1amp Citations

Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family.

Structure 2 283-91 (1994)
Cited: 123 times
EuropePMC logo PMID: 8087555

Abstract

Background

Aminopeptidases specifically cleave the amino-terminal residue from polypeptide chains and are involved in the metabolism of biologically active peptides. The family includes zinc-dependent enzymes possessing either one or two zinc ions per active site. Structural studies providing a detailed view of the metal environment may reveal whether the one-zinc and two-zinc enzymes constitute structurally and mechanistically distinct subclasses, and what role the metal ions play in the catalytic process.

Results

We have solved the crystal structure of the monomeric aminopeptidase from Aeromonas proteolytica at 1.8 A resolution. The protein is folded into a single alpha/beta globular domain. The active site contains two zinc ions (3.5 A apart) with shared ligands and symmetrical coordination spheres. We have compared it with the related bovine lens leucine aminopeptidase and the cobalt-containing Escherichia coli methionine aminopeptidase.

Conclusion

The environment and coordination of the two zinc ions in A. proteolytica aminopeptidase strongly support the view that the two metal ions constitute a co-catalytic unit and play equivalent roles during catalysis. This conflicts with the conclusions drawn from the related bovine leucine aminopeptidase and early biochemical studies. In addition, the known specificity of the aminopeptidase for hydrophobic amino-terminal residues is reflected in the hydrophobicity of the active site cleft.

Reviews - 1amp mentioned but not cited (1)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1amp mentioned but not cited (19)

  1. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. Mesters JR, Barinka C, Li W, Tsukamoto T, Majer P, Slusher BS, Konvalinka J, Hilgenfeld R. EMBO J. 25 1375-1384 (2006)
  2. Structural Survey of Zinc Containing Proteins and the Development of the Zinc AMBER Force Field (ZAFF). Peters MB, Yang Y, Wang B, Füsti-Molnár L, Weaver MN, Merz KM. J Chem Theory Comput 6 2935-2947 (2010)
  3. A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by dizinc leucine aminopeptidase. Sträter N, Sun L, Kantrowitz ER, Lipscomb WN. Proc. Natl. Acad. Sci. U.S.A. 96 11151-11155 (1999)
  4. Clusters of charged residues in protein three-dimensional structures. Zhu ZY, Karlin S. Proc. Natl. Acad. Sci. U.S.A. 93 8350-8355 (1996)
  5. Prediction of Protein Loop Conformations using the AGBNP Implicit Solvent Model and Torsion Angle Sampling. Felts AK, Gallicchio E, Chekmarev D, Paris KA, Friesner RA, Levy RM. J Chem Theory Comput 4 855-868 (2008)
  6. Fast protein loop sampling and structure prediction using distance-guided sequential chain-growth Monte Carlo method. Tang K, Zhang J, Liang J. PLoS Comput Biol 10 e1003539 (2014)
  7. Blocking Coronavirus 19 Infection via the SARS-CoV-2 Spike Protein: Initial Steps. Whisenant J, Burgess K. ACS Med Chem Lett 11 1076-1078 (2020)
  8. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications. Lu X, Gaus M, Elstner M, Cui Q. J Phys Chem B 119 1062-1082 (2015)
  9. Modeling of loops in proteins: a multi-method approach. Jamroz M, Kolinski A. BMC Struct. Biol. 10 5 (2010)
  10. 19 A solution structure of the filarial nematode immunomodulatory protein, ES-62. Ackerman CJ, Harnett MM, Harnett W, Kelly SM, Svergun DI, Byron O. Biophys. J. 84 489-500 (2003)
  11. Zinc coordination geometry and ligand binding affinity: the structural and kinetic analysis of the second-shell serine 228 residue and the methionine 180 residue of the aminopeptidase from Vibrio proteolyticus. Ataie NJ, Hoang QQ, Zahniser MP, Tu Y, Milne A, Petsko GA, Ringe D. Biochemistry 47 7673-7683 (2008)
  12. Human glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site. Booth RE, Lovell SC, Misquitta SA, Bateman RC. BMC Biol. 2 2 (2004)
  13. Experimental evidence for a metallohydrolase mechanism in which the nucleophile is not delivered by a metal ion: EPR spectrokinetic and structural studies of aminopeptidase from Vibrio proteolyticus. Kumar A, Periyannan GR, Narayanan B, Kittell AW, Kim JJ, Bennett B. Biochem. J. 403 527-536 (2007)
  14. Characterization of secondary amide peptide bond isomerization: thermodynamics and kinetics from 2D NMR spectroscopy. Zhang J, Germann MW. Biopolymers 95 755-762 (2011)
  15. Type II Secretion-Dependent Aminopeptidase LapA and Acyltransferase PlaC Are Redundant for Nutrient Acquisition during Legionella pneumophila Intracellular Infection of Amoebas. White RC, Gunderson FF, Tyson JY, Richardson KH, Portlock TJ, Garnett JA, Cianciotto NP. MBio 9 (2018)
  16. Using Pseudoenzymes to Probe Evolutionary Design Principles of Enzymes. Sharir-Ivry A, Xia Y. Evol Bioinform Online 15 1176934319855937 (2019)
  17. Unbiased, scalable sampling of protein loop conformations from probabilistic priors. Zhang Y, Hauser K. BMC Struct. Biol. 13 Suppl 1 S9 (2013)
  18. Proteases influence colony aggregation behavior in Vibrio cholerae. Detomasi TC, Batka AE, Valastyan JS, Hydorn MA, Craik CS, Bassler BL, Marletta MA. J Biol Chem 299 105386 (2023)
  19. Structural modelling of the lumenal domain of human GPAA1, the metallo-peptide synthetase subunit of the transamidase complex, reveals zinc-binding mode and two flaps surrounding the active site. Su CT, Sinha S, Eisenhaber B, Eisenhaber F. Biol Direct 15 14 (2020)


Reviews citing this publication (7)

  1. How far divergent evolution goes in proteins. Murzin AG. Curr. Opin. Struct. Biol. 8 380-387 (1998)
  2. Bacterial aminopeptidases: properties and functions. Gonzales T, Robert-Baudouy J. FEMS Microbiol. Rev. 18 319-344 (1996)
  3. Zinc enzymes. Coleman JE. Curr Opin Chem Biol 2 222-234 (1998)
  4. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. Brückner S, Mösch HU. FEMS Microbiol. Rev. 36 25-58 (2012)
  5. Bacterial beta-peptidyl aminopeptidases: on the hydrolytic degradation of beta-peptides. Geueke B, Kohler HP. Appl. Microbiol. Biotechnol. 74 1197-1204 (2007)
  6. Carnosinases, their substrates and diseases. Bellia F, Vecchio G, Rizzarelli E. Molecules 19 2299-2329 (2014)
  7. Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target. Gillner DM, Becker DP, Holz RC. J. Biol. Inorg. Chem. 18 155-163 (2013)

Articles citing this publication (96)

  1. Analysis of zinc binding sites in protein crystal structures. Alberts IL, Nadassy K, Wodak SJ. Protein Sci. 7 1700-1716 (1998)
  2. Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Concha NO, Rasmussen BA, Bush K, Herzberg O. Structure 4 823-836 (1996)
  3. Detection of protein three-dimensional side-chain patterns: new examples of convergent evolution. Russell RB, Russell RB. J. Mol. Biol. 279 1211-1227 (1998)
  4. Extracting protein alignment models from the sequence database. Neuwald AF, Liu JS, Lipman DJ, Lawrence CE. Nucleic Acids Res. 25 1665-1677 (1997)
  5. Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy. Rowsell S, Pauptit RA, Tucker AD, Melton RG, Blow DM, Brick P. Structure 5 337-347 (1997)
  6. Achieving error-free translation; the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution. Dock-Bregeon AC, Rees B, Torres-Larios A, Bey G, Caillet J, Moras D. Mol. Cell 16 375-386 (2004)
  7. Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus. Tahirov TH, Oki H, Tsukihara T, Ogasahara K, Yutani K, Ogata K, Izu Y, Tsunasawa S, Kato I. J. Mol. Biol. 284 101-124 (1998)
  8. Transferrin receptor-like proteins control the degradation of a yeast metal transporter. Stimpson HE, Lewis MJ, Pelham HR. EMBO J. 25 662-672 (2006)
  9. Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: applications to structural and energetic analysis. Elstner M, Cui Q, Munih P, Kaxiras E, Frauenheim T, Karplus M. J Comput Chem 24 565-581 (2003)
  10. The Zn-peptidase superfamily: functional convergence after evolutionary divergence. Makarova KS, Grishin NV. J. Mol. Biol. 292 11-17 (1999)
  11. Streptomyces griseus aminopeptidase: X-ray crystallographic structure at 1.75 A resolution. Greenblatt HM, Almog O, Maras B, Spungin-Bialik A, Barra D, Blumberg S, Shoham G. J. Mol. Biol. 265 620-636 (1997)
  12. The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. Involvement in catalysis of Glu151 and two zinc ions of the co-catalytic unit. Chevrier B, D'Orchymont H, Schalk C, Tarnus C, Moras D. Eur. J. Biochem. 237 393-398 (1996)
  13. Isolation and expression of novel human glutamate carboxypeptidases with N-acetylated alpha-linked acidic dipeptidase and dipeptidyl peptidase IV activity. Pangalos MN, Neefs JM, Somers M, Verhasselt P, Bekkers M, van der Helm L, Fraiponts E, Ashton D, Gordon RD. J. Biol. Chem. 274 8470-8483 (1999)
  14. Structural basis of flocculin-mediated social behavior in yeast. Veelders M, Brückner S, Ott D, Unverzagt C, Mösch HU, Essen LO. Proc. Natl. Acad. Sci. U.S.A. 107 22511-22516 (2010)
  15. Structure of proline iminopeptidase from Xanthomonas campestris pv. citri: a prototype for the prolyl oligopeptidase family. Medrano FJ, Alonso J, García JL, Romero A, Bode W, Gomis-Rüth FX. EMBO J. 17 1-9 (1998)
  16. Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity. Barinka C, Sácha P, Sklenár J, Man P, Bezouska K, Slusher BS, Konvalinka J. Protein Sci. 13 1627-1635 (2004)
  17. Carboxylate binding modes in zinc proteins: a theoretical study. Ryde U. Biophys. J. 77 2777-2787 (1999)
  18. Essential roles of zinc ligation and enzyme dimerization for catalysis in the aminoacylase-1/M20 family. Lindner HA, Lunin VV, Alary A, Hecker R, Cygler M, Ménard R. J. Biol. Chem. 278 44496-44504 (2003)
  19. The type II secretion system of Legionella pneumophila elaborates two aminopeptidases, as well as a metalloprotease that contributes to differential infection among protozoan hosts. Rossier O, Dao J, Cianciotto NP. Appl. Environ. Microbiol. 74 753-761 (2008)
  20. Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Huang KF, Liu YL, Cheng WJ, Ko TP, Wang AH. Proc. Natl. Acad. Sci. U.S.A. 102 13117-13122 (2005)
  21. Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MW. J. Bacteriol. 180 4781-4789 (1998)
  22. Crystal structure of the dinuclear zinc aminopeptidase PepV from Lactobacillus delbrueckii unravels its preference for dipeptides. Jozic D, Bourenkow G, Bartunik H, Scholze H, Dive V, Henrich B, Huber R, Bode W, Maskos K. Structure 10 1097-1106 (2002)
  23. Crystal structure of TET protease reveals complementary protein degradation pathways in prokaryotes. Borissenko L, Groll M. J. Mol. Biol. 346 1207-1219 (2005)
  24. Reaction mechanism of glutamate carboxypeptidase II revealed by mutagenesis, X-ray crystallography, and computational methods. Klusák V, Barinka C, Plechanovová A, Mlcochová P, Konvalinka J, Rulísek L, Lubkowski J. Biochemistry 48 4126-4138 (2009)
  25. Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase. Nocek BP, Gillner DM, Fan Y, Holz RC, Joachimiak A. J. Mol. Biol. 397 617-626 (2010)
  26. Crystal structure of a dodecameric tetrahedral-shaped aminopeptidase. Russo S, Baumann U. J. Biol. Chem. 279 51275-51281 (2004)
  27. Structure of peptidase T from Salmonella typhimurium. Håkansson K, Miller CG. Eur. J. Biochem. 269 443-450 (2002)
  28. The catalytic role of glutamate 151 in the leucine aminopeptidase from Aeromonas proteolytica. Bzymek KP, Holz RC. J. Biol. Chem. 279 31018-31025 (2004)
  29. Human and rat dipeptidyl peptidase III: biochemical and mass spectrometric arguments for similarities and differences. Abramić M, Schleuder D, Dolovcak L, Schröder W, Strupat K, Sagi D, Peter-Katalini J, Vitale L. Biol. Chem. 381 1233-1243 (2000)
  30. Thermostable aminopeptidase from Pyrococcus horikoshii. Ando S, Ishikawa K, Ishida H, Kawarabayasi Y, Kikuchi H, Kosugi Y. FEBS Lett. 447 25-28 (1999)
  31. A new variant of the Ntn hydrolase fold revealed by the crystal structure of L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi. Bompard-Gilles C, Villeret V, Davies GJ, Fanuel L, Joris B, Frère JM, Van Beeumen J. Structure 8 153-162 (2000)
  32. Aminopeptidase from Streptomyces griseus: primary structure and comparison with other zinc-containing aminopeptidases. Maras B, Greenblatt HM, Shoham G, Spungin-Bialik A, Blumberg S, Barra D. Eur. J. Biochem. 236 843-846 (1996)
  33. Interactions of Streptomyces griseus aminopeptidase with amino acid reaction products and their implications toward a catalytic mechanism. Gilboa R, Spungin-Bialik A, Wohlfahrt G, Schomburg D, Blumberg S, Shoham G. Proteins 44 490-504 (2001)
  34. Mutational analysis of aspartoacylase: implications for Canavan disease. Hershfield JR, Pattabiraman N, Madhavarao CN, Namboodiri MA. Brain Res. 1148 1-14 (2007)
  35. Study on peptide hydrolysis by aminopeptidases from Streptomyces griseus, Streptomyces septatus and Aeromonas proteolytica. Arima J, Uesugi Y, Iwabuchi M, Hatanaka T. Appl. Microbiol. Biotechnol. 70 541-547 (2006)
  36. Amino acids at the N- and C-termini of human glutamate carboxypeptidase II are required for enzymatic activity and proper folding. Barinka C, Mlcochová P, Sácha P, Hilgert I, Majer P, Slusher BS, Horejsí V, Konvalinka J. Eur. J. Biochem. 271 2782-2790 (2004)
  37. Molecular cloning and demonstration of an aminopeptidase activity in a filarial nematode glycoprotein. Harnett W, Houston KM, Tate R, Garate T, Apfel H, Adam R, Haslam SM, Panico M, Paxton T, Dell A, Morris H, Brzeski H. Mol. Biochem. Parasitol. 104 11-23 (1999)
  38. Structural basis for substrate recognition and hydrolysis by mouse carnosinase CN2. Unno H, Yamashita T, Ujita S, Okumura N, Otani H, Okumura A, Nagai K, Kusunoki M. J Biol Chem 283 27289-27299 (2008)
  39. The 1.20 A resolution crystal structure of the aminopeptidase from Aeromonas proteolytica complexed with tris: a tale of buffer inhibition. Desmarais WT, Bienvenue DL, Bzymek KP, Holz RC, Petsko GA, Ringe D. Structure 10 1063-1072 (2002)
  40. Biotechnology of cold-active proteases. Joshi S, Satyanarayana T. Biology (Basel) 2 755-783 (2013)
  41. Structurally distinct active sites in the copper(II)-substituted aminopeptidases from Aeromonas proteolytica and Escherichia coli. Bennett B, Antholine WE, D'souza VM, Chen G, Ustinyuk L, Holz RC. J. Am. Chem. Soc. 124 13025-13034 (2002)
  42. The extracellular regions of PSMA and the transferrin receptor contain an aminopeptidase domain: implications for drug design. Mahadevan D, Saldanha JW. Protein Sci. 8 2546-2549 (1999)
  43. Inhibitors of bacterial N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) and demonstration of in vitro antimicrobial activity. Gillner D, Armoush N, Holz RC, Becker DP. Bioorg. Med. Chem. Lett. 19 6350-6352 (2009)
  44. Intramolecular chaperone and inhibitor activities of a propeptide from a bacterial zinc aminopeptidase. Nirasawa S, Nakajima Y, Zhang ZZ, Yoshida M, Hayashi K. Biochem. J. 341 ( Pt 1) 25-31 (1999)
  45. Structural basis for the substrate specificity of PepA from Streptococcus pneumoniae, a dodecameric tetrahedral protease. Kim D, San BH, Moh SH, Park H, Kim DY, Lee S, Kim KK. Biochem. Biophys. Res. Commun. 391 431-436 (2010)
  46. A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. Lin LL, Hsu WH, Wu CP, Chi MC, Chou WM, Hu HY. Extremophiles 8 79-87 (2004)
  47. The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica. Desmarais W, Bienvenue DL, Bzymek KP, Petsko GA, Ringe D, Holz RC. J. Biol. Inorg. Chem. 11 398-408 (2006)
  48. Cloning and genetic analysis of the Vibrio cholerae aminopeptidase gene. Toma C, Honma Y. Infect. Immun. 64 4495-4500 (1996)
  49. Dipeptide synthesis by an aminopeptidase from Streptomyces septatus TH-2 and its application to synthesis of biologically active peptides. Arima J, Uesugi Y, Uraji M, Iwabuchi M, Hatanaka T. Appl. Environ. Microbiol. 72 4225-4231 (2006)
  50. Insights into substrate specificity and metal activation of mammalian tetrahedral aspartyl aminopeptidase. Chen Y, Farquhar ER, Chance MR, Palczewski K, Kiser PD. J. Biol. Chem. 287 13356-13370 (2012)
  51. Changes in zinc ligation promote remodeling of the active site in the zinc hydrolase superfamily. Wouters MA, Husain A. J. Mol. Biol. 314 1191-1207 (2001)
  52. Quantitative analysis, using MALDI-TOF mass spectrometry, of the N-terminal hydrolysis and cyclization reactions of the activation process of onconase. Ribó M, Bosch M, Torrent G, Benito A, Beaumelle B, Vilanova M. Eur. J. Biochem. 271 1163-1171 (2004)
  53. The structural and biochemical characterizations of a novel TET peptidase complex from Pyrococcus horikoshii reveal an integrated peptide degradation system in hyperthermophilic Archaea. Durá MA, Rosenbaum E, Larabi A, Gabel F, Vellieux FM, Franzetti B. Mol. Microbiol. 72 26-40 (2009)
  54. Function of the N-terminal propeptide of an aminopeptidase from Vibrio proteolyticus. Zhang ZZ, Nirasawa S, Nakajima Y, Yoshida M, Hayashi K. Biochem. J. 350 Pt 3 671-676 (2000)
  55. Kinetic and spectroscopic characterization of the E134A- and E134D-altered dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae. Davis R, Bienvenue D, Swierczek SI, Gilner DM, Rajagopal L, Bennett B, Holz RC. J. Biol. Inorg. Chem. 11 206-216 (2006)
  56. Catalytic mechanism of SGAP, a double-zinc aminopeptidase from Streptomyces griseus. Hershcovitz YF, Gilboa R, Reiland V, Shoham G, Shoham Y. FEBS J. 274 3864-3876 (2007)
  57. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding. Huang KF, Liaw SS, Huang WL, Chia CY, Lo YC, Chen YL, Wang AH. J. Biol. Chem. 286 12439-12449 (2011)
  58. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae contains two active-site histidine residues. Gillner DM, Bienvenue DL, Nocek BP, Joachimiak A, Zachary V, Bennett B, Holz RC. J. Biol. Inorg. Chem. 14 1-10 (2009)
  59. Substrate recognition of anthrax lethal factor examined by combinatorial and pre-steady-state kinetic approaches. Zakharova MY, Kuznetsov NA, Dubiley SA, Kozyr AV, Fedorova OS, Chudakov DM, Knorre DG, Shemyakin IG, Gabibov AG, Kolesnikov AV. J. Biol. Chem. 284 17902-17913 (2009)
  60. X-ray crystallographic characterization of the Co(II)-substituted Tris-bound form of the aminopeptidase from Aeromonas proteolytica. Munih P, Moulin A, Stamper CC, Bennett B, Ringe D, Petsko GA, Holz RC. J. Inorg. Biochem. 101 1099-1107 (2007)
  61. Synthesis and structure activity relationships of novel non-peptidic metallo-aminopeptidase inhibitors. Albrecht S, Defoin A, Salomon E, Tarnus C, Wetterholm A, Haeggström JZ. Bioorg. Med. Chem. 14 7241-7257 (2006)
  62. Crystal structure and mutational analysis of aminoacylhistidine dipeptidase from Vibrio alginolyticus reveal a new architecture of M20 metallopeptidases. Chang CY, Hsieh YC, Wang TY, Chen YC, Wang YK, Chiang TW, Chen YJ, Chang CH, Chen CJ, Wu TK. J. Biol. Chem. 285 39500-39510 (2010)
  63. Direct conversion of esters, lactones, and carboxylic acids to oxazolines catalyzed by a tetranuclear zinc cluster. Ohshima T, Iwasaki T, Mashima K. Chem. Commun. (Camb.) 2711-2713 (2006)
  64. Expression and characterization of the biofilm-related and carnosine-hydrolyzing aminoacylhistidine dipeptidase from Vibrio alginolyticus. Wang TY, Chen YC, Kao LW, Chang CY, Wang YK, Liu YH, Feng JM, Wu TK. FEBS J. 275 5007-5020 (2008)
  65. High-resolution crystals of methionine aminopeptidase from Pyrococcus furiosus obtained by water-mediated transformation. Tahirov TH, Oki H, Tsukihara T, Ogasahara K, Yutani K, Libeu CP, Izu Y, Tsunasawa S, Kato I. J. Struct. Biol. 121 68-72 (1998)
  66. The ywad gene from Bacillus subtilis encodes a double-zinc aminopeptidase. Fundoiano-Hershcovitz Y, Rabinovitch L, Shulami S, Reiland V, Shoham G, Shoham Y. FEMS Microbiol. Lett. 243 157-163 (2005)
  67. Active site of deblocking aminopeptidase from Pyrococcus horikoshii. Onoe S, Ando S, Ataka M, Ishikawa K. Biochem. Biophys. Res. Commun. 290 994-997 (2002)
  68. Different phosphate binding modes of Streptomyces griseus aminopeptidase between crystal and solution states and the status of zinc-bound water. Harris MN, Ming LJ. FEBS Lett. 455 321-324 (1999)
  69. Inhibition of the aminopeptidase from Aeromonas proteolytica by L-leucinethiol: kinetic and spectroscopic characterization of a slow, tight-binding inhibitor-enzyme complex. Bienvenue DL, Bennett B, Holz RC. J. Inorg. Biochem. 78 43-54 (2000)
  70. The role of Glu196 in the environment around the substrate binding site of leucine aminopeptidase from Streptomyces griseus. Arima J, Uesugi Y, Uraji M, Iwabuchi M, Hatanaka T. FEBS Lett. 580 912-917 (2006)
  71. Characterization of the catalytically active Mn(II)-loaded argE-encoded N-acetyl-L-ornithine deacetylase from Escherichia coli. McGregor WC, Swierczek SI, Bennett B, Holz RC. J. Biol. Inorg. Chem. 12 603-613 (2007)
  72. Enzymatic activity of Campylobacter jejuni hippurate hydrolase. Steele M, Marcone M, Gyles C, Chan VL, Odumeru J. Protein Eng. Des. Sel. 19 17-25 (2006)
  73. Histidines 345 and 378 of Bacillus stearothermophilus leucine aminopeptidase II are essential for the catalytic activity of the enzyme. Hwang GY, Kuo LY, Tsai MR, Yang SL, Lin LL. Antonie Van Leeuwenhoek 87 355-359 (2005)
  74. Potent inhibition of dinuclear zinc(II) peptidase, an aminopeptidase from Aeromonas proteolytica, by 8-quinolinol derivatives: inhibitor design based on Zn2+ fluorophores, kinetic, and X-ray crystallographic study. Hanaya K, Suetsugu M, Saijo S, Yamato I, Aoki S. J. Biol. Inorg. Chem. 17 517-529 (2012)
  75. Pyrococcus horikoshii TET2 peptidase assembling process and associated functional regulation. Appolaire A, Rosenbaum E, Durá MA, Colombo M, Marty V, Savoye MN, Godfroy A, Schoehn G, Girard E, Gabel F, Franzetti B. J. Biol. Chem. 288 22542-22554 (2013)
  76. 3-Amino-2-hydroxy-propionaldehyde and 3-amino-1-hydroxy-propan-2-one derivatives: new classes of aminopeptidase inhibitors. Tarnus C, Rémy JM, d'Orchymont H. Bioorg. Med. Chem. 4 1287-1297 (1996)
  77. A tetranuclear-zinc-cluster-catalyzed practical and versatile deprotection of acetates and benzoates. Iwasaki T, Agura K, Maegawa Y, Hayashi Y, Ohshima T, Mashima K. Chemistry 16 11567-11571 (2010)
  78. The dimerization domain in DapE enzymes is required for catalysis. Nocek B, Starus A, Makowska-Grzyska M, Gutierrez B, Sanchez S, Jedrzejczak R, Mack JC, Olsen KW, Joachimiak A, Holz RC. PLoS ONE 9 e93593 (2014)
  79. Cobalt(II) and copper(II) binding of Bacillus cereus trinuclear phospholipase C: a novel 1H NMR spectrum of a 'Tri-Cu(II)' center in protein. Epperson JD, Ming LJ. J. Inorg. Biochem. 87 149-156 (2001)
  80. In silico approach towards identification of potential inhibitors of Helicobacter pylori DapE. Mandal RS, Das S. J. Biomol. Struct. Dyn. 33 1460-1473 (2015)
  81. Purification, crystallization, and preliminary X-ray analysis of PepX, an X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis. Chich JF, Rigolet P, Nardi M, Gripon JC, Ribadeau-Dumas B, Brunie S. Proteins 23 278-281 (1995)
  82. Identification of a Histidine Metal Ligand in the argE-Encoded N-Acetyl-L-Ornithine Deacetylase from Escherichia coli. McGregor WC, Gillner DM, Swierczek SI, Liu D, Holz RC. Springerplus 2 482 (2013)
  83. Immobilization of the aminopeptidase from Aeromonas proteolytica on Mg2+/Al3+ layered double hydroxide particles. Frey ST, Guilmet SL, Egan RG, Bennett A, Soltau SR, Holz RC. ACS Appl Mater Interfaces 2 2828-2832 (2010)
  84. Kinetics and conformational stability studies of recombinant leucine aminopeptidase. Hernández-Moreno AV, Villaseñor F, Medina-Rivero E, Pérez NO, Flores-Ortiz LF, Saab-Rincón G, Luna-Bárcenas G. Int. J. Biol. Macromol. 64 306-312 (2014)
  85. Purification, crystallization and preliminary X-ray analysis of an aminoacylhistidine dipeptidase (PepD) from Vibrio alginolyticus. Chang CY, Hsieh YC, Wang TY, Chen CJ, Wu TK. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65 216-218 (2009)
  86. Structural characterization of Zn(II)-, Co(II)-, and Mn(II)-loaded forms of the argE-encoded N-acetyl-L-ornithine deacetylase from Escherichia coli. Tao Y, Shokes JE, McGregor WC, Scott RA, Holz RC. J. Inorg. Biochem. 111 157-163 (2012)
  87. Synthesis and characterization of mono- and micro6-sulfato hexanuclear zinc complexes of a new symmetric dinucleating ligand. Curtiss AB, Bera M, Musie GT, Powell DR. Dalton Trans 2717-2724 (2008)
  88. Transition metal ions induce carnosinase activity in PepD-homologous protein from Porphyromonas gingivalis. Aoki A, Shibata Y, Okano S, Maruyama F, Amano A, Nakagawa I, Abiko Y. Microb. Pathog. 52 17-24 (2012)
  89. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites. Colombo M, Girard E, Franzetti B. Sci Rep 6 20876 (2016)
  90. Antibiotic resistance: mono- and dinuclear zinc complexes as metallo-beta-lactamase mimics. Tamilselvi A, Nethaji M, Mugesh G. Chemistry 12 7797-7806 (2006)
  91. Synergic effect of two metal centers in catalytic hydrolysis of methionine-containing peptides promoted by dinuclear palladium(II) hexaazacyclooctadecane complex. Yang G, Miao R, Li Y, Hong J, Zhao C, Guo Z, Zhu L. Dalton Trans 1613-1619 (2005)
  92. Characterisation of the Carboxypeptidase G2 Catalytic Site and Design of New Inhibitors for Cancer Therapy. Jeyaharan D, Brackstone C, Schouten J, Davis P, Dixon AM. Chembiochem 19 1959-1968 (2018)
  93. How metal cofactors drive dimer-dodecamer transition of the M42 aminopeptidase TmPep1050 of Thermotoga maritima. Dutoit R, Van Gompel T, Brandt N, Van Elder D, Van Dyck J, Sobott F, Droogmans L. J. Biol. Chem. 294 17777-17789 (2019)
  94. Identification of a novel lactose oxidase in Myrmecridium flexuosum NUK-21. Lin SF, Li CK, Chung YP. FEBS Open Bio 9 364-373 (2019)
  95. Investigation of the proton relay system operative in human cystosolic aminopeptidase P. Chang HC, Kung CC, Chang TT, Jao SC, Hsu YT, Li WS. PLoS ONE 13 e0190816 (2018)
  96. Measurement of k(on) without a rapid-mixing device. Kahn J, Dutnall RN, Matulef K, Plesniak LA. Biochem Mol Biol Educ 38 238-241 (2010)


Related citations provided by authors (1)

  1. Rapid Purification of the Aeromonas Proteolytica Aminopeptidase: Crystallisation and Preliminary X-Ray Data. Schalk C, Remy JM, Chevrier B, Moras D, Tarnus C Arch. Biochem. Biophys. 294 91- (1992)