1b12 Citations

Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor.

Nature 396 186-90 (1998)
Cited: 190 times
EuropePMC logo PMID: 9823901

Abstract

The signal peptidase (SPase) from Escherichia coli is a membrane-bound endopeptidase with two amino-terminal transmembrane segments and a carboxy-terminal catalytic region which resides in the periplasmic space. SPase functions to release proteins that have been translocated into the inner membrane from the cell interior, by cleaving off their signal peptides. We report here the X-ray crystal structure of a catalytically active soluble fragment of E. coli SPase (SPase delta2-75). We have determined this structure at 1.9 A resolution in a complex with an inhibitor, a beta-lactam (5S,6S penem), which is covalently bound as an acyl-enzyme intermediate to the gamma-oxygen of a serine residue at position 90, demonstrating that this residue acts as the nucleophile in the hydrolytic mechanism of signal-peptide cleavage. The structure is consistent with the use by SPase of Lys 145 as a general base in the activation of the nucleophilic Ser90, explains the specificity requirement at the signal-peptide cleavage site, and reveals a large exposed hydrophobic surface which could be a site for an intimate association with the membrane. As enzymes that are essential for cell viability, bacterial SPases present a feasible antibacterial target: our determination of the SPase structure therefore provides a template for the rational design of antibiotic compounds.

Reviews - 1b12 mentioned but not cited (4)

  1. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Ekici OD, Paetzel M, Dalbey RE. Protein Sci 17 2023-2037 (2008)
  2. Signal peptidase I: cleaving the way to mature proteins. Auclair SM, Bhanu MK, Kendall DA. Protein Sci 21 13-25 (2012)
  3. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, Wlodawer A. Protein Sci 15 1815-1828 (2006)
  4. The Sec System: Protein Export in Escherichia coli. Crane JM, Randall LL. EcoSal Plus 7 (2017)

Articles - 1b12 mentioned but not cited (25)

  1. Cotranslational Protein Folding inside the Ribosome Exit Tunnel. Nilsson OB, Hedman R, Marino J, Wickles S, Bischoff L, Johansson M, Müller-Lucks A, Trovato F, Puglisi JD, O'Brien EP, Beckmann R, von Heijne G. Cell Rep 12 1533-1540 (2015)
  2. Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad. Buller AR, Townsend CA. Proc Natl Acad Sci U S A 110 E653-61 (2013)
  3. Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. Corbett KS, Moin SM, Yassine HM, Cagigi A, Kanekiyo M, Boyoglu-Barnum S, Myers SI, Tsybovsky Y, Wheatley AK, Schramm CA, Gillespie RA, Shi W, Wang L, Zhang Y, Andrews SF, Joyce MG, Crank MC, Douek DC, McDermott AB, Mascola JR, Graham BS, Boyington JC. mBio 10 e02810-18 (2019)
  4. Molecular construction and optimization of anti-human IL-1alpha/beta dual variable domain immunoglobulin (DVD-Ig) molecules. Wu C, Ying H, Bose S, Miller R, Medina L, Santora L, Ghayur T. MAbs 1 339-347 (2009)
  5. Letter A comparative genomic analysis of two distant diptera, the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae. Bolshakov VN, Topalis P, Blass C, Kokoza E, della Torre A, Kafatos FC, Louis C. Genome Res 12 57-66 (2002)
  6. Use of suppression-subtractive hybridization to identify genes in the Burkholderia cepacia complex that are unique to Burkholderia cenocepacia. Bernier SP, Sokol PA. J Bacteriol 187 5278-5291 (2005)
  7. Did the last common ancestor have a biological membrane? Jékely G. Biol Direct 1 35 (2006)
  8. Structural basis for recognition of the malaria vaccine candidate Pfs48/45 by a transmission blocking antibody. Lennartz F, Brod F, Dabbs R, Miura K, Mekhaiel D, Marini A, Jore MM, Søgaard MM, Jørgensen T, de Jongh WA, Sauerwein RW, Long CA, Biswas S, Higgins MK. Nat Commun 9 3822 (2018)
  9. From first base: the sequence of the tip of the X chromosome of Drosophila melanogaster, a comparison of two sequencing strategies. Benos PV, Gatt MK, Murphy L, Harris D, Barrell B, Ferraz C, Vidal S, Brun C, Demaille J, Cadieu E, Dreano S, Gloux S, Lelaure V, Mottier S, Galibert F, Borkova D, Miñana B, Kafatos FC, Bolshakov S, Sidén-Kiamos I, Papagiannakis G, Spanos L, Louis C, Madueño E, de Pablos B, Modolell J, Peter A, Schöttler P, Werner M, Mourkioti F, Beinert N, Dowe G, Schäfer U, Jäckle H, Bucheton A, Callister D, Campbell L, Henderson NS, McMillan PJ, Salles C, Tait E, Valenti P, Saunders RD, Billaud A, Pachter L, Glover DM, Ashburner M. Genome Res 11 710-730 (2001)
  10. Uncovering the co-evolutionary network among prokaryotic genes. Cohen O, Ashkenazy H, Burstein D, Pupko T. Bioinformatics 28 i389-i394 (2012)
  11. Extraction and inhibition of enzymatic activity of botulinum neurotoxins /B1, /B2, /B3, /B4, and /B5 by a panel of monoclonal anti-BoNT/B antibodies. Kalb SR, Santana WI, Geren IN, Garcia-Rodriguez C, Lou J, Smith TJ, Marks JD, Smith LA, Pirkle JL, Barr JR. BMC Biochem 12 58 (2011)
  12. Osteogenic protein 1 in synovial fluid from patients with rheumatoid arthritis or osteoarthritis: relationship with disease and levels of hyaluronan and antigenic keratan sulfate. Chubinskaya S, Frank BS, Michalska M, Kumar B, Merrihew CA, Thonar EJ, Lenz ME, Otten L, Rueger DC, Block JA. Arthritis Res Ther 8 R73 (2006)
  13. Breadth and Functionality of Varicella-Zoster Virus Glycoprotein-Specific Antibodies Identified after Zostavax Vaccination in Humans. Sullivan NL, Reuter-Monslow MA, Sei J, Durr E, Davis CW, Chang C, McCausland M, Wieland A, Krah D, Rouphael N, Mehta AK, Mulligan MJ, Pulendran B, Ahmed R, Vora KA. J Virol 92 e00269-18 (2018)
  14. Chaperone-assisted Post-translational Transport of Plastidic Type I Signal Peptidase 1. Endow JK, Singhal R, Fernandez DE, Inoue K. J Biol Chem 290 28778-28791 (2015)
  15. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-L-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-D-gluconate. Mochizuki S, Nishiyama R, Inoue A, Ojima T. J Biol Chem 290 30962-30974 (2015)
  16. Modeling Escherichia coli signal peptidase complex with bound substrate: determinants in the mature peptide influencing signal peptide cleavage. Choo KH, Tong JC, Ranganathan S. BMC Bioinformatics 9 Suppl 1 S15 (2008)
  17. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. Ting YT, Harris PW, Batot G, Brimble MA, Baker EN, Young PG. IUCrJ 3 10-19 (2016)
  18. Epitope mapping of novel monoclonal antibodies to human angiotensin I-converting enzyme. Popova IA, Lubbe L, Petukhov PA, Kalantarov GF, Trakht IN, Chernykh ER, Leplina OY, Lyubimov AV, Garcia JGN, Dudek SM, Sturrock ED, Danilov SM. Protein Sci 30 1577-1593 (2021)
  19. Anti-CD19 CAR T Cells That Secrete a Biparatopic Anti-CLEC12A Bridging Protein Have Potent Activity Against Highly Aggressive Acute Myeloid Leukemia In Vitro and In Vivo. Rennert PD, Dufort FJ, Su L, Sanford T, Birt A, Wu L, Lobb RR, Ambrose C. Mol Cancer Ther 20 2071-2081 (2021)
  20. MAV_4644 Interaction with the Host Cathepsin Z Protects Mycobacterium avium subsp. hominissuis from Rapid Macrophage Killing. Lewis MS, Danelishvili L, Rose SJ, Bermudez LE. Microorganisms 7 E144 (2019)
  21. Monoclonal anti-H1 histone autoantibodies from unimmunized Balb/c mice. Specificity and VH and VL domain sequences. Underwood JR, Cartwright GA, McCall AM, Tribbick G, Geysen MH, Hearn MT. J Autoimmun 7 291-320 (1994)
  22. Optimization of a β-Lactam Scaffold for Antibacterial Activity via the Inhibition of Bacterial Type I Signal Peptidase. Yeh CH, Walsh SI, Craney A, Tabor MG, Voica AF, Adhikary R, Morris SE, Romesberg FE. ACS Med Chem Lett 9 376-380 (2018)
  23. Coordinated interaction between Lon protease and catalase-peroxidase regulates virulence and oxidative stress management during Salmonellosis. Kirthika P, Jawalagatti V, Senevirathne A, Lee JH. Gut Microbes 14 2064705 (2022)
  24. New Perspectives on Escherichia coli Signal Peptidase I Substrate Specificity: Investigating Why the TasA Cleavage Site Is Incompatible with LepB Cleavage. Musik JE, Poole J, Day CJ, Haselhorst T, Jen FE, Ve T, Masic V, Jennings MP, Zalucki YM. Microbiol Spectr 11 e0500522 (2023)
  25. Structural basis of interleukin-17B receptor in complex with a neutralizing antibody for guiding humanization and affinity maturation. Lee WH, Chen X, Liu IJ, Lee JH, Hu CM, Wu HC, Wang SK, Lee WH, Ma C. Cell Rep 41 111555 (2022)


Reviews citing this publication (40)

  1. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Brown MS, Ye J, Rawson RB, Goldstein JL. Cell 100 391-398 (2000)
  2. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Microbiol Mol Biol Rev 64 515-547 (2000)
  3. Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM. Microbiol Mol Biol Rev 68 207-233 (2004)
  4. The twin-arginine translocation (Tat) protein export pathway. Palmer T, Berks BC. Nat Rev Microbiol 10 483-496 (2012)
  5. Structural and sequence motifs of protein (histone) methylation enzymes. Cheng X, Collins RE, Zhang X. Annu Rev Biophys Biomol Struct 34 267-294 (2005)
  6. Posttranslational protein modification in Archaea. Eichler J, Adams MW, Adams MW. Microbiol Mol Biol Rev 69 393-425 (2005)
  7. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. Mol Membr Biol 31 58-84 (2014)
  8. Membrane proteases in the bacterial protein secretion and quality control pathway. Dalbey RE, Wang P, van Dijl JM. Microbiol Mol Biol Rev 76 311-330 (2012)
  9. Bacterial proteases, untapped antimicrobial drug targets. Culp E, Wright GD. J Antibiot (Tokyo) 70 366-377 (2017)
  10. Type I signal peptidase: an overview. Tuteja R. Arch Biochem Biophys 441 107-111 (2005)
  11. Following the leader: bacterial protein export through the Sec pathway. Economou A. Trends Microbiol 7 315-320 (1999)
  12. Structure and function of SecA, the preprotein translocase nanomotor. Vrontou E, Economou A. Biochim Biophys Acta 1694 67-80 (2004)
  13. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Gold B, Nathan C. Microbiol Spectr 5 (2017)
  14. Signal sequence recognition and protein targeting. Stroud RM, Walter P. Curr Opin Struct Biol 9 754-759 (1999)
  15. The rhomboid protease family: a decade of progress on function and mechanism. Urban S, Dickey SW. Genome Biol 12 231 (2011)
  16. Breaking on through to the other side: protein export through the bacterial Sec system. Chatzi KE, Sardis MF, Karamanou S, Economou A. Biochem J 449 25-37 (2013)
  17. Interactions that drive Sec-dependent bacterial protein transport. Rusch SL, Kendall DA. Biochemistry 46 9665-9673 (2007)
  18. RIPped out by presenilin-dependent gamma-secretase. Medina M, Dotti CG. Cell Signal 15 829-841 (2003)
  19. Taking the plunge: integrating structural, enzymatic and computational insights into a unified model for membrane-immersed rhomboid proteolysis. Urban S. Biochem J 425 501-512 (2010)
  20. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Low KO, Muhammad Mahadi N, Md Illias R. Appl Microbiol Biotechnol 97 3811-3826 (2013)
  21. Structure and mechanism of Escherichia coli type I signal peptidase. Paetzel M. Biochim Biophys Acta 1843 1497-1508 (2014)
  22. The role of lipids in membrane insertion and translocation of bacterial proteins. van Dalen A, de Kruijff B. Biochim Biophys Acta 1694 97-109 (2004)
  23. Emerging peptide antibiotics with therapeutic potential. Upert G, Luther A, Obrecht D, Ermert P. Med Drug Discov 9 100078 (2021)
  24. Bacterial protein translocase: a unique molecular machine with an army of substrates. Economou A. FEBS Lett 476 18-21 (2000)
  25. Direct targeting of proteins from the cytosol to organelles: the ER versus endosymbiotic organelles. Kim DH, Hwang I. Traffic 14 613-621 (2013)
  26. Antibiotic targeting of the bacterial secretory pathway. Rao C V S, De Waelheyns E, Economou A, Anné J. Biochim Biophys Acta 1843 1762-1783 (2014)
  27. Role of lipids in the translocation of proteins across membranes. Van Voorst F, De Kruijff B. Biochem J 347 Pt 3 601-612 (2000)
  28. Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. Kang Z, Yang S, Du G, Chen J. J Ind Microbiol Biotechnol 41 1599-1607 (2014)
  29. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. Strisovsky K. FEBS J 280 1579-1603 (2013)
  30. Untangling structure-function relationships in the rhomboid family of intramembrane proteases. Brooks CL, Lemieux MJ. Biochim Biophys Acta 1828 2862-2872 (2013)
  31. Structure and mechanism of rhomboid protease. Ha Y, Akiyama Y, Xue Y. J Biol Chem 288 15430-15436 (2013)
  32. The "tale" of UmuD and its role in SOS mutagenesis. Gonzalez M, Woodgate R. Bioessays 24 141-148 (2002)
  33. Bacterial type I signal peptidases as antibiotic targets. Smitha Rao CV, Anné J. Future Microbiol 6 1279-1296 (2011)
  34. Extreme secretion: protein translocation across the archael plasma membrane. Ring G, Eichler J. J Bioenerg Biomembr 36 35-45 (2004)
  35. The inhibition of type I bacterial signal peptidase: Biological consequences and therapeutic potential. Craney A, Romesberg FE. Bioorg Med Chem Lett 25 4761-4766 (2015)
  36. Protein transport into the human ER and related diseases, Sec61-channelopathies. Haßdenteufel S, Klein MC, Melnyk A, Zimmermann R. Biochem Cell Biol 92 499-509 (2014)
  37. Rhomboid protease inhibitors: Emerging tools and future therapeutics. Strisovsky K. Semin Cell Dev Biol 60 52-62 (2016)
  38. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. Mora-Ochomogo M, Lohans CT. RSC Med Chem 12 1623-1639 (2021)
  39. Co-Translational Protein Folding and Sorting in Chloroplasts. Ries F, Herkt C, Willmund F. Plants (Basel) 9 E214 (2020)
  40. Bacterial Signal Peptides- Navigating the Journey of Proteins. Kaushik S, He H, Dalbey RE. Front Physiol 13 933153 (2022)

Articles citing this publication (121)

  1. Crystal structure of a rhomboid family intramembrane protease. Wang Y, Zhang Y, Ha Y. Nature 444 179-180 (2006)
  2. Crystal structures of Staphylococcus aureus sortase A and its substrate complex. Zong Y, Bice TW, Ton-That H, Schneewind O, Narayana SV. J Biol Chem 279 31383-31389 (2004)
  3. Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Luo Y, Pfuetzner RA, Mosimann S, Paetzel M, Frey EA, Cherney M, Kim B, Little JW, Strynadka NC. Cell 106 585-594 (2001)
  4. Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes. Lemberg MK, Bland FA, Weihofen A, Braud VM, Martoglio B. J Immunol 167 6441-6446 (2001)
  5. Functional reconstitution of bacterial Tat translocation in vitro. Yahr TL, Wickner WT. EMBO J 20 2472-2479 (2001)
  6. Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by site-2 protease. Ye J, Davé UP, Grishin NV, Goldstein JL, Brown MS. Proc Natl Acad Sci U S A 97 5123-5128 (2000)
  7. Evidence for a role of ClpP in the degradation of the chloroplast cytochrome b(6)f complex. Majeran W, Wollman FA, Vallon O. Plant Cell 12 137-150 (2000)
  8. The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target. Paetzel M, Dalbey RE, Strynadka NC. Pharmacol Ther 87 27-49 (2000)
  9. Secretion by numbers: Protein traffic in prokaryotes. Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, Pugsley AP. Mol Microbiol 62 308-319 (2006)
  10. Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase. Sawada K, Yang Z, Horton JR, Collins RE, Zhang X, Cheng X. J Biol Chem 279 43296-43306 (2004)
  11. Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression. Barash S, Wang W, Shi Y. Biochem Biophys Res Commun 294 835-842 (2002)
  12. Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Srivastava R, Pisareva T, Norling B. Proteomics 5 4905-4916 (2005)
  13. Open-cap conformation of intramembrane protease GlpG. Wang Y, Ha Y. Proc Natl Acad Sci U S A 104 2098-2102 (2007)
  14. Novel lipoglycopeptides as inhibitors of bacterial signal peptidase I. Kulanthaivel P, Kreuzman AJ, Strege MA, Belvo MD, Smitka TA, Clemens M, Swartling JR, Minton KL, Zheng F, Angleton EL, Mullen D, Jungheim LN, Klimkowski VJ, Nicas TI, Thompson RC, Peng SB. J Biol Chem 279 36250-36258 (2004)
  15. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. BMC Struct Biol 7 44 (2007)
  16. Mutagenesis of the signal sequence of yellow fever virus prM protein: enhancement of signalase cleavage In vitro is lethal for virus production. Lee E, Stocks CE, Amberg SM, Rice CM, Lobigs M. J Virol 74 24-32 (2000)
  17. Mature DIABLO/Smac is produced by the IMP protease complex on the mitochondrial inner membrane. Burri L, Strahm Y, Hawkins CJ, Gentle IE, Puryer MA, Verhagen A, Callus B, Vaux D, Lithgow T. Mol Biol Cell 16 2926-2933 (2005)
  18. Membrane interaction of the glycosyltransferase MurG: a special role for cardiolipin. van den Brink-van der Laan E, Boots JW, Spelbrink RE, Kool GM, Breukink E, Killian JA, de Kruijff B. J Bacteriol 185 3773-3779 (2003)
  19. Structure of malonamidase E2 reveals a novel Ser-cisSer-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature. Shin S, Lee TH, Ha NC, Koo HM, Kim SY, Lee HS, Kim YS, Oh BH. EMBO J 21 2509-2516 (2002)
  20. Protein quality control in the bacterial periplasm. Miot M, Betton JM. Microb Cell Fact 3 4 (2004)
  21. Active residues and viral substrate cleavage sites of the protease of the birnavirus infectious pancreatic necrosis virus. Petit S, Lejal N, Huet JC, Delmas B. J Virol 74 2057-2066 (2000)
  22. Molecular code for protein insertion in the endoplasmic reticulum membrane is similar for N(in)-C(out) and N(out)-C(in) transmembrane helices. Lundin C, Kim H, Nilsson I, White SH, von Heijne G. Proc Natl Acad Sci U S A 105 15702-15707 (2008)
  23. Comment Life and death of a signal peptide. von Heijne G. Nature 396 111, 113 (1998)
  24. Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor. Rehm A, Stern P, Ploegh HL, Tortorella D. EMBO J 20 1573-1582 (2001)
  25. Comparative analysis of protein structure alignments. Mayr G, Domingues FS, Lackner P. BMC Struct Biol 7 50 (2007)
  26. Comprehensive characterization of methicillin-resistant Staphylococcus aureus subsp. aureus COL secretome by two-dimensional liquid chromatography and mass spectrometry. Ravipaty S, Reilly JP. Mol Cell Proteomics 9 1898-1919 (2010)
  27. Maturation of IncP pilin precursors resembles the catalytic Dyad-like mechanism of leader peptidases. Eisenbrandt R, Kalkum M, Lurz R, Lanka E. J Bacteriol 182 6751-6761 (2000)
  28. Cleavage of colicin D is necessary for cell killing and requires the inner membrane peptidase LepB. de Zamaroczy M, Mora L, Lecuyer A, Géli V, Buckingham RH. Mol Cell 8 159-168 (2001)
  29. Molecular analysis of Phr peptide processing in Bacillus subtilis. Stephenson S, Mueller C, Jiang M, Perego M. J Bacteriol 185 4861-4871 (2003)
  30. Crystal structure of a novel viral protease with a serine/lysine catalytic dyad mechanism. Feldman AR, Lee J, Delmas B, Paetzel M. J Mol Biol 358 1378-1389 (2006)
  31. The effect of subminimal inhibitory concentrations of antibiotics on virulence factors expressed by Staphylococcus aureus biofilms. Haddadin RN, Saleh S, Al-Adham IS, Buultjens TE, Collier PJ. J Appl Microbiol 108 1281-1291 (2010)
  32. Unexpected intracellular localization of the AMD-associated cystatin C variant. Paraoan L, Ratnayaka A, Spiller DG, Hiscott P, White MR, Grierson I. Traffic 5 884-895 (2004)
  33. FtsH-dependent processing of RNase colicins D and E3 means that only the cytotoxic domains are imported into the cytoplasm. Chauleau M, Mora L, Serba J, de Zamaroczy M. J Biol Chem 286 29397-29407 (2011)
  34. Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Le P, Kunold E, Macsics R, Rox K, Jennings MC, Ugur I, Reinecke M, Chaves-Moreno D, Hackl MW, Fetzer C, Mandl FAM, Lehmann J, Korotkov VS, Hacker SM, Kuster B, Antes I, Pieper DH, Rohde M, Wuest WM, Medina E, Sieber SA. Nat Chem 12 145-158 (2020)
  35. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H. Microbiology (Reading) 155 741-750 (2009)
  36. Initial efforts toward the optimization of arylomycins for antibiotic activity. Roberts TC, Schallenberger MA, Liu J, Smith PA, Romesberg FE. J Med Chem 54 4954-4963 (2011)
  37. Synthesis and characterization of the arylomycin lipoglycopeptide antibiotics and the crystallographic analysis of their complex with signal peptidase. Liu J, Luo C, Smith PA, Chin JK, Page MG, Paetzel M, Romesberg FE. J Am Chem Soc 133 17869-17877 (2011)
  38. Converting a DNA damage checkpoint effector (UmuD2C) into a lesion bypass polymerase (UmuD'2C). Ferentz AE, Walker GC, Wagner G. EMBO J 20 4287-4298 (2001)
  39. Cloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii. Fine A, Irihimovitch V, Dahan I, Konrad Z, Eichler J. J Bacteriol 188 1911-1919 (2006)
  40. Common protein architecture and binding sites in proteases utilizing a Ser/Lys dyad mechanism. Paetzel M, Strynadka NC. Protein Sci 8 2533-2536 (1999)
  41. Differential roles of multiple signal peptidases in the virulence of Listeria monocytogenes. Bonnemain C, Raynaud C, Réglier-Poupet H, Dubail I, Frehel C, Lety MA, Berche P, Charbit A. Mol Microbiol 51 1251-1266 (2004)
  42. Coexpression of TorD enhances the transport of GFP via the TAT pathway. Li SY, Chang BY, Lin SC. J Biotechnol 122 412-421 (2006)
  43. Cyanuric acid hydrolase: evolutionary innovation by structural concatenation. Peat TS, Balotra S, Wilding M, French NG, Briggs LJ, Panjikar S, Cowieson N, Newman J, Scott C. Mol Microbiol 88 1149-1163 (2013)
  44. Ohanin, a novel protein from king cobra venom: its cDNA and genomic organization. Pung YF, Kumar SV, Rajagopalan N, Fry BG, Kumar PP, Kini RM. Gene 371 246-256 (2006)
  45. A classical and ab initio study of the interaction of the myosin triphosphate binding domain with ATP. Minehardt TJ, Marzari N, Cooke R, Pate E, Kollman PA, Car R. Biophys J 82 660-675 (2002)
  46. Chitinases in Oryza sativa ssp. japonica and Arabidopsis thaliana. Xu F, Fan C, He Y. J Genet Genomics 34 138-150 (2007)
  47. Use of signal sequences as an in situ removable sequence element to stimulate protein synthesis in cell-free extracts. Ahn JH, Hwang MY, Lee KH, Choi CY, Kim DM. Nucleic Acids Res 35 e21 (2007)
  48. Novel Cephalosporins Selectively Active on Nonreplicating Mycobacterium tuberculosis. Gold B, Smith R, Nguyen Q, Roberts J, Ling Y, Lopez Quezada L, Somersan S, Warrier T, Little D, Pingle M, Zhang D, Ballinger E, Zimmerman M, Dartois V, Hanson P, Mitscher LA, Porubsky P, Rogers S, Schoenen FJ, Nathan C, Aubé J. J Med Chem 59 6027-6044 (2016)
  49. Computational alanine scanning and free energy decomposition for E. coli type I signal peptidase with lipopeptide inhibitor complex. Li T, Froeyen M, Herdewijn P. J Mol Graph Model 26 813-823 (2008)
  50. P80, the HinT interacting membrane protein, is a secreted antigen of Mycoplasma hominis. Hopfe M, Hoffmann R, Henrich B. BMC Microbiol 4 46 (2004)
  51. Enzymatic investigation of the Staphylococcus aureus type I signal peptidase SpsB - implications for the search for novel antibiotics. Rao S, Bockstael K, Nath S, Engelborghs Y, Anné J, Geukens N. FEBS J 276 3222-3234 (2009)
  52. Inhibition of the sole type I signal peptidase of Mycobacterium tuberculosis is bactericidal under replicating and nonreplicating conditions. Ollinger J, O'Malley T, Ahn J, Odingo J, Parish T. J Bacteriol 194 2614-2619 (2012)
  53. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms. Jékely G. Biol Direct 2 3 (2007)
  54. Strategies for the purification and on-column cleavage of glutathione-S-transferase fusion target proteins. Dian C, Eshaghi S, Urbig T, McSweeney S, Heijbel A, Salbert G, Birse D. J Chromatogr B Analyt Technol Biomed Life Sci 769 133-144 (2002)
  55. Class assignment of sequence-unrelated members of enzyme superfamilies by activity-based protein profiling. Jessani N, Young JA, Diaz SL, Patricelli MP, Varki A, Cravatt BF. Angew Chem Int Ed Engl 44 2400-2403 (2005)
  56. Molecular structure of a novel membrane protease specific for a stomatin homolog from the hyperthermophilic archaeon Pyrococcus horikoshii. Yokoyama H, Matsui E, Akiba T, Harata K, Matsui I. J Mol Biol 358 1152-1164 (2006)
  57. Recognition of the carboxyl-terminal signal for GPI modification requires translocation of its hydrophobic domain across the ER membrane. Wang J, Maziarz K, Ratnam M. J Mol Biol 286 1303-1310 (1999)
  58. Structure of rhomboid protease in complex with β-lactam inhibitors defines the S2' cavity. Vinothkumar KR, Pierrat OA, Large JM, Freeman M. Structure 21 1051-1058 (2013)
  59. The crystal structure of MCAT from Mycobacterium tuberculosis reveals three new catalytic models. Li Z, Huang Y, Ge J, Fan H, Zhou X, Li S, Bartlam M, Wang H, Rao Z. J Mol Biol 371 1075-1083 (2007)
  60. Genetic and biochemical characterization of a novel umuD mutation: insights into a mechanism for UmuD self-cleavage. Sutton MD, Kim M, Walker GC. J Bacteriol 183 347-357 (2001)
  61. Investigations on recyclisation and hydrolysis in avibactam mediated serine β-lactamase inhibition. Choi H, Paton RS, Park H, Schofield CJ. Org Biomol Chem 14 4116-4128 (2016)
  62. Quantitative proteome profiling of C. burnetii under tetracycline stress conditions. Vranakis I, De Bock PJ, Papadioti A, Tselentis Y, Gevaert K, Tsiotis G, Psaroulaki A. PLoS One 7 e33599 (2012)
  63. Biochemical characterization of signal peptidase I from gram-positive Streptococcus pneumoniae. Peng SB, Wang L, Moomaw J, Peery RB, Sun PM, Johnson RB, Lu J, Treadway P, Skatrud PL, Wang QM. J Bacteriol 183 621-627 (2001)
  64. Competitive Inhibition of the Endoplasmic Reticulum Signal Peptidase by Non-cleavable Mutant Preprotein Cargos. Cui J, Chen W, Sun J, Guo H, Madley R, Xiong Y, Pan X, Wang H, Tai AW, Weiss MA, Arvan P, Liu M. J Biol Chem 290 28131-28140 (2015)
  65. Regulated expression of the Escherichia coli lepB gene as a tool for cellular testing of antimicrobial compounds that inhibit signal peptidase I in vitro. Barbosa MD, Lin S, Markwalder JA, Mills JA, DeVito JA, Teleha CA, Garlapati V, Liu C, Thompson A, Trainor GL, Kurilla MG, Pompliano DL. Antimicrob Agents Chemother 46 3549-3554 (2002)
  66. Substrate based peptide aldehyde inhibits bacterial type I signal peptidase. Buzder-Lantos P, Bockstael K, Anné J, Herdewijn P. Bioorg Med Chem Lett 19 2880-2883 (2009)
  67. Synthesis and biological evaluation of penem inhibitors of bacterial signal peptidase. Harris DA, Powers ME, Romesberg FE. Bioorg Med Chem Lett 19 3787-3790 (2009)
  68. Letter Archaeal signal peptidases from the genus Thermoplasma: structural and mechanistic hybrids of the bacterial and eukaryal enzymes. Eichler J. J Mol Evol 54 411-415 (2002)
  69. Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae. Ng SY, Jarrell KF. J Bacteriol 185 5936-5942 (2003)
  70. Escherichia coli signal peptide peptidase A is a serine-lysine protease with a lysine recruited to the nonconserved amino-terminal domain in the S49 protease family. Wang P, Shim E, Cravatt B, Jacobsen R, Schoeniger J, Kim AC, Paetzel M, Dalbey RE. Biochemistry 47 6361-6369 (2008)
  71. Plastidic type I signal peptidase 1 is a redox-dependent thylakoidal processing peptidase. Midorikawa T, Endow JK, Dufour J, Zhu J, Inoue K. Plant J 80 592-603 (2014)
  72. Structural analysis of a Vibrio phospholipase reveals an unusual Ser-His-chloride catalytic triad. Wan Y, Wan Y, Liu C, Ma Q. J Biol Chem 294 11391-11401 (2019)
  73. The bacteriophage P1 HumD protein is a functional homolog of the prokaryotic UmuD'-like proteins and facilitates SOS mutagenesis in Escherichia coli. McLenigan MP, Kulaeva OI, Ennis DG, Levine AS, Woodgate R. J Bacteriol 181 7005-7013 (1999)
  74. HLA-B*35-restricted CD8(+)-T-cell epitope in Mycobacterium tuberculosis Rv2903c. Klein MR, Hammond AS, Smith SM, Jaye A, Lukey PT, McAdam KP. Infect Immun 70 981-984 (2002)
  75. Identification of active-site residues in Bradyrhizobium japonicum malonamidase E2. Koo HM, Choi SO, Kim HM, Kim YS. Biochem J 349 501-507 (2000)
  76. Molecular characterisation and expression analysis of the first hemicellulase gene (bxl1) encoding beta-xylosidase from the thermophilic fungus Talaromyces emersonii. Reen FJ, Murray PG, Tuohy MG. Biochem Biophys Res Commun 305 579-585 (2003)
  77. Transcriptional regulation and structural modelling of the Synechocystis sp. PCC 6803 carboxyl-terminal endoprotease family. Jansèn T, Kidron H, Soitamo A, Salminen T, Mäenpää P. FEMS Microbiol Lett 228 121-128 (2003)
  78. 4-Alkyliden-beta-lactams conjugated to polyphenols: synthesis and inhibitory activity. Cainelli G, Galletti P, Garbisa S, Giacomini D, Sartor L, Quintavalla A. Bioorg Med Chem 13 6120-6132 (2005)
  79. A truncated soluble Bacillus signal peptidase produced in Escherichia coli is subject to self-cleavage at its active site. van Roosmalen ML, Jongbloed JD, Kuipers A, Venema G, Bron S, van DijL JM. J Bacteriol 182 5765-5770 (2000)
  80. Crystal structure of a major fragment of the salt-tolerant glutaminase from Micrococcus luteus K-3. Yoshimune K, Shirakihara Y, Shiratori A, Wakayama M, Chantawannakul P, Moriguchi M. Biochem Biophys Res Commun 346 1118-1124 (2006)
  81. Evaluation of the type I signal peptidase as antibacterial target for biofilm-associated infections of Staphylococcus epidermidis. Bockstael K, Geukens N, Van Mellaert L, Herdewijn P, Anné J, Van Aerschot A. Microbiology (Reading) 155 3719-3729 (2009)
  82. Analysis of type I signal peptidase affinity and specificity for preprotein substrates. Geukens N, Frederix F, Reekmans G, Lammertyn E, Van Mellaert L, Dehaen W, Maes G, Anné J. Biochem Biophys Res Commun 314 459-467 (2004)
  83. Co-translational insertion and topogenesis of bacterial membrane proteins monitored in real time. Mercier E, Wintermeyer W, Rodnina MV. EMBO J 39 e104054 (2020)
  84. Sec, drugs and rock'n'roll: antibiotic targeting of bacterial protein translocation. Economou A. Expert Opin Ther Targets 5 141-153 (2001)
  85. Novel mechanism of inhibition of elastase by beta-lactams is defined by two inhibitor crystal complexes. Taylor P, Anderson V, Dowden J, Flitsch SL, Turner NJ, Loughran K, Walkinshaw MD. J Biol Chem 274 24901-24905 (1999)
  86. Structure and activity of Streptococcus pyogenes SipA: a signal peptidase-like protein essential for pilus polymerisation. Young PG, Proft T, Harris PW, Brimble MA, Baker EN. PLoS One 9 e99135 (2014)
  87. A small subset of signal peptidase residues are perturbed by signal peptide binding. Musial-Siwek M, Yeagle PL, Kendall DA. Chem Biol Drug Des 72 140-146 (2008)
  88. Microbial genomics - new targets, new drugs. Schmid MB. Expert Opin Ther Targets 5 465-475 (2001)
  89. The membrane anchor of the transcriptional activator SREBP is characterized by intrinsic conformational flexibility. Linser R, Salvi N, Briones R, Rovó P, de Groot BL, Wagner G. Proc Natl Acad Sci U S A 112 12390-12395 (2015)
  90. Activity-Based Protein Profiling Reveals That Cephalosporins Selectively Active on Non-replicating Mycobacterium tuberculosis Bind Multiple Protein Families and Spare Peptidoglycan Transpeptidases. Lopez Quezada L, Smith R, Lupoli TJ, Edoo Z, Li X, Gold B, Roberts J, Ling Y, Park SW, Nguyen Q, Schoenen FJ, Li K, Hugonnet JE, Arthur M, Sacchettini JC, Nathan C, Aubé J. Front Microbiol 11 1248 (2020)
  91. An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme. Esquirol L, Peat TS, Wilding M, Liu JW, French NG, Hartley CJ, Onagi H, Nebl T, Easton CJ, Newman J, Scott C. J Biol Chem 293 7880-7891 (2018)
  92. Crystal structure of a viral protease intramolecular acyl-enzyme complex: insights into cis-cleavage at the VP4/VP3 junction of Tellina birnavirus. Chung IY, Paetzel M. J Biol Chem 286 12475-12482 (2011)
  93. Leveraging Peptide Substrate Libraries to Design Inhibitors of Bacterial Lon Protease. Babin BM, Kasperkiewicz P, Janiszewski T, Yoo E, Dra G M, Bogyo M. ACS Chem Biol 14 2453-2462 (2019)
  94. β-Lactamase inhibition by 7-alkylidenecephalosporin sulfones: allylic transposition and formation of an unprecedented stabilized acyl-enzyme. Rodkey EA, McLeod DC, Bethel CR, Smith KM, Xu Y, Chai W, Che T, Carey PR, Bonomo RA, van den Akker F, Buynak JD. J Am Chem Soc 135 18358-18369 (2013)
  95. An arm-swapped dimer of the Streptococcus pyogenes pilin specific assembly factor SipA. Young PG, Kang HJ, Baker EN. J Struct Biol 183 99-104 (2013)
  96. Co-translational biogenesis of lipid droplet integral membrane proteins. Leznicki P, Schneider HO, Harvey JV, Shi WQ, High S. J Cell Sci 135 jcs259220 (2022)
  97. Crossover inhibition as an indicator of convergent evolution of enzyme mechanisms: a β-lactamase and a N-terminal nucleophile hydrolase. Adediran SA, Lin G, Pelto RB, Pratt RF. FEBS Lett 586 4186-4189 (2012)
  98. High-efficiency expression of the thermophilic lipase from Geobacillus thermocatenulatus in Escherichia coli and its application in the enzymatic hydrolysis of rapeseed oil. Zhang J, Tian M, Lv P, Luo W, Wang Z, Xu J, Wang Z. 3 Biotech 10 523 (2020)
  99. Physical requirements for in vitro processing of the Streptomyces lividans signal peptidases. Geukens N, Lammertyn E, Van Mellaert L, Engelborghs Y, Mellado RP, Anné J. J Biotechnol 96 79-91 (2002)
  100. Processing and maturation of the pilin of the type IV secretion system encoded within the gonococcal genetic island. Jain S, Kahnt J, van der Does C. J Biol Chem 286 43601-43610 (2011)
  101. Solution NMR of signal peptidase, a membrane protein. Musial-Siwek M, Kendall DA, Yeagle PL. Biochim Biophys Acta 1778 937-944 (2008)
  102. Structural studies of a signal peptide in complex with signal peptidase I cytoplasmic domain: the stabilizing effect of membrane-mimetics on the acquired fold. De Bona P, Deshmukh L, Gorbatyuk V, Vinogradova O, Kendall DA. Proteins 80 807-817 (2012)
  103. The Stable Interaction Between Signal Peptidase LepB of Escherichia coli and Nuclease Bacteriocins Promotes Toxin Entry into the Cytoplasm. Mora L, Moncoq K, England P, Oberto J, de Zamaroczy M. J Biol Chem 290 30783-30796 (2015)
  104. Design, synthesis and in vitro biological evaluation of oligopeptides targeting E. coli type I signal peptidase (LepB). De Rosa M, Lu L, Zamaratski E, Szałaj N, Cao S, Wadensten H, Lenhammar L, Gising J, Roos AK, Huseby DL, Larsson R, Andrén PE, Hughes D, Brandt P, Mowbray SL, Karlén A. Bioorg Med Chem 25 897-911 (2017)
  105. In vitro and in vivo self-cleavage of Streptococcus pneumoniae signal peptidase I. Zheng F, Angleton EL, Lu J, Peng SB. Eur J Biochem 269 3969-3977 (2002)
  106. Resisting resistant Mycobacterium tuberculosis naturally: mechanistic insights into the inhibition of the parasite's sole signal peptidase Leader peptidase B. Dhiman H, Dhanjal JK, Sharma S, Chacko S, Grover S, Grover A. Biochem Biophys Res Commun 433 552-557 (2013)
  107. Fluorescence spectroscopy of soluble E. coli SPase I Δ2-75 reveals conformational changes in response to ligand binding. Bhanu MK, Kendall DA. Proteins 82 596-606 (2014)
  108. Real-time monitoring of rhamnose induction effect on the expression of mpt64 gene fused with pelB signal peptide in Escherichia coli BL21 (DE3). Kusuma SAF, Parwati I, Subroto T, Rukayadi Y, Rostinawati T, Yusuf M, Fadhlillah M, Tanti LD, Ahyudanari RR. J Adv Pharm Technol Res 11 69-73 (2020)
  109. Spc1 regulates the signal peptidase-mediated processing of membrane proteins. Yim C, Chung Y, Kim J, Nilsson I, Kim JS, Kim H. J Cell Sci 134 jcs258936 (2021)
  110. Artificial signal peptide prediction by a hidden markov model to improve protein secretion via Lactococcus lactis bacteria. Razmara J, Deris SB, Illias RB, Parvizpour S. Bioinformation 9 345-348 (2013)
  111. DENV2 Pseudoviral Particles with Unprocessed Capsid Protein Are Assembled and Infectious. Rana J, Burrone OR. Viruses 12 E27 (2019)
  112. Expression, purification and crystallization of a membrane-associated, catalytically active type I signal peptidase from Staphylococcus aureus. Ting YT, Batot G, Baker EN, Young PG. Acta Crystallogr F Struct Biol Commun 71 61-65 (2015)
  113. High level expression of a protein precursor for functional studies. Gathmann S, Rupprecht E, Schneider D. J Biochem Mol Biol 39 717-721 (2006)
  114. Serine Proteinases in Leishmania (Viannia) braziliensis Promastigotes Have Distinct Subcellular Distributions and Expression. Santos-de-Souza R, Monteiro de Castro Côrtes L, Dos Santos Charret K, Cysne-Finkelstein L, Alves CR, Souza-Silva F. Int J Mol Sci 20 E1315 (2019)
  115. Phage display and crystallographic analysis reveals potential substrate/binding site interactions in the protein secretion chaperone CsaA from Agrobacterium tumefaciens. Feldman AR, Shapova YA, Wu SS, Oliver DC, Heller M, McIntosh LP, Scott JK, Paetzel M. J Mol Biol 379 457-470 (2008)
  116. Purification, crystallization and preliminary X-ray analysis of truncated and mutant forms of VP4 protease from infectious pancreatic necrosis virus. Lee J, Feldman AR, Chiu E, Chan C, Kim YN, Delmas B, Paetzel M. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 1235-1238 (2006)
  117. Characterization of the ABC methionine transporter from Neisseria meningitidis reveals that lipidated MetQ is required for interaction. Sharaf NG, Shahgholi M, Kim E, Lai JY, VanderVelde DG, Lee AT, Rees DC. Elife 10 e69742 (2021)
  118. Expression, purification and crystallization of a birnavirus-encoded protease, VP4, from blotched snakehead virus (BSNV). Lee J, Feldman AR, Delmas B, Paetzel M. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 353-356 (2006)
  119. In vitro maturation of NiSOD reveals a role for cytoplasmic histidine in processing and metalation. Basak P, Cabelli DE, Chivers PT, Farquhar ER, Maroney MJ. Metallomics 15 mfad054 (2023)
  120. The effects of mutations in the carboxyl-terminal region on the catalytic activity of Escherichia coli signal peptidase I. Kim YT, Yoshida H, Kojima M, Kurita R, Nishii W, Muramatsu T, Ito H, Park SJ, Takahashi K. J Biochem 143 237-242 (2008)
  121. The mobilome of Lactobacillus crispatus M247 includes two novel genetic elements: Tn7088 coding for a putative bacteriocin and the siphovirus prophage ΦM247. Colombini L, Santoro F, Tirziu M, Lazzeri E, Morelli L, Pozzi G, Iannelli F. Microb Genom 9 (2023)