1amo Citations

Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes.

Proc. Natl. Acad. Sci. U.S.A. 94 8411-6 (1997)
Cited: 49 times
EuropePMC logo PMID: 9237990

Abstract

Microsomal NADPH-cytochrome P450 reductase (CPR) is one of only two mammalian enzymes known to contain both FAD and FMN, the other being nitric-oxide synthase. CPR is a membrane-bound protein and catalyzes electron transfer from NADPH to all known microsomal cytochromes P450. The structure of rat liver CPR, expressed in Escherichia coli and solubilized by limited trypsinolysis, has been determined by x-ray crystallography at 2.6 A resolution. The molecule is composed of four structural domains: (from the N- to C- termini) the FMN-binding domain, the connecting domain, and the FAD- and NADPH-binding domains. The FMN-binding domain is similar to the structure of flavodoxin, whereas the two C-terminal dinucleotide-binding domains are similar to those of ferredoxin-NADP+ reductase (FNR). The connecting domain, situated between the FMN-binding and FNR-like domains, is responsible for the relative orientation of the other domains, ensuring the proper alignment of the two flavins necessary for efficient electron transfer. The two flavin isoalloxazine rings are juxtaposed, with the closest distance between them being about 4 A. The bowl-shaped surface near the FMN-binding site is likely the docking site of cytochrome c and the physiological redox partners, including cytochromes P450 and b5 and heme oxygenase.

Articles - 1amo mentioned but not cited (1)

  1. Protein/protein interactions in the mammalian heme degradation pathway: heme oxygenase-2, cytochrome P450 reductase, and biliverdin reductase. Spencer AL, Bagai I, Becker DF, Zuiderweg ER, Ragsdale SW. J. Biol. Chem. 289 29836-29858 (2014)


Reviews citing this publication (19)

  1. Plasticity of specialized metabolism as mediated by dynamic metabolons. Laursen T, Møller BL, Bassard JE. Trends Plant Sci. 20 20-32 (2015)
  2. Heme enzyme structure and function. Poulos TL. Chem. Rev. 114 3919-3962 (2014)
  3. Role of protein-protein interactions in cytochrome P450-mediated drug metabolism and toxicity. Kandel SE, Lampe JN. Chem. Res. Toxicol. 27 1474-1486 (2014)
  4. Malformation syndromes caused by disorders of cholesterol synthesis. Porter FD, Herman GE. J. Lipid Res. 52 6-34 (2011)
  5. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Miller WL, Auchus RJ. Endocr. Rev. 32 81-151 (2011)
  6. Genetic variation in human P450 oxidoreductase. Miller WL, Huang N, Agrawal V, Giacomini KM. Mol. Cell. Endocrinol. 300 180-184 (2009)
  7. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. Stuehr DJ, Tejero J, Haque MM. FEBS J. 276 3959-3974 (2009)
  8. Molecular characterization of aromatase. Hong Y, Li H, Yuan YC, Chen S. Ann. N. Y. Acad. Sci. 1155 112-120 (2009)
  9. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. Sumimoto H. FEBS J. 275 3249-3277 (2008)
  10. Clinical, structural and functional implications of mutations and polymorphisms in human NADPH P450 oxidoreductase. Flück CE, Nicolo C, Pandey AV. Fundam Clin Pharmacol 21 399-410 (2007)
  11. Preparative use of isolated CYP102 monooxygenases -- a critical appraisal. Eiben S, Kaysser L, Maurer S, Kühnel K, Urlacher VB, Schmid RD. J. Biotechnol. 124 662-669 (2006)
  12. Cytochrome P450: nature's most versatile biological catalyst. Coon MJ. Annu. Rev. Pharmacol. Toxicol. 45 1-25 (2005)
  13. Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Carrillo N, Ceccarelli EA. Eur. J. Biochem. 270 1900-1915 (2003)
  14. Nitric oxide: the versatility of an extensive signal molecule. Lamattina L, García-Mata C, Graziano M, Pagnussat G. Annu Rev Plant Biol 54 109-136 (2003)
  15. P450 BM3: the very model of a modern flavocytochrome. Munro AW, Leys DG, McLean KJ, Marshall KR, Ost TW, Daff S, Miles CS, Chapman SK, Lysek DA, Moser CC, Page CC, Dutton PL. Trends Biochem. Sci. 27 250-257 (2002)
  16. Sequence-structure analysis of FAD-containing proteins. Dym O, Eisenberg D. Protein Sci. 10 1712-1728 (2001)
  17. Protein engineering of cytochromes P-450. Miles CS, Ost TW, Noble MA, Munro AW, Chapman SK. Biochim. Biophys. Acta 1543 383-407 (2000)
  18. Mammalian nitric oxide synthases. Stuehr DJ. Biochim. Biophys. Acta 1411 217-230 (1999)
  19. How similar are P450s and what can their differences teach us? Graham SE, Peterson JA. Arch. Biochem. Biophys. 369 24-29 (1999)

Articles citing this publication (29)

  1. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE. Mol. Cell 5 121-131 (2000)
  2. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Raman CS, Li H, Martásek P, Král V, Masters BS, Poulos TL. Cell 95 939-950 (1998)
  3. Structure of a cytochrome P450-redox partner electron-transfer complex. Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL. Proc. Natl. Acad. Sci. U.S.A. 96 1863-1868 (1999)
  4. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HH, Rommens JM, Scherer SW, Rosenblatt DS, Gravel RA. Proc. Natl. Acad. Sci. U.S.A. 95 3059-3064 (1998)
  5. NITRATE REDUCTASE STRUCTURE, FUNCTION AND REGULATION: Bridging the Gap between Biochemistry and Physiology. Campbell WH. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 277-303 (1999)
  6. Diversity and function of mutations in p450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis. Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D, Jabs EW, Van Vliet G, Sack J, Flück CE, Miller WL. Am. J. Hum. Genet. 76 729-749 (2005)
  7. Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Arlt W, Walker EA, Draper N, Ivison HE, Ride JP, Hammer F, Chalder SM, Borucka-Mankiewicz M, Hauffa BP, Malunowicz EM, Stewart PM, Shackleton CH. Lancet 363 2128-2135 (2004)
  8. The PAS fold. A redefinition of the PAS domain based upon structural prediction. Hefti MH, Françoijs KJ, de Vries SC, Dixon R, Vervoort J. Eur. J. Biochem. 271 1198-1208 (2004)
  9. Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. Huang N, Agrawal V, Giacomini KM, Miller WL. Proc. Natl. Acad. Sci. U.S.A. 105 1733-1738 (2008)
  10. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry. McMillan K, Adler M, Auld DS, Baldwin JJ, Blasko E, Browne LJ, Chelsky D, Davey D, Dolle RE, Eagen KA, Erickson S, Feldman RI, Glaser CB, Mallari C, Morrissey MM, Ohlmeyer MH, Pan G, Parkinson JF, Phillips GB, Polokoff MA, Sigal NH, Vergona R, Whitlow M, Young TA, Devlin JJ. Proc. Natl. Acad. Sci. U.S.A. 97 1506-1511 (2000)
  11. Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks. Bayburt TH, Sligar SG. Proc. Natl. Acad. Sci. U.S.A. 99 6725-6730 (2002)
  12. Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering. Ellis J, Gutierrez A, Barsukov IL, Huang WC, Grossmann JG, Roberts GC. J. Biol. Chem. 284 36628-36637 (2009)
  13. Pharmacogenomics of human liver cytochrome P450 oxidoreductase: multifactorial analysis and impact on microsomal drug oxidation. Gomes AM, Winter S, Klein K, Turpeinen M, Schaeffeler E, Schwab M, Zanger UM. Pharmacogenomics 10 579-599 (2009)
  14. Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase. Tejero J, Biswas A, Wang ZQ, Page RC, Haque MM, Hemann C, Zweier JL, Misra S, Stuehr DJ. J. Biol. Chem. 283 33498-33507 (2008)
  15. The journey from NADPH-cytochrome P450 oxidoreductase to nitric oxide synthases. Masters BS. Biochem. Biophys. Res. Commun. 338 507-519 (2005)
  16. Development of immobilized enzyme reactors based on human recombinant cytochrome P450 enzymes for phase I drug metabolism studies. Nicoli R, Bartolini M, Rudaz S, Andrisano V, Veuthey JL. J Chromatogr A 1206 2-10 (2008)
  17. Recruitment of governing elements for electron transfer in the nitric oxide synthase family. Jáchymová M, Martásek P, Panda S, Roman LJ, Panda M, Shea TM, Ishimura Y, Kim JJ, Masters BS. Proc. Natl. Acad. Sci. U.S.A. 102 15833-15838 (2005)
  18. Surface charges and regulation of FMN to heme electron transfer in nitric-oxide synthase. Tejero J, Hannibal L, Mustovich A, Stuehr DJ. J. Biol. Chem. 285 27232-27240 (2010)
  19. Monitoring shifts in the conformation equilibrium of the membrane protein cytochrome P450 reductase (POR) in nanodiscs. Wadsäter M, Laursen T, Singha A, Hatzakis NS, Stamou D, Barker R, Mortensen K, Feidenhans'l R, Møller BL, Cárdenas M. J. Biol. Chem. 287 34596-34603 (2012)
  20. Effect of P450 oxidoreductase variants on the metabolism of model substrates mediated by CYP2C9.1, CYP2C9.2, and CYP2C9.3. Subramanian M, Agrawal V, Sandee D, Tam HK, Miller WL, Tracy TS. Pharmacogenet. Genomics 22 590-597 (2012)
  21. FMN fluorescence in inducible NOS constructs reveals a series of conformational states involved in the reductase catalytic cycle. Ghosh DK, Ray K, Rogers AJ, Nahm NJ, Salerno JC. FEBS J. 279 1306-1317 (2012)
  22. Coupled motions direct electrons along human microsomal P450 Chains. Pudney CR, Khara B, Johannissen LO, Scrutton NS. PLoS Biol. 9 e1001222 (2011)
  23. Detection of a protein conformational equilibrium by electrospray ionisation-ion mobility-mass spectrometry. Jenner M, Ellis J, Huang WC, Lloyd Raven E, Roberts GC, Oldham NJ. Angew. Chem. Int. Ed. Engl. 50 8291-8294 (2011)
  24. Electrostatic interaction between cytochrome P450 and NADPH-P450 reductase: comparison of mixed and fused systems consisting of rat cytochrome P450 1A1 and yeast NADPH-P450 reductase. Kondo S, Sakaki T, Ohkawa H, Inouye K. Biochem. Biophys. Res. Commun. 257 273-278 (1999)
  25. Organization of cytochrome P450 enzymes involved in sex steroid synthesis: PROTEIN-PROTEIN INTERACTIONS IN LIPID MEMBRANES. Praporski S, Ng SM, Nguyen AD, Corbin CJ, Mechler A, Zheng J, Conley AJ, Martin LL. J. Biol. Chem. 284 33224-33232 (2009)
  26. Determination of the redox potentials and electron transfer properties of the FAD- and FMN-binding domains of the human oxidoreductase NR1. Finn RD, Basran J, Roitel O, Wolf CR, Munro AW, Paine MJ, Scrutton NS. Eur. J. Biochem. 270 1164-1175 (2003)
  27. Redox-linked domain movements in the catalytic cycle of cytochrome p450 reductase. Huang WC, Ellis J, Moody PC, Raven EL, Roberts GC. Structure 21 1581-1589 (2013)
  28. Calmodulin activates neuronal nitric oxide synthase by enabling transitions between conformational states. Salerno JC, Ray K, Poulos T, Li H, Ghosh DK. FEBS Lett. 587 44-47 (2013)
  29. Cobalamin uptake and reactivation occurs through specific protein interactions in the methionine synthase-methionine synthase reductase complex. Wolthers KR, Scrutton NS. FEBS J. 276 1942-1951 (2009)