. Castillo V, Espargaró A, Gordo V, Vendrell J, Ventura S. Proteomics 10 4172-4185 (2010)
  54. Importance of hydrophobic cluster formation through long-range contacts in the folding transition state of two-state proteins. Selvaraj S, Gromiha MM. Proteins 55 1023-1035 (2004)
  55. Analysis of the differences in the folding kinetics of structurally homologous proteins based on predictions of the gross features of residue contacts. Ichimaru T, Kikuchi T. Proteins 51 515-530 (2003)
  56. Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media? Yuwen T, Post CB, Skrynnikov NR. J. Biomol. NMR 51 131-150 (2011)
  57. Solvation of the folding-transition state in Pseudomonas aeruginosa azurin is modulated by metal: Solvation of azurin's folding nucleus. Wilson CJ, Apiyo D, Wittung-Stafshede P. Protein Sci. 15 843-852 (2006)
  58. Determinants of protein stability and folding: comparative analysis of beta-lactoglobulins and liver basic fatty acid binding protein. Ragona L, Colombo G, Catalano M, Molinari H. Proteins 61 366-376 (2005)
  59. Time-resolved backbone desolvation and mutational hot spots in folding proteins. Fernández A. Proteins 47 447-457 (2002)
  60. Molecular dynamics simulations from putative transition states of alpha-spectrin SH3 domain. Periole X, Vendruscolo M, Mark AE. Proteins 69 536-550 (2007)
  61. Effects of disulfide bonds on folding behavior and mechanism of the beta-sheet protein tendamistat. Qin M, Zhang J, Wang W. Biophys. J. 90 272-286 (2006)
  62. Structurally homologous all beta-barrel proteins adopt different mechanisms of folding. Srimathi T, Kumar TK, Kathir KM, Chi YH, Srisailam S, Lin WY, Chiu IM, Yu C. Biophys. J. 85 459-472 (2003)
  63. Role of native-state topology in the stabilization of intracellular antibodies. Settanni G, Cattaneo A, Maritan A. Biophys. J. 81 2935-2945 (2001)
  64. Folding of the alphaII-spectrin SH3 domain under physiological salt conditions. Petzold K, Ohman A, Backman L. Arch. Biochem. Biophys. 474 39-47 (2008)
  65. Potential folding-function interrelationship in proteins. Barzilai A, Kumar S, Wolfson H, Nussinov R. Proteins 56 635-649 (2004)
  66. Mutational effects on the folding dynamics of a minimized hairpin. Scian M, Shu I, Olsen KA, Hassam K, Andersen NH. Biochemistry 52 2556-2564 (2013)
  67. Local structural differences in homologous proteins: specificities in different SCOP classes. Joseph AP, Valadié H, Srinivasan N, de Brevern AG. PLoS ONE 7 e38805 (2012)
  68. Protein folding roller coaster, one molecule at a time. Shakhnovich E. Proc. Natl. Acad. Sci. U.S.A. 106 11823-11824 (2009)
  69. A permissive secondary structure-guided superposition tool for clustering of protein fragments toward protein structure prediction via fragment assembly. Wainreb G, Haspel N, Wolfson HJ, Nussinov R. Bioinformatics 22 1343-1352 (2006)
  70. Efficient expansion, folding, and unfolding of proteins. Nelson ED, Grishin NV. Phys Rev E Stat Nonlin Soft Matter Phys 70 051906 (2004)
  71. SAHBNET, an Accessible Surface-Based Elastic Network: An Application to Membrane Protein. Dony N, Crowet JM, Joris B, Brasseur R, Lins L. Int J Mol Sci 14 11510-11526 (2013)
  72. A "Link-Psi" strategy using crosslinking indicates that the folding transition state of ubiquitin is not very malleable. Shandiz AT, Baxa MC, Sosnick TR. Protein Sci. 21 819-827 (2012)
  73. Constraining local structure can speed up folding by promoting structural polarization of the folding pathway. Buck PM, Bystroff C. Protein Sci. 20 959-969 (2011)
  74. An error analysis for two-state protein-folding kinetic parameters and phi-values: progress toward precision by exploring pH dependencies on Leffler plots. Cobos ES, Candel AM, Martinez JC. Biophys. J. 94 4393-4404 (2008)
  75. Evaluation of folding co-operativity of a chimeric protein based on the molecular recognition between polyproline ligands and SH3 domains. Candel AM, Cobos ES, Conejero-Lara F, Martinez JC. Protein Eng. Des. Sel. 22 597-606 (2009)
  76. High-resolution structure of an alpha-spectrin SH3-domain mutant with a redesigned hydrophobic core. Cámara-Artigas A, Andújar-Sánchez M, Ortiz-Salmerón E, Cuadri C, Cobos ES, Martin-Garcia JM. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 1023-1027 (2010)
  77. The redundancy of NMR restraints can be used to accelerate the unfolding behavior of an SH3 domain during molecular dynamics simulations. Duclert-Savatier N, Martínez L, Nilges M, Malliavin TE. BMC Struct. Biol. 11 46 (2011)
  78. Mapping the structure of amyloid nucleation precursors by protein engineering kinetic analysis. Ruzafa D, Varela L, Azuaga AI, Conejero-Lara F, Morel B. Phys Chem Chem Phys 16 2989-3000 (2014)
  79. Structural and sequence features of two residue turns in beta-hairpins. Madan B, Seo SY, Lee SG. Proteins 82 1721-1733 (2014)
  80. The role of backbone hydrogen bonds in the transition state for protein folding of a PDZ domain. Pedersen SW, Hultqvist G, Strømgaard K, Jemth P. PLoS ONE 9 e95619 (2014)


Related citations provided by authors (1)

  1. Crystal Structure of a Src-Homology 3 (SH3) Domain. Musacchio A, Noble M, Pauptit R, Wierenga R, Saraste M Nature 359 851- (1992)