1bg0 Citations

Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions.

Proc. Natl. Acad. Sci. U.S.A. 95 8449-54 (1998)
Cited: 140 times
EuropePMC logo PMID: 9671698

Abstract

Arginine kinase belongs to the family of enzymes, including creatine kinase, that catalyze the buffering of ATP in cells with fluctuating energy requirements and that has been a paradigm for classical enzymological studies. The 1.86-A resolution structure of its transition-state analog complex, reported here, reveals its active site and offers direct evidence for the importance of precise substrate alignment in the catalysis of bimolecular reactions, in contrast to the unimolecular reactions studied previously. In the transition-state analog complex studied here, a nitrate mimics the planar gamma-phosphoryl during associative in-line transfer between ATP and arginine. The active site is unperturbed, and the reactants are not constrained covalently as in a bisubstrate complex, so it is possible to measure how precisely they are pre-aligned by the enzyme. Alignment is exquisite. Entropic effects may contribute to catalysis, but the lone-pair orbitals are also aligned close enough to their optimal trajectories for orbital steering to be a factor during nucleophilic attack. The structure suggests that polarization, strain toward the transition state, and acid-base catalysis also contribute, but, in contrast to unimolecular enzyme reactions, their role appears to be secondary to substrate alignment in this bimolecular reaction.

Reviews - 1bg0 mentioned but not cited (1)

  1. Chemical biology of protein arginine modifications in epigenetic regulation. Fuhrmann J, Clancy KW, Thompson PR. Chem Rev 115 5413-5461 (2015)

Articles - 1bg0 mentioned but not cited (14)

  1. Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Zhou G, Somasundaram T, Blanc E, Parthasarathy G, Ellington WR, Chapman MS. Proc. Natl. Acad. Sci. U.S.A. 95 8449-8454 (1998)
  2. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. Kirstein J, Zühlke D, Gerth U, Turgay K, Hecker M. EMBO J 24 3435-3445 (2005)
  3. A comprehensive update of the sequence and structure classification of kinases. Cheek S, Ginalski K, Zhang H, Grishin NV. BMC Struct. Biol. 5 6 (2005)
  4. Crystal structure of brain-type creatine kinase at 1.41 A resolution. Eder M, Schlattner U, Becker A, Wallimann T, Kabsch W, Fritz-Wolf K. Protein Sci 8 2258-2269 (1999)
  5. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design. Cheng G, Qian B, Samudrala R, Baker D. Nucleic Acids Res. 33 5861-5867 (2005)
  6. On the molecular discrimination between adenine and guanine by proteins. Nobeli I, Laskowski RA, Valdar WS, Thornton JM. Nucleic Acids Res. 29 4294-4309 (2001)
  7. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling. Engelen S, Trojan LA, Sacquin-Mora S, Lavery R, Carbone A. PLoS Comput. Biol. 5 e1000267 (2009)
  8. The role of phosphagen specificity loops in arginine kinase. Azzi A, Clark SA, Ellington WR, Chapman MS. Protein Sci 13 575-585 (2004)
  9. Induced fit in arginine kinase. Zhou G, Ellington WR, Chapman MS. Biophys J 78 1541-1550 (2000)
  10. Predicting protein function from structure: unique structural features of proteases. Stawiski EW, Baucom AE, Lohr SC, Gregoret LM. Proc. Natl. Acad. Sci. U.S.A. 97 3954-3958 (2000)
  11. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines. Tong W, Williams RJ, Wei Y, Murga LF, Ko J, Ondrechen MJ. Protein Sci. 17 333-341 (2008)
  12. Protein binding hot spots and the residue-residue pairing preference: a water exclusion perspective. Liu Q, Li J. BMC Bioinformatics 11 244 (2010)
  13. Crystal structures of TM0549 and NE1324--two orthologs of E. coli AHAS isozyme III small regulatory subunit. Petkowski JJ, Chruszcz M, Zimmerman MD, Zheng H, Skarina T, Onopriyenko O, Cymborowski MT, Koclega KD, Savchenko A, Edwards A, Minor W. Protein Sci. 16 1360-1367 (2007)
  14. Cutoff lensing: predicting catalytic sites in enzymes. Aubailly S, Piazza F. Sci Rep 5 14874 (2015)


Reviews citing this publication (3)

  1. Geometry of nonbonded interactions involving planar groups in proteins. Chakrabarti P, Bhattacharyya R. Prog Biophys Mol Biol 95 83-137 (2007)
  2. Relating structure to mechanism in creatine kinase. McLeish MJ, Kenyon GL. Crit Rev Biochem Mol Biol 40 1-20 (2005)
  3. Creatine and creatinine metabolism. Wyss M, Kaddurah-Daouk R. Physiol Rev 80 1107-1213 (2000)

Articles citing this publication (122)

  1. Crystal structure of CapZ: structural basis for actin filament barbed end capping. Yamashita A, Maeda K, Maéda Y. EMBO J 22 1529-1538 (2003)
  2. Sequence and structure classification of kinases. Cheek S, Zhang H, Grishin NV. J Mol Biol 320 855-881 (2002)
  3. Crystal structure of rabbit muscle creatine kinase. Rao JK, Bujacz G, Wlodawer A. FEBS Lett 439 133-137 (1998)
  4. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase. Suzuki T, Kamidochi M, Inoue N, Kawamichi H, Yazawa Y, Furukohri T, Ellington WR. Biochem J 340 ( Pt 3) 671-675 (1999)
  5. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. Iyer LM, Burroughs AM, Aravind L. Biol Direct 3 45 (2008)
  6. Induced fit in guanidino kinases--comparison of substrate-free and transition state analog structures of arginine kinase. Yousef MS, Clark SA, Pruett PK, Somasundaram T, Ellington WR, Chapman MS. Protein Sci 12 103-111 (2003)
  7. Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human Abeta(1-42): implications for Alzheimer's disease. Boyd-Kimball D, Poon HF, Lynn BC, Cai J, Pierce WM, Klein JB, Ferguson J, Link CD, Butterfield DA. Neurobiol Aging 27 1239-1249 (2006)
  8. Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase. Fujimoto N, Tanaka K, Suzuki T. FEBS Lett 579 1688-1692 (2005)
  9. Role of amino acid residues on the GS region of Stichopus arginine kinase and Danio creatine kinase. Uda K, Suzuki T. Protein J. 23 53-64 (2004)
  10. Crystal structure of human ubiquitous mitochondrial creatine kinase. Eder M, Fritz-Wolf K, Kabsch W, Wallimann T, Schlattner U. Proteins 39 216-225 (2000)
  11. Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system. Suzuki T, Yamamoto Y, Umekawa M. Biochem J 351 Pt 3 579-585 (2000)
  12. Arginine kinase from the beetle Cissites cephalotes (Olivier). Molecular cloning, phylogenetic analysis and enzymatic properties. Tanaka K, Ichinari S, Iwanami K, Yoshimatsu S, Suzuki T. Insect Biochem Mol Biol 37 338-345 (2007)
  13. Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues. Wendt S, Schlattner U, Wallimann T. J Biol Chem 278 1125-1130 (2003)
  14. Evolution of the arginine kinase gene family. Uda K, Fujimoto N, Akiyama Y, Mizuta K, Tanaka K, Ellington WR, Suzuki T. Comp Biochem Physiol Part D Genomics Proteomics 1 209-218 (2006)
  15. Structural studies of human brain-type creatine kinase complexed with the ADP-Mg2+-NO3- -creatine transition-state analogue complex. Bong SM, Moon JH, Nam KH, Lee KS, Chi YM, Hwang KY. FEBS Lett 582 3959-3965 (2008)
  16. Creatine kinase: a role for arginine-95 in creatine binding and active site organization. Edmiston PL, Schavolt KL, Kersteen EA, Moore NR, Borders CL. Biochim Biophys Acta 1546 291-298 (2001)
  17. Arginine kinase: a common feature for management of energy reserves in African and American flagellated trypanosomatids. Pereira CA, Alonso GD, Torres HN, Flawiá MM. J Eukaryot Microbiol 49 82-85 (2002)
  18. Statistical criteria for the identification of protein active sites using Theoretical Microscopic Titration Curves. Ko J, Murga LF, André P, Yang H, Ondrechen MJ, Williams RJ, Agunwamba A, Budil DE. Proteins 59 183-195 (2005)
  19. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases. Tanaka K, Suzuki T. FEBS Lett 573 78-82 (2004)
  20. Kinetic properties and structural characteristics of an unusual two-domain arginine kinase of the clam Corbicula japonica. Suzuki T, Tomoyuki T, Uda K. FEBS Lett 533 95-98 (2003)
  21. Characterization of a novel bacterial arginine kinase from Desulfotalea psychrophila. Andrews LD, Graham J, Snider MJ, Fraga D. Comp Biochem Physiol B Biochem Mol Biol 150 312-319 (2008)
  22. Toxocara canis: molecular cloning, characterization, expression and comparison of the kinetics of cDNA-derived arginine kinase. Wickramasinghe S, Uda K, Nagataki M, Yatawara L, Rajapakse RP, Watanabe Y, Suzuki T, Agatsuma T. Exp Parasitol 117 124-132 (2007)
  23. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy. von Germar F, Barth A, Mäntele W. Biophys J 78 1531-1540 (2000)
  24. Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase. Uda K, Saishoji N, Ichinari S, Ellington WR, Suzuki T. FEBS J 272 3521-3530 (2005)
  25. Arginine kinase: joint crystallographic and NMR RDC analyses link substrate-associated motions to intrinsic flexibility. Niu X, Bruschweiler-Li L, Davulcu O, Skalicky JJ, Brüschweiler R, Chapman MS. J Mol Biol 405 479-496 (2011)
  26. Hypotaurocyamine kinase evolved from a gene for arginine kinase. Uda K, Iwai A, Suzuki T. FEBS Lett 579 6756-6762 (2005)
  27. Identification of proteins from venom of the paralytic spider wasp, Cyphononyx dorsalis. Yamamoto T, Arimoto H, Kinumi T, Oba Y, Uemura D. Insect Biochem Mol Biol 37 278-286 (2007)
  28. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity. Wu X, Ye S, Guo S, Yan W, Bartlam M, Rao Z. FASEB J 24 242-252 (2010)
  29. The protective effects of osmolytes on arginine kinase unfolding and aggregation. Xia Y, Park YD, Mu H, Zhou HM, Wang XY, Meng FG. Int J Biol Macromol 40 437-443 (2007)
  30. Evolution of the diverse array of phosphagen systems present in annelids. Suzuki T, Uda K, Adachi M, Sanada H, Tanaka K, Mizuta C, Ishida K, Ellington WR. Comp Biochem Physiol B Biochem Mol Biol 152 60-66 (2009)
  31. The crystal structure of Trypanosoma cruzi arginine kinase. Fernandez P, Haouz A, Pereira CA, Aguilar C, Alzari PM. Proteins 69 209-212 (2007)
  32. Evidence that amino-acid residues are responsible for substrate synergism of locust arginine kinase. Wu QY, Li F, Wang XY. Insect Biochem Mol Biol 38 59-65 (2008)
  33. Unassisted refolding of urea-denatured arginine kinase from shrimp Feneropenaeus chinensis: evidence for two equilibrium intermediates in the refolding pathway. Pan JC, Yu Z, Su XY, Sun YQ, Rao XM, Zhou HM. Protein Sci 13 1892-1901 (2004)
  34. Classification of common functional loops of kinase super-families. Fernandez-Fuentes N, Hermoso A, Espadaler J, Querol E, Aviles FX, Oliva B. Proteins 56 539-555 (2004)
  35. Molecular characterization and kinetic properties of a novel two-domain taurocyamine kinase from the lung fluke Paragonimus westermani. Jarilla BR, Tokuhiro S, Nagataki M, Hong SJ, Uda K, Suzuki T, Agatsuma T. FEBS Lett 583 2218-2224 (2009)
  36. The role of detergent in refolding of GdnHCl-denatured arginine kinase from shrimp Fenneropenaeus Chinensis: the solubilization of aggregate and refolding in detergent solutions. Pan JC, Wang JS, Cheng Y, Yu Z, Rao XM, Zhou HM. Biochem Cell Biol 83 140-146 (2005)
  37. A novel arginine kinase from the shrimp Neocaridina denticulata: the fourth arginine kinase gene lineage. Iwanami K, Iseno S, Uda K, Suzuki T. Gene 437 80-87 (2009)
  38. A novel arginine kinase with substrate specificity towards D-arginine. Uda K, Suzuki T. Protein J 26 281-291 (2007)
  39. Expression, purification, and characterization of arginine kinase from the sea cucumber Stichopus japonicus. Guo SY, Guo Z, Guo Q, Chen BY, Wang XC. Protein Expr Purif 29 230-234 (2003)
  40. Two-domain arginine kinases from the clams Solen strictus and Corbicula japonica: exceptional amino acid replacement of the functionally important D(62) by G. Suzuki T, Sugimura N, Taniguchi T, Unemi Y, Murata T, Hayashida M, Yokouchi K, Uda K, Furukohri T. Int J Biochem Cell Biol 34 1221-1229 (2002)
  41. Characterization and origin of bacterial arginine kinases. Suzuki T, Soga S, Inoue M, Uda K. Int J Biol Macromol 57 273-277 (2013)
  42. Phosphagen kinase of the giant tubeworm Riftia pachyptila. Cloning and expression of cytoplasmic and mitochondrial isoforms of taurocyamine kinase. Uda K, Tanaka K, Bailly X, Zal F, Suzuki T. Int J Biol Macromol 37 54-60 (2005)
  43. The tryptophane residues of dimeric arginine kinase: roles of Trp-208 and Trp-218 in active site and conformation stability. Guo Q, Zhao F, Guo SY, Wang X. Biochimie 86 379-386 (2004)
  44. Arginine kinase: differentiation of gene expression and protein activity in the red imported fire ant, Solenopsis invicta. Wang H, Zhang L, Zhang L, Lin Q, Liu N. Gene 430 38-43 (2009)
  45. Gene structure of two-domain arginine kinases from Anthopleura japonicus and Pseudocardium sachalinensis. Suzuki T, Yamamoto Y. Comp Biochem Physiol B Biochem Mol Biol 127 513-518 (2000)
  46. Mutation of conserved active-site threonine residues in creatine kinase affects autophosphorylation and enzyme kinetics. Stolz M, Hornemann T, Schlattner U, Wallimann T. Biochem J 363 785-792 (2002)
  47. Origin of the genes for the isoforms of creatine kinase. Bertin M, Pomponi SM, Kokuhuta C, Iwasaki N, Suzuki T, Ellington WR. Gene 392 273-282 (2007)
  48. Screening of substrate analogs as potential enzyme inhibitors for the arginine kinase of Trypanosoma cruzi. Pereira CA, Alonso GD, Ivaldi S, Bouvier LA, Torres HN, Flawiá MM. J Eukaryot Microbiol 50 132-134 (2003)
  49. Substrate directs enzyme dynamics by bridging distal sites: UDP-galactopyranose mutase. Yao X, Bleile DW, Yuan Y, Chao J, Sarathy KP, Sanders DA, Pinto BM, O'Neill MA. Proteins 74 972-979 (2009)
  50. The structure of lombricine kinase: implications for phosphagen kinase conformational changes. Bush DJ, Kirillova O, Clark SA, Davulcu O, Fabiola F, Xie Q, Somasundaram T, Ellington WR, Chapman MS. J Biol Chem 286 9338-9350 (2011)
  51. Crystal structure of shrimp arginine kinase in binary complex with arginine-a molecular view of the phosphagen precursor binding to the enzyme. López-Zavala AA, García-Orozco KD, Carrasco-Miranda JS, Sugich-Miranda R, Velázquez-Contreras EF, Criscitiello MF, Brieba LG, Rudiño-Piñera E, Sotelo-Mundo RR. J Bioenerg Biomembr 45 511-518 (2013)
  52. Exploring the role of the active site cysteine in human muscle creatine kinase. Wang PF, Flynn AJ, Naor MM, Jensen JH, Cui G, Merz KM, Kenyon GL, McLeish MJ. Biochemistry 45 11464-11472 (2006)
  53. Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member. Lim K, Pullalarevu S, Surabian KT, Howard A, Suzuki T, Moult J, Herzberg O. Biochemistry 49 2031-2041 (2010)
  54. Two-domain arginine kinase from the deep-sea clam Calyptogena kaikoi--evidence of two active domains. Uda K, Yamamoto K, Iwasaki N, Iwai M, Fujikura K, Ellington WR, Suzuki T. Comp Biochem Physiol B Biochem Mol Biol 151 176-182 (2008)
  55. A novel taurocyamine kinase found in the protist Phytophthora infestans. Uda K, Hoshijima M, Suzuki T. Comp Biochem Physiol B Biochem Mol Biol 165 42-48 (2013)
  56. Conformational change and inactivation of arginine kinase from shrimp Feneropenaeus chinensis in oxidized dithiothreitol solutions. Pan JC, Yu ZH, Hui EF, Zhou HM. Biochem Cell Biol 82 361-367 (2004)
  57. Consequences of a six residual deletion from the N-terminal of rabbit muscle creatine kinase. Guo SY, Wang Z, Ni SW, Wang XC. Biochimie 85 999-1005 (2003)
  58. Cooperativity in the two-domain arginine kinase from the sea anemone Anthopleura japonicus. Tada H, Nishimura Y, Suzuki T. Int J Biol Macromol 42 46-51 (2008)
  59. Genetic heterogeneity among intertidal habitats in the flat periwinkle, Littorina obtusata. Schmidt PS, Phifer-Rixey M, Taylor GM, Christner J. Mol Ecol 16 2393-2404 (2007)
  60. Identification and characterization of two arginine kinases from the parasitic insect Ctenocephalides felis. Werr M, Cramer J, Ilg T. Insect Biochem Mol Biol 39 634-645 (2009)
  61. Implications of the role of reactive cystein in arginine kinase: reactivation kinetics of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified arginine kinase reactivated by dithiothreitol. Pan JC, Cheng Y, Hui EF, Zhou HM. Biochem Biophys Res Commun 317 539-544 (2004)
  62. Val65 plays an important role in the substrate synergism, structural stability and activity of arginine kinase. Wu QY, Li F, Wang XY. Int J Biol Macromol 45 393-398 (2009)
  63. Analysis of pupal head proteome and its alteration in diapausing pupae of Helicoverpa armigera. Chen L, Ma W, Wang X, Niu C, Lei C. J Insect Physiol 56 247-252 (2010)
  64. Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer. Kenyon CP, Roth RL, van der Westhuyzen CW, Parkinson CJ. BMC Res Notes 5 131 (2012)
  65. D-2-hydroxyglutaric acid inhibits creatine kinase activity from cardiac and skeletal muscle of young rats. da Silva CG, Bueno AR, Schuck PF, Leipnitz G, Ribeiro CA, Wannmacher CM, Wyse AT, Wajner M. Eur J Clin Invest 33 840-847 (2003)
  66. Evidence that the amino acid residue P272 of arginine kinase is involved in its activity, structure and stability. Wu QY, Li F, Wang XY. Int J Biol Macromol 43 367-372 (2008)
  67. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure. Wei L, Wang Q, Wu H, Ji C, Zhao J. J Proteomics 112 83-94 (2015)
  68. Regulation of tail muscle arginine kinase by reversible phosphorylation in an anoxia-tolerant crayfish. Dawson NJ, Storey KB. J Comp Physiol B 181 851-859 (2011)
  69. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration. Uda K, Kuwasaki A, Shima K, Matsumoto T, Suzuki T. Int J Biol Macromol 44 413-418 (2009)
  70. The role of Cys271 in conformational changes of arginine kinase. Liu N, Wang JS, Wang WD, Pan JC. Int J Biol Macromol 49 98-102 (2011)
  71. Cloning and expression of a lombricine kinase from an echiuroid worm: insights into structural correlates of substrate specificity. Ellington WR, Bush J. Biochem Biophys Res Commun 291 939-944 (2002)
  72. Cloning, expression, characterization and phylogenetic analysis of arginine kinase from greasyback shrimp (Metapenaeus ensis). Wang JS, Zheng ZL, Lei J, Pan JC, Zou GL. Comp Biochem Physiol B Biochem Mol Biol 153 268-274 (2009)
  73. Evidence for proximal cysteine and lysine residues at or near the active site of arginine kinase of Stichopus japonicus. Guo Q, Chen B, Wang X. Biochemistry (Mosc) 69 1336-1343 (2004)
  74. Nucleotide binding to creatine kinase: an isothermal titration microcalorimetry study. Forstner M, Berger C, Wallimann T. FEBS Lett 461 111-114 (1999)
  75. Arginine kinase in Phytomonas, a trypanosomatid parasite of plants. Canepa GE, Carrillo C, Miranda MR, Sayé M, Pereira CA. Comp Biochem Physiol B Biochem Mol Biol 160 40-43 (2011)
  76. Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs. Clark SA, Davulcu O, Chapman MS. Biochem Biophys Res Commun 427 212-217 (2012)
  77. Crystallization and X-ray analysis of the Schistosoma mansoni guanidino kinase. Awama AM, Paracuellos P, Laurent S, Dissous C, Marcillat O, Gouet P. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 854-857 (2008)
  78. A diverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarian model system for studying developmental evolution. Uda K, Ellington WR, Suzuki T. Gene 497 214-227 (2012)
  79. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase. Borders CL, MacGregor KM, Edmiston PL, Gbeddy ER, Thomenius MJ, Mulligan GB, Snider MJ. Protein Sci 12 532-537 (2003)
  80. Creatine kinase isoenzymes specificities: histidine 65 in human CK-BB, a role in protein stability, not in catalysis. Mourad-Terzian T, Steghens JP, Min KL, Collombel C, Bozon D. FEBS Lett 475 22-26 (2000)
  81. Folding studies of arginine kinase from Euphausia superba using denaturants. Si YX, Fang NY, Wang W, Wang ZJ, Yang JM, Qian GY, Yin SJ, Park YD. Appl Biochem Biotechnol 172 3888-3901 (2014)
  82. Identification of critical residues of the mycobacterial dephosphocoenzyme a kinase by site-directed mutagenesis. Walia G, Gajendar K, Surolia A. PLoS One 6 e15228 (2011)
  83. Identification of two arginine kinase forms of endoparasitoid Leptomastix dactylopii venom by bottom up-sequence tag approach. Labella C, Kanawati B, Vogel H, Schmitt-Kopplin P, Laurino S, Bianco G, Falabella P. J Mass Spectrom 50 756-765 (2015)
  84. Molecular cloning and characterization of taurocyamine kinase from Clonorchis sinensis: a candidate chemotherapeutic target. Xiao JY, Lee JY, Tokuhiro S, Nagataki M, Jarilla BR, Nomura H, Kim TI, Hong SJ, Agatsuma T. PLoS Negl Trop Dis 7 e2548 (2013)
  85. Ribozyme catalysis via orbital steering. Scott WG. J Mol Biol 311 989-999 (2001)
  86. The roles of C-terminal loop residues of dimeric arginine kinase from sea cucumber Stichopus japonicus in catalysis, specificity and structure. Zhang JW, Zhao TJ, Wang SL, Guo Q, Liu TT, Zhao F, Wang XC. Int J Biol Macromol 38 203-210 (2006)
  87. Two arginine kinases of Tetrahymena pyriformis: characterization and localization. Michibata J, Okazaki N, Motomura S, Uda K, Fujiwara S, Suzuki T. Comp Biochem Physiol B Biochem Mol Biol 171 34-41 (2014)
  88. Cloning and expression of arginine kinase from a swimming crab, Portunus trituberculatus. Song C, Cui Z, Liu Y, Li Q, Wang S. Mol Biol Rep 39 4879-4888 (2012)
  89. Cold-adapted features of arginine kinase from the deep-sea clam Calyptogena kaikoi. Suzuki T, Yamamoto K, Tada H, Uda K. Mar Biotechnol (NY) 14 294-303 (2012)
  90. Expression of Torpedo californica creatine kinase in Escherichia coli and purification from inclusion bodies. Wang PF, Novak WR, Cantwell JS, Babbitt PC, McLeish MJ, Kenyon GL. Protein Expr Purif 26 89-95 (2002)
  91. Inhibition of mitochondrial creatine kinase activity by D-2-hydroxyglutaric acid in cerebellum of young rats. da Silva CG, Bueno AR, Rosa RB, Dutra Filho CS, Wannmacher CM, Wyse AT, Wajner M. Neurochem. Res. 28 1329-1337 (2003)
  92. Mutation of residue arginine 330 of arginine kinase results in the generation of the oxidized form more susceptible. Wang WD, Wang JS, Shi YL, Zhang XC, Pan JC, Zou GL. Int J Biol Macromol 54 238-243 (2013)
  93. The kinetic study of arginine kinase from the sea cucumber Stichopus japonicus with 5,5'-dithiobis-(2-nitrobenzoic acid). Feng Z, Qin G, Xicheng W. Int J Biol Macromol 36 184-190 (2005)
  94. Activity and function of rabbit muscle-specific creatine kinase at low temperature by mutation at gly268 to asn268. Wu CL, Li YH, Lin HC, Yeh YH, Yan HY, Hsiao CD, Hui CF, Wu JL. Comp Biochem Physiol B Biochem Mol Biol 158 189-198 (2011)
  95. Arginine kinases from the marine feather star Tropiometra afra macrodiscus: The first finding of a prenylation signal sequence in metazoan phosphagen kinases. Chouno K, Yano D, Uda K, Fujita T, Iwasaki N, Suzuki T. Comp Biochem Physiol B Biochem Mol Biol 187 55-61 (2015)
  96. Cloning arginine kinase gene and its RNAi in Bursaphelenchus xylophilus causing pine wilt disease Wang Xr, Cheng X, Li Yd, Zhang Ja, Zhang Zf, Wu Hr. Eur J Plant Pathol 134 521-532 (2012)
  97. Cooperativity and evolution of Tetrahymena two-domain arginine kinase. Okazaki N, Motomura S, Okazoe N, Yano D, Suzuki T. Int J Biol Macromol 79 696-703 (2015)
  98. Despite its high similarity with monomeric arginine kinase, muscle creatine kinase is only enzymatically active as a dimer. Awama AM, Mazon H, Vial C, Marcillat O. Arch Biochem Biophys 458 158-166 (2007)
  99. Molecular and catalytic properties of an arginine kinase from the nematode Ascaris suum. Nagataki M, Uda K, Jarilla BR, Tokuhiro S, Wickramasinghe S, Suzuki T, Blair D, Agatsuma T. J Helminthol 86 276-286 (2012)
  100. Structural and biochemical insights into the mechanism of fosfomycin phosphorylation by fosfomycin resistance kinase FomA. Pakhomova S, Bartlett SG, Doerner PA, Newcomer ME. Biochemistry 50 6909-6919 (2011)
  101. The effect of Ag+ on arginine kinase: inhibition kinetics. Sheng Q, Lu ZR, Mu H, Zou HC, Zou F, Yao SJ. J Biomol Struct Dyn 27 59-64 (2009)
  102. Arginine kinase in the cladoceran Daphnia magna: cDNA sequencing and expression is associated with resistance to toxic Microcystis. Lyu K, Zhang L, Zhu X, Cui G, Wilson AE, Yang Z. Aquat Toxicol 160 13-21 (2015)
  103. Backbone resonance assignments of the 42 kDa enzyme arginine kinase in the transition state analogue form. Davulcu O, Niu X, Brüschweiler-Li L, Brüschweiler R, Skalicky JJ, Chapman MS. Biomol NMR Assign 8 335-338 (2014)
  104. Effects of zinc on the activity and conformational changes of arginine kinase and its intermediate. Du Z, Wang X. J Biochem Mol Biol 36 359-366 (2003)
  105. Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants. Rodovalho CM, Ferro M, Fonseca FP, Antonio EA, Guilherme IR, Henrique-Silva F, Bacci M. BMC Res Notes 4 203 (2011)
  106. Gastropod arginine kinases from Cellana grata and Aplysia kurodai. Isolation and cDNA-derived amino acid sequences. Suzuki T, Inoue N, Higashi T, Mizobuchi R, Sugimura N, Yokouchi K, Furukohri T. Comp Biochem Physiol B Biochem Mol Biol 127 505-512 (2000)
  107. Molecular Characteristic and Responsive Expression of Arginine Kinase in the Mud Crab, Scylla paramamosain Xie Y, Gong J, Ye H, Huang H, Yang Y. Journal of the World Aquaculture Society. 45 127-137 (2014)
  108. Phosphagen kinase in Schistosoma japonicum: II. Determination of amino acid residues essential for substrate catalysis using site-directed mutagenesis. Tokuhiro S, Nagataki M, Jarilla BR, Uda K, Suzuki T, Sugiura T, Agatsuma T. Mol Biochem Parasitol 194 56-63 (2014)
  109. Structure of a double-domain phosphagen kinase reveals an asymmetric arrangement of the tandem domains. Wang Z, Qiao Z, Ye S, Zhang R. Acta Crystallogr D Biol Crystallogr 71 779-789 (2015)
  110. The Michaelis Complex of Arginine Kinase Samples the Transition State at a Frequency That Matches the Catalytic Rate. Peng Y, Hansen AL, Bruschweiler-Li L, Davulcu O, Skalicky JJ, Chapman MS, Brüschweiler R. J Am Chem Soc 139 4846-4853 (2017)
  111. Arginine Kinases from the Precious Corals Corallium rubrum and Paracorallium japonicum: Presence of Two Distinct Arginine Kinase Gene Lineages in Cnidarians. Matsuo T, Yano D, Uda K, Iwasaki N, Suzuki T. Protein J. 36 502-512 (2017)
  112. Arginine kinase from the Tardigrade, Macrobiotus occidentalis: molecular cloning, phylogenetic analysis and enzymatic properties. Uda K, Ishida M, Matsui T, Suzuki T. Zoolog Sci 27 796-803 (2010)
  113. Biochemical and structural characterization of a novel arginine kinase from the spider Polybetes pythagoricus. Laino A, Lopez-Zavala AA, Garcia-Orozco KD, Carrasco-Miranda JS, Santana M, Stojanoff V, Sotelo-Mundo RR, Garcia CF. PeerJ 5 e3787 (2017)
  114. Characterization of Arginine Kinase in the Barnacle Amphibalanus Amphitrite and Its Role in the Larval Settlement. Zhang G, Yan GY, Yang XX, Wong YH, Sun J, Zhang Y, He LS, Xu Y, Qian PY. J Exp Zool B Mol Dev Evol 326 237-249 (2016)
  115. Characterization of four arginine kinases in the ciliate Paramecium tetraurelia: Investigation on the substrate inhibition mechanism. Yano D, Suzuki T, Hirokawa S, Fuke K, Suzuki T. Int J Biol Macromol 101 653-659 (2017)
  116. Insights into the Phosphoryl Transfer Mechanism of Human Ubiquitous Mitochondrial Creatine Kinase. Li Q, Fan S, Li X, Jin Y, He W, Zhou J, Cen S, Yang Z. Sci Rep 6 38088 (2016)
  117. Kinetic Analyses of the Substrate Inhibition of Paramecium Arginine Kinase. Yano D, Suzuki T. Protein J. 37 581-588 (2018)
  118. Positive selection adaptation of two-domain arginine kinase (AK) from cold seep Vesicomyidae clams. Kong X, Liu H, Zhang H. Mol. Biol. Rep. 45 1527-1532 (2018)
  119. Sorted gene genealogies and species-specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets. Noh S, Marshall JL. PeerJ 4 e1678 (2016)
  120. The Sampling of Conformational Dynamics in Ambient-Temperature Crystal Structures of Arginine Kinase. Godsey MH, Davulcu O, Nix JC, Skalicky JJ, Brüschweiler RP, Chapman MS. Structure 24 1658-1667 (2016)
  121. The substrate-free and -bound crystal structures of the duplicated taurocyamine kinase from the human parasite Schistosoma mansoni. Merceron R, Awama AM, Montserret R, Marcillat O, Gouet P. J Biol Chem 290 12951-12963 (2015)
  122. Two fused proteins combining Stichopus japonicus arginine kinase and rabbit muscle creatine kinase. Zhang JW, Guo Q, Zhao TJ, Liu TT, Wang XC. Biochemistry (Mosc) 71 983-988 (2006)


Related citations provided by authors (2)

  1. Critical Initial Real Space Refinement in Structure Determination of Arginine Kinase. Zhou G, Somasundaram T, Blanc E, Chen Z, Chapman MS To be published -
  2. Expression, Purification from Inclusion Bodies, and Crystal Characterization of a Transition State Analog Complex of Arginine Kinase: A Model for Studying Phosphagen Kinases. Zhou G, Parthasarathy G, Somasundaram T, Ables A, Roy L, Strong SJ, Ellington WR, Chapman MS Protein Sci. 6 444- (1997)