1bco Citations

Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration.

Cell 82 209-20 (1995)
Cited: 147 times
EuropePMC logo PMID: 7628012

Abstract

The crystal structure of the core domain of bacteriophage Mu transposase, MuA, has been determined at 2.4 A resolution. The first of two subdomains contains the active site and, despite very limited sequence homology, exhibits a striking similarity to the core domain of HIV-1 integrase, which carries out a similar set of biochemical reactions. It also exhibits more limited similarity to other nucleases, RNase H and RuvC. The second, a beta barrel, connects to the first subdomain through several contacts. Three independent determinations of the monomer structure from two crystal forms all show the active site held in a similar, apparently inactive configuration. The enzymatic activity of MuA is known to be activated by formation of a DNA-bound tetramer of the protein. We propose that the connections between the two subdomains may be involved in the cross-talk between the active site and the other domains of the transposase that controls the activity of the protein.

Reviews - 1bco mentioned but not cited (2)

  1. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Hickman AB, Chandler M, Dyda F. Crit Rev Biochem Mol Biol 45 50-69 (2010)
  2. DDE transposases: Structural similarity and diversity. Nesmelova IV, Hackett PB. Adv Drug Deliv Rev 62 1187-1195 (2010)

Articles - 1bco mentioned but not cited (8)

  1. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Majorek KA, Dunin-Horkawicz S, Steczkiewicz K, Muszewska A, Nowotny M, Ginalski K, Bujnicki JM. Nucleic Acids Res 42 4160-4179 (2014)
  2. Mechanism of Mos1 transposition: insights from structural analysis. Richardson JM, Dawson A, O'Hagan N, Taylor P, Finnegan DJ, Walkinshaw MD. EMBO J 25 1324-1334 (2006)
  3. Structure of the TnsB transposase-DNA complex of type V-K CRISPR-associated transposon. Tenjo-Castaño F, Sofos N, López-Méndez B, Stutzke LS, Fuglsang A, Stella S, Montoya G. Nat Commun 13 5792 (2022)
  4. A free-rotating and self-avoiding chain model for deriving statistical potentials based on protein structures. Cheng J, Pei J, Lai L. Biophys J 92 3868-3877 (2007)
  5. Localization of ASV integrase-DNA contacts by site-directed crosslinking and their structural analysis. Peletskaya E, Andrake M, Gustchina A, Merkel G, Alexandratos J, Zhou D, Bojja RS, Satoh T, Potapov M, Kogon A, Potapov V, Wlodawer A, Skalka AM. PLoS One 6 e27751 (2011)
  6. Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues. Rasila TS, Vihinen M, Paulin L, Haapa-Paananen S, Savilahti H. PLoS One 7 e37922 (2012)
  7. Mu transpososome activity-profiling yields hyperactive MuA variants for highly efficient genetic and genome engineering. Rasila TS, Pulkkinen E, Kiljunen S, Haapa-Paananen S, Pajunen MI, Salminen A, Paulin L, Vihinen M, Rice PA, Savilahti H. Nucleic Acids Res 46 4649-4661 (2018)
  8. Statistical approach for lysosomal membrane proteins (LMPs) identification. Tripathi V, Tripathi P, Gupta D. Syst Synth Biol 8 313-319 (2014)


Reviews citing this publication (30)

  1. Insertion sequences. Mahillon J, Chandler M. Microbiol Mol Biol Rev 62 725-774 (1998)
  2. Processing of recombination intermediates by the RuvABC proteins. West SC. Annu Rev Genet 31 213-244 (1997)
  3. Nucleases: diversity of structure, function and mechanism. Yang W. Q Rev Biophys 44 1-93 (2011)
  4. Target site selection in transposition. Craig NL. Annu Rev Biochem 66 437-474 (1997)
  5. The outs and ins of transposition: from mu to kangaroo. Curcio MJ, Derbyshire KM. Nat Rev Mol Cell Biol 4 865-877 (2003)
  6. Integrating DNA: transposases and retroviral integrases. Haren L, Ton-Hoang B, Chandler M. Annu Rev Microbiol 53 245-281 (1999)
  7. Tn7: smarter than we thought. Peters JE, Craig NL. Nat Rev Mol Cell Biol 2 806-814 (2001)
  8. Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes. Tadokoro T, Kanaya S. FEBS J 276 1482-1493 (2009)
  9. Retroviral integrase superfamily: the structural perspective. Nowotny M. EMBO Rep 10 144-151 (2009)
  10. Retroviral integrases and their cousins. Rice P, Craigie R, Davies DR. Curr Opin Struct Biol 6 76-83 (1996)
  11. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. Hallet B, Sherratt DJ. FEMS Microbiol Rev 21 157-178 (1997)
  12. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. McColl DJ, Chen X. Antiviral Res 85 101-118 (2010)
  13. Molecular mechanisms in retrovirus DNA integration. Asante-Appiah E, Skalka AM. Antiviral Res 36 139-156 (1997)
  14. Processing the holliday junction in homologous recombination. Shinagawa H, Iwasaki H. Trends Biochem Sci 21 107-111 (1996)
  15. Structure/function insights into Tn5 transposition. Steiniger-White M, Rayment I, Reznikoff WS. Curr Opin Struct Biol 14 50-57 (2004)
  16. DNA transposition: jumping gene machine, some assembly required. Chaconas G, Lavoie BD, Watson MA. Curr Biol 6 817-820 (1996)
  17. DNA transposition: from a black box to a color monitor. Grindley ND, Leschziner AE. Cell 83 1063-1066 (1995)
  18. Mechanisms of DNA Transposition. Hickman AB, Dyda F. Microbiol Spectr 3 MDNA3-0034-2014 (2015)
  19. DNA Transposition at Work. Hickman AB, Dyda F. Chem Rev 116 12758-12784 (2016)
  20. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Burton BM, Baker TA. Protein Sci 14 1945-1954 (2005)
  21. Tn5: A molecular window on transposition. Reznikoff WS, Bhasin A, Davies DR, Goryshin IY, Mahnke LA, Naumann T, Rayment I, Steiniger-White M, Twining SS. Biochem Biophys Res Commun 266 729-734 (1999)
  22. Transposable Phage Mu. Harshey RM. Microbiol Spectr 2 (2014)
  23. In search of authentic inhibitors of HIV-1 integration. Debyser Z, Cherepanov P, Van Maele B, De Clercq E, Witvrouw M. Antivir Chem Chemother 13 1-15 (2002)
  24. Mycoplasma genes: a case for reflective annotation. Pollack JD. Trends Microbiol 5 413-419 (1997)
  25. HIV integrase: a target for AIDS therapeutics. Thomas M, Brady L. Trends Biotechnol 15 167-172 (1997)
  26. RAG1 and RAG2 in V(D)J recombination and transposition. Fugmann SD. Immunol Res 23 23-39 (2001)
  27. V(D)J recombination: how to tame a transposase. Brandt VL, Roth DB. Immunol Rev 200 249-260 (2004)
  28. Mechanism and regulation of P element transposition. Ghanim GE, Rio DC, Teixeira FK. Open Biol 10 200244 (2020)
  29. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  30. DNA bending in the synaptic complex in V(D)J recombination: turning an ancestral transpososome upside down. Ciubotaru M, Surleac M, Musat MG, Rusu AM, Ionita E, Albu PCC. Discoveries (Craiova) 2 e13 (2014)

Articles citing this publication (107)

  1. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Agrawal A, Eastman QM, Schatz DG. Nature 394 744-751 (1998)
  2. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. Ryter JM, Schultz SC. EMBO J 17 7505-7513 (1998)
  3. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. Wang JY, Ling H, Yang W, Craigie R. EMBO J 20 7333-7343 (2001)
  4. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Goldgur Y, Dyda F, Hickman AB, Jenkins TM, Craigie R, Davies DR. Proc Natl Acad Sci U S A 95 9150-9154 (1998)
  5. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Aravind L, Makarova KS, Koonin EV. Nucleic Acids Res 28 3417-3432 (2000)
  6. Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Kagawa W, Kurumizaka H, Ishitani R, Fukai S, Nureki O, Shibata T, Yokoyama S. Mol Cell 10 359-371 (2002)
  7. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Kwon HJ, Tirumalai R, Landy A, Ellenberger T. Science 276 126-131 (1997)
  8. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Landree MA, Wibbenmeyer JA, Roth DB. Genes Dev 13 3059-3069 (1999)
  9. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. Morgan GJ, Hatfull GF, Casjens S, Hendrix RW. J Mol Biol 317 337-359 (2002)
  10. An interlocked dimeric parallel-stranded DNA quadruplex: a potent inhibitor of HIV-1 integrase. Phan AT, Kuryavyi V, Ma JB, Faure A, Andréola ML, Patel DJ. Proc Natl Acad Sci U S A 102 634-639 (2005)
  11. The phage Mu transpososome core: DNA requirements for assembly and function. Savilahti H, Rice PA, Mizuuchi K. EMBO J 14 4893-4903 (1995)
  12. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Fugmann SD, Villey IJ, Ptaszek LM, Schatz DG. Mol Cell 5 97-107 (2000)
  13. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Hickman AB, Waninger S, Scocca JJ, Dyda F. Cell 89 227-237 (1997)
  14. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. Sarnovsky RJ, May EW, Craig NL. EMBO J 15 6348-6361 (1996)
  15. The μ transpososome structure sheds light on DDE recombinase evolution. Montaño SP, Pigli YZ, Rice PA. Nature 491 413-417 (2012)
  16. The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations. Bujacz G, Jaskólski M, Alexandratos J, Wlodawer A, Merkel G, Katz RA, Skalka AM. Structure 4 89-96 (1996)
  17. The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Babu MM, Iyer LM, Balaji S, Aravind L. Nucleic Acids Res 34 6505-6520 (2006)
  18. Complementation of integrase function in HIV-1 virions. Fletcher TM, Soares MA, McPhearson S, Hui H, Wiskerchen M, Muesing MA, Shaw GM, Leavitt AD, Boeke JD, Hahn BH. EMBO J 16 5123-5138 (1997)
  19. Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F. Mol Cell 5 1025-1034 (2000)
  20. Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain. Nadal M, Mas PJ, Blanco AG, Arnan C, Solà M, Hart DJ, Coll M. Proc Natl Acad Sci U S A 107 16078-16083 (2010)
  21. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase. Savilahti H, Mizuuchi K. Cell 85 271-280 (1996)
  22. Assembly of the RAG1/RAG2 synaptic complex. Mundy CL, Patenge N, Matthews AG, Oettinger MA. Mol Cell Biol 22 69-77 (2002)
  23. The catalytic domain of human immunodeficiency virus integrase: ordered active site in the F185H mutant. Bujacz G, Alexandratos J, Qing ZL, Clément-Mella C, Wlodawer A. FEBS Lett 398 175-178 (1996)
  24. The interwoven architecture of the Mu transposase couples DNA synapsis to catalysis. Aldaz H, Schuster E, Baker TA. Cell 85 257-269 (1996)
  25. Crystal structure of the specific DNA-binding domain of Tc3 transposase of C.elegans in complex with transposon DNA. van Pouderoyen G, Ketting RF, Perrakis A, Plasterk RH, Sixma TK. EMBO J 16 6044-6054 (1997)
  26. Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis. Rao P, Yuan W, Krug RM. EMBO J 22 1188-1198 (2003)
  27. Structure-based mutagenesis of the catalytic domain of human immunodeficiency virus type 1 integrase. Engelman A, Liu Y, Chen H, Farzan M, Dyda F. J Virol 71 3507-3514 (1997)
  28. Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site. Watson MA, Chaconas G. Cell 85 435-445 (1996)
  29. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Kennedy AK, Haniford DB, Mizuuchi K. Cell 101 295-305 (2000)
  30. Active site sharing and subterminal hairpin recognition in a new class of DNA transposases. Ronning DR, Guynet C, Ton-Hoang B, Perez ZN, Ghirlando R, Chandler M, Dyda F. Mol Cell 20 143-154 (2005)
  31. Resolving the relationships of resolving enzymes. Lilley DM, White MF. Proc Natl Acad Sci U S A 97 9351-9353 (2000)
  32. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. Williams TL, Jackson EL, Carritte A, Baker TA. Genes Dev 13 2725-2737 (1999)
  33. The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition. Namgoong SY, Harshey RM. EMBO J 17 3775-3785 (1998)
  34. Crystal structure of the moloney murine leukemia virus RNase H domain. Lim D, Gregorio GG, Bingman C, Martinez-Hackert E, Hendrickson WA, Goff SP. J Virol 80 8379-8389 (2006)
  35. Identification of the nicking tyrosine of geminivirus Rep protein. Laufs J, Schumacher S, Geisler N, Jupin I, Gronenborn B. FEBS Lett 377 258-262 (1995)
  36. Catalytic center of an archaeal type 2 ribonuclease H as revealed by X-ray crystallographic and mutational analyses. Muroya A, Tsuchiya D, Ishikawa M, Haruki M, Morikawa M, Kanaya S, Morikawa K. Protein Sci 10 707-714 (2001)
  37. IS4 family goes genomic. De Palmenaer D, Siguier P, Mahillon J. BMC Evol Biol 8 18 (2008)
  38. Crystal structure of archaeal RNase HII: a homologue of human major RNase H. Lai L, Yokota H, Hung LW, Kim R, Kim SH. Structure 8 897-904 (2000)
  39. Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library. Puras Lutzke RA, Eppens NA, Weber PA, Houghten RA, Plasterk RH. Proc Natl Acad Sci U S A 92 11456-11460 (1995)
  40. Direct observation of single MuB polymers: evidence for a DNA-dependent conformational change for generating an active target complex. Greene EC, Mizuuchi K. Mol Cell 9 1079-1089 (2002)
  41. Subunit interactions in the mariner transposase. Lohe AR, Sullivan DT, Hartl DL. Genetics 144 1087-1095 (1996)
  42. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds. Mizuuchi M, Baker TA, Mizuuchi K. Cell 83 375-385 (1995)
  43. Trans catalysis in Tn5 transposition. Naumann TA, Reznikoff WS. Proc Natl Acad Sci U S A 97 8944-8949 (2000)
  44. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus. Chon H, Matsumura H, Koga Y, Takano K, Kanaya S. J Mol Biol 356 165-178 (2006)
  45. Functional insight into Maelstrom in the germline piRNA pathway: a unique domain homologous to the DnaQ-H 3'-5' exonuclease, its lineage-specific expansion/loss and evolutionarily active site switch. Zhang D, Xiong H, Shan J, Xia X, Trudeau VL. Biol Direct 3 48 (2008)
  46. Mariner Mos1 transposase dimerizes prior to ITR binding. Augé-Gouillou C, Brillet B, Germon S, Hamelin MH, Bigot Y. J Mol Biol 351 117-130 (2005)
  47. A synthetic peptide from the human immunodeficiency virus type-1 integrase exhibits coiled-coil properties and interferes with the in vitro integration activity of the enzyme. Correlated biochemical and spectroscopic results. Sourgen F, Maroun RG, Frère V, Bouziane M, Auclair C, Troalen F, Fermandjian S. Eur J Biochem 240 765-773 (1996)
  48. Definition of minimal domains of interaction within the recombination-activating genes 1 and 2 recombinase complex. Aidinis V, Dias DC, Gomez CA, Bhattacharyya D, Spanopoulou E, Santagata S. J Immunol 164 5826-5832 (2000)
  49. Protein-DNA contacts and conformational changes in the Tn10 transpososome during assembly and activation for cleavage. Crellin P, Chalmers R. EMBO J 20 3882-3891 (2001)
  50. Transposons to toxins: the provenance, architecture and diversification of a widespread class of eukaryotic effectors. Zhang D, Burroughs AM, Vidal ND, Iyer LM, Aravind L. Nucleic Acids Res 44 3513-3533 (2016)
  51. Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase. Keith JH, Schaeper CA, Fraser TS, Fraser MJ. BMC Mol Biol 9 73 (2008)
  52. Nicking is asynchronous and stimulated by synapsis in 12/23 rule-regulated V(D)J cleavage. Eastman QM, Schatz DG. Nucleic Acids Res 25 4370-4378 (1997)
  53. The Mu story: how a maverick phage moved the field forward. Harshey RM. Mob DNA 3 21 (2012)
  54. 3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition. Yuan JF, Beniac DR, Chaconas G, Ottensmeyer FP. Genes Dev 19 840-852 (2005)
  55. Solution structure of the Mu end DNA-binding ibeta subdomain of phage Mu transposase: modular DNA recognition by two tethered domains. Schumacher S, Clubb RT, Cai M, Mizuuchi K, Clore GM, Gronenborn AM. EMBO J 16 7532-7541 (1997)
  56. Transposase makes critical contacts with, and is stimulated by, single-stranded DNA at the P element termini in vitro. Beall EL, Rio DC. EMBO J 17 2122-2136 (1998)
  57. Comparison of wild-type and class I integrase mutant-FIV vectors in retina demonstrates sustained expression of integrated transgenes in retinal pigment epithelium. Loewen N, Leske DA, Chen Y, Teo WL, Saenz DT, Peretz M, Holmes JM, Poeschla EM. J Gene Med 5 1009-1017 (2003)
  58. Identification of single Mn(2+) binding sites required for activation of the mutant proteins of E.coli RNase HI at Glu48 and/or Asp134 by X-ray crystallography. Tsunaka Y, Takano K, Matsumura H, Yamagata Y, Kanaya S. J Mol Biol 345 1171-1183 (2005)
  59. Solution structure of the I gamma subdomain of the Mu end DNA-binding domain of phage Mu transposase. Clubb RT, Schumacher S, Mizuuchi K, Gronenborn AM, Clore GM. J Mol Biol 273 19-25 (1997)
  60. Multiple roles for divalent metal ions in DNA transposition: distinct stages of Tn10 transposition have different Mg2+ requirements. Junop MS, Haniford DB. EMBO J 15 2547-2555 (1996)
  61. Solution conformation and dynamics of the HIV-1 integrase core domain. Fitzkee NC, Masse JE, Shen Y, Davies DR, Bax A. J Biol Chem 285 18072-18084 (2010)
  62. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv. Tobiason DM, Buchner JM, Thiel WH, Gernert KM, Karls AC. Mol Microbiol 39 641-651 (2001)
  63. Presence of a characteristic D-D-E motif in IS1 transposase. Ohta S, Tsuchida K, Choi S, Sekine Y, Shiga Y, Ohtsubo E. J Bacteriol 184 6146-6154 (2002)
  64. Tn552 transposase catalyzes concerted strand transfer in vitro. Leschziner AE, Griffin TJ, Grindley ND. Proc Natl Acad Sci U S A 95 7345-7350 (1998)
  65. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. Burton BM, Baker TA. Chem Biol 10 463-472 (2003)
  66. Reversion of a human immunodeficiency virus type 1 integrase mutant at a second site restores enzyme function and virus infectivity. Taddeo B, Carlini F, Verani P, Engelman A. J Virol 70 8277-8284 (1996)
  67. Small-angle X-ray characterization of the nucleoprotein complexes resulting from DNA-induced oligomerization of HIV-1 integrase. Baranova S, Tuzikov FV, Zakharova OD, Tuzikova NA, Calmels C, Litvak S, Tarrago-Litvak L, Parissi V, Nevinsky GA. Nucleic Acids Res 35 975-987 (2007)
  68. Mutational analysis of domain II beta of bacteriophage Mu transposase: domains II alpha and II beta belong to different catalytic complementation groups. Namgoong SY, Kim K, Saxena P, Yang JY, Jayaram M, Giedroc DP, Harshey RM. J Mol Biol 275 221-232 (1998)
  69. Target DNA bending by the Mu transpososome promotes careful transposition and prevents its reversal. Fuller JR, Rice PA. Elife 6 e21777 (2017)
  70. Isolation and characterization of Tn7 transposase gain-of-function mutants: a model for transposase activation. Lu F, Craig NL. EMBO J 19 3446-3457 (2000)
  71. True reversal of Mu integration. Au TK, Pathania S, Harshey RM. EMBO J 23 3408-3420 (2004)
  72. Arrayed transposase-binding sequences on the ends of transposon Tn5090/Tn402. Kamali-Moghaddam M, Sundström L. Nucleic Acids Res 29 1005-1011 (2001)
  73. Mutational analysis on structure-function relationship of a holliday junction specific endonuclease RuvC. Ichiyanagi K, Iwasaki H, Hishida T, Shinagawa H. Genes Cells 3 575-586 (1998)
  74. ORF157 from the archaeal virus Acidianus filamentous virus 1 defines a new class of nuclease. Goulet A, Pina M, Redder P, Prangishvili D, Vera L, Lichière J, Leulliot N, van Tilbeurgh H, Ortiz-Lombardia M, Campanacci V, Cambillau C. J Virol 84 5025-5031 (2010)
  75. Phosphate coordination and movement of DNA in the Tn5 synaptic complex: role of the (R)YREK motif. Klenchin VA, Czyz A, Goryshin IY, Gradman R, Lovell S, Rayment I, Reznikoff WS. Nucleic Acids Res 36 5855-5862 (2008)
  76. Rag-1 mutations associated with B-cell-negative scid dissociate the nicking and transesterification steps of V(D)J recombination. Li W, Chang FC, Desiderio S. Mol Cell Biol 21 3935-3946 (2001)
  77. The conserved CA/TG motif at Mu termini: T specifies stable transpososome assembly. Lee I, Harshey RM. J Mol Biol 330 261-275 (2003)
  78. Defining functional regions of the IS903 transposase. Tavakoli NP, DeVost J, Derbyshire KM. J Mol Biol 274 491-504 (1997)
  79. Effect of mutations in the Mu-host junction region on transpososome assembly. Coros CJ, Chaconas G. J Mol Biol 310 299-309 (2001)
  80. A high-throughput assay for Tn5 Tnp-induced DNA cleavage. Ason B, Reznikoff WS. Nucleic Acids Res 32 e83 (2004)
  81. Mutations in domain III alpha of the Mu transposase: evidence suggesting an active site component which interacts with the Mu-host junction. Naigamwalla DZ, Coros CJ, Wu Z, Chaconas G. J Mol Biol 282 265-274 (1998)
  82. Interactions of host proteins with the murine leukemia virus integrase. Studamire B, Goff SP. Viruses 2 1110-1145 (2010)
  83. Specificity of LTR DNA recognition by a peptide mimicking the HIV-1 integrase {alpha}4 helix. Hobaika Z, Zargarian L, Boulard Y, Maroun RG, Mauffret O, Fermandjian S. Nucleic Acids Res 37 7691-7700 (2009)
  84. Stereochemical course of Escherichia coli RNase H. Krakowiak A, Owczarek A, Koziołkiewicz M, Stec WJ. Chembiochem 3 1242-1250 (2002)
  85. Two basic residues, Lys-107 and Lys-118, of RuvC resolvase are involved in critical contacts with the Holliday junction for its resolution. Yoshikawa M, Iwasaki H, Kinoshita K, Shinagawa H. Genes Cells 5 803-813 (2000)
  86. Crystal structure of a novel non-Pfam protein PF2046 solved using low resolution B-factor sharpening and multi-crystal averaging methods. Su J, Li Y, Shaw N, Zhou W, Zhang M, Xu H, Wang BC, Liu ZJ. Protein Cell 1 453-458 (2010)
  87. The Mu transposase tetramer is inactive in unassisted strand transfer: an auto-allosteric effect of Mu A promotes the reaction in the absence of Mu B. Wu Z, Wu Z, Chaconas G. J Mol Biol 267 132-141 (1997)
  88. A model of the replication fork blocking protein Fob1p based on the catalytic core domain of retroviral integrases. Dlakić M. Protein Sci 11 1274-1277 (2002)
  89. Charge-to-alanine mutagenesis of the adeno-associated virus type 2 Rep78/68 proteins yields temperature-sensitive and magnesium-dependent variants. Gavin DK, Young SM, Xiao W, Temple B, Abernathy CR, Pereira DJ, Muzyczka N, Samulski RJ. J Virol 73 9433-9445 (1999)
  90. Identification of RNase HII from psychrotrophic bacterium, Shewanella sp. SIB1 as a high-activity type RNase H. Chon H, Tadokoro T, Ohtani N, Koga Y, Takano K, Kanaya S. FEBS J 273 2264-2275 (2006)
  91. Patterns of sequence conservation at termini of long terminal repeat (LTR) retrotransposons and DNA transposons in the human genome: lessons from phage Mu. Lee I, Harshey RM. Nucleic Acids Res 31 4531-4540 (2003)
  92. The solution structure of the C-terminal domain of the Mu B transposition protein. Hung LH, Chaconas G, Shaw GS. EMBO J 19 5625-5634 (2000)
  93. Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components. Saariaho AH, Lamberg A, Elo S, Savilahti H. Virology 331 6-19 (2005)
  94. Reorganization of the Mu transpososome active sites during a cooperative transition between DNA cleavage and joining. Williams TL, Baker TA. J Biol Chem 279 5135-5145 (2004)
  95. Characteristics of MuA transposase-catalyzed processing of model transposon end DNA hairpin substrates. Saariaho AH, Savilahti H. Nucleic Acids Res 34 3139-3149 (2006)
  96. Domain III function of Mu transposase analysed by directed placement of subunits within the transpososome. Mariconda S, Namgoong SY, Yoon KH, Jiang H, Harshey RM. J Biosci 25 347-360 (2000)
  97. A green fluorescent protein solubility screen in E. coli reveals domain boundaries of the GTP-binding domain in the P element transposase. Sabogal A, Rio DC. Protein Sci 19 2210-2218 (2010)
  98. Soluble expression, purification and characterization of the full length IS2 Transposase. Lewis LA, Astatke M, Umekubo PT, Alvi S, Saby R, Afrose J. Mob DNA 2 14 (2011)
  99. The dynamic Mu transpososome: MuB activation prevents disintegration. Lemberg KM, Schweidenback CT, Baker TA. J Mol Biol 374 1158-1171 (2007)
  100. Dissecting the roles of MuB in Mu transposition: ATP regulation of DNA binding is not essential for target delivery. Schweidenback CT, Baker TA. Proc Natl Acad Sci U S A 105 12101-12107 (2008)
  101. Pulling apart catalytically active Tn5 synaptic complexes using magnetic tweezers. Adams CD, Schnurr B, Marko JF, Reznikoff WS. J Mol Biol 367 319-327 (2007)
  102. Purification of the Caenorhabditis elegans transposase Tc1A refolded during gel filtration chromatography. García-Sáez I, Plasterk RH. Protein Expr Purif 19 355-361 (2000)
  103. Strong nucleic acid binding to the Escherichia coli RNase HI mutant with two arginine residues at the active site. Tsunaka Y, Haruki M, Morikawa M, Kanaya S. Biochim Biophys Acta 1547 135-142 (2001)
  104. Structural basis for substrate recognition and processive cleavage mechanisms of the trimeric exonuclease PhoExo I. Miyazono K, Ishino S, Tsutsumi K, Ito T, Ishino Y, Tanokura M. Nucleic Acids Res 43 7122-7136 (2015)
  105. Bacillus subtilis YkuK protein is distantly related to RNase H. Knizewski Ł, Ginalski K. FEMS Microbiol Lett 251 341-346 (2005)
  106. The identification of three novel genes involved in the rapid-growth regulation in a marine diatom, Skeletonema costatum. Chung CC, Hwang SP, Chang J. Mar Biotechnol (NY) 11 356-367 (2009)
  107. IS21 family transposase cleaved donor complex traps two right-handed superhelical crossings. Spínola-Amilibia M, Araújo-Bazán L, de la Gándara Á, Berger JM, Arias-Palomo E. Nat Commun 14 2335 (2023)