1aml Citations

Structure of amyloid A4-(1-40)-peptide of Alzheimer's disease.

Eur J Biochem 233 293-8 (1995)
Cited: 154 times
EuropePMC logo PMID: 7588758

Abstract

One of the principle peptide components of the amyloid plaque deposits of Alzheimer's disease in humans is the 40-amino-acid peptide beta-amyloid A4-(1-40)-peptide. The full-length A4-(1-40)-peptide was chemically synthesized and the solution structure determined by two-dimensional nuclear magnetic resonance spectroscopy and restrained molecular-dynamics calculations. Synthetic human A4-(1-40)-peptide was soluble and non-aggregating for several days in 40% (by vol.) trifluoroethanol/water. All spin systems could be unambiguously assigned, and a total of 203 sequential and medium-range cross-peaks were found in the NOESY (nuclear Overhauser enhancement spectroscopy) spectrum. Long-range NOE cross-peaks that would indicate tertiary structure of the peptide were absent. The main secondary-structure elements found by chemical-shift analysis, sequential and medium-range NOESY data, and NOE-based restrained molecular-dynamics calculations were two helices, Gln15-Asp23 and Ile31-Met35, whereas the rest of the peptide was in random-coil conformation. A similar secondary structure is suggested for the aggregation part of prions, the postulated causative agents of the transmissible spongiform encephalopathy. The sequence of the helical part of prion proteins was observed to be remarkably similar to the sequence of the helical part of human A4-(1-40)-peptide.

Reviews - 1aml mentioned but not cited (5)

  1. The amyloid-beta precursor protein: integrating structure with biological function. Reinhard C, Hébert SS, Hébert SS, De Strooper B. EMBO J 24 3996-4006 (2005)
  2. Amyloid beta-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Malito E, Hulse RE, Tang WJ. Cell Mol Life Sci 65 2574-2585 (2008)
  3. Implications of peptide assemblies in amyloid diseases. Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Chem Soc Rev 46 6492-6531 (2017)
  4. Amyloid β and free heme: bloody new insights into the pathogenesis of Alzheimer's disease. Flemmig J, Zámocký M, Alia A. Neural Regen Res 13 1170-1174 (2018)
  5. Alzheimer's disease--a panorama glimpse. Zhao LN, Lu L, Chew LY, Mu Y. Int J Mol Sci 15 12631-12650 (2014)

Articles - 1aml mentioned but not cited (19)

  1. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Shen Y, Joachimiak A, Rosner MR, Tang WJ. Nature 443 870-874 (2006)
  2. The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer's disease: oligomer size or conformation? Broersen K, Rousseau F, Schymkowitz J. Alzheimers Res Ther 2 12 (2010)
  3. Structures of beta-amyloid peptide 1-40, 1-42, and 1-55-the 672-726 fragment of APP-in a membrane environment with implications for interactions with gamma-secretase. Miyashita N, Straub JE, Thirumalai D. J Am Chem Soc 131 17843-17852 (2009)
  4. Simulation study on the disordered state of an Alzheimer's beta amyloid peptide Abeta(12 36) in water consisting of random-structural, beta-structural, and helical clusters. Ikebe J, Kamiya N, Ito J, Shindo H, Higo J. Protein Sci 16 1596-1608 (2007)
  5. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering. Zhang-Haagen B, Biehl R, Nagel-Steger L, Radulescu A, Richter D, Willbold D. PLoS One 11 e0150267 (2016)
  6. The Alzheimer's beta amyloid (Abeta1-39) monomer in an implicit solvent. Anand P, Nandel FS, Hansmann UH. J Chem Phys 128 165102 (2008)
  7. Protein fragments: functional and structural roles of their coevolution networks. Dib L, Carbone A. PLoS One 7 e48124 (2012)
  8. An analytical approach to computing biomolecular electrostatic potential. II. Validation and applications. Gordon JC, Fenley AT, Onufriev A. J Chem Phys 129 075102 (2008)
  9. Analysis of conformational variation in macromolecular structural models. Srivastava SK, Gayathri S, Manjasetty BA, Gopal B. PLoS One 7 e39993 (2012)
  10. In silico and in vitro studies to elucidate the role of Cu2+ and galanthamine as the limiting step in the amyloid beta (1-42) fibrillation process. Hernández-Rodríguez M, Correa-Basurto J, Benitez-Cardoza CG, Resendiz-Albor AA, Rosales-Hernández MC. Protein Sci 22 1320-1335 (2013)
  11. Predicting Designability of Small Proteins from Graph Features of Contact Maps. Leelananda SP, Jernigan RL, Kloczkowski A. J Comput Biol 23 400-411 (2016)
  12. Neuroprotective Properties of Eudesmin on a Cellular Model of Amyloid-β Peptide Toxicity. Castillo C, Bravo-Arrepol G, Wendt A, Saez-Orellana F, Millar C, Burgos CF, Gavilán J, Pacheco C, Ahumada-Rudolph R, Napiórkowska M, Pérez C, Becerra J, Fuentealba J, Cabrera-Pardo JR. J Alzheimers Dis 94 S97-S108 (2023)
  13. Study of Biomolecular Interactions of Mitochondrial Proteins Related to Alzheimer's Disease: Toward Multi-Interaction Biomolecular Processes. Hemmerová E, Špringer T, Krištofiková Z, Homola J. Biomolecules 10 E1214 (2020)
  14. Computational Evaluation of Interaction Between Curcumin Derivatives and Amyloid-β Monomers and Fibrils: Relevance to Alzheimer's Disease. Orjuela A, Lakey-Beitia J, Mojica-Flores R, Hegde ML, Lans I, Alí-Torres J, Rao KS. J Alzheimers Dis 82 S321-S333 (2021)
  15. Differential regulation of insulin signalling by monomeric and oligomeric amyloid beta-peptide. Molina-Fernández R, Picón-Pagès P, Barranco-Almohalla A, Crepin G, Herrera-Fernández V, García-Elías A, Fanlo-Ucar H, Fernàndez-Busquets X, García-Ojalvo J, Oliva B, Muñoz FJ. Brain Commun 4 fcac243 (2022)
  16. Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer's Disease-Related Pathways in the SH-SY5Y Neural Cell Line. Blanco-Míguez A, Tamés H, Ruas-Madiedo P, Sánchez B. Nutrients 13 3868 (2021)
  17. Spontaneous self-assembly of amyloid β (1-40) into dimers. Hashemi M, Zhang Y, Lv Z, Lyubchenko YL. Nanoscale Adv 1 3892-3899 (2019)
  18. Structural insights into the substrate specificity of IMP-6 and IMP-1 metallo-β-lactamases. Yamamoto K, Tanaka H, Kurisu G, Nakano R, Yano H, Sakai H. J Biochem 173 21-30 (2022)
  19. Systematic Review The cellular model for Alzheimer's disease research: PC12 cells. Xie D, Deng T, Zhai Z, Sun T, Xu Y. Front Mol Neurosci 15 1016559 (2022)


Reviews citing this publication (23)

  1. Alzheimer's amyloid fibrils: structure and assembly. Serpell LC. Biochim Biophys Acta 1502 16-30 (2000)
  2. Peptide fibrillization. Hamley IW. Angew Chem Int Ed Engl 46 8128-8147 (2007)
  3. The chemistry of Alzheimer's disease. Rauk A. Chem Soc Rev 38 2698-2715 (2009)
  4. Structural and kinetic features of amyloid beta-protein fibrillogenesis. Teplow DB. Amyloid 5 121-142 (1998)
  5. The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Hebda JA, Miranker AD. Annu Rev Biophys 38 125-152 (2009)
  6. From Alzheimer to Huntington: why is a structural understanding so difficult? Temussi PA, Masino L, Pastore A. EMBO J 22 355-361 (2003)
  7. Structure and function of amyloid in Alzheimer's disease. Morgan C, Colombres M, Nuñez MT, Inestrosa NC. Prog Neurobiol 74 323-349 (2004)
  8. Plaque busters: strategies to inhibit amyloid formation in Alzheimer's disease. Soto C. Mol Med Today 5 343-350 (1999)
  9. Review: model peptides and the physicochemical approach to beta-amyloids. Lynn DG, Meredith SC. J Struct Biol 130 153-173 (2000)
  10. Oligomerizaiton and fibril asssembly of the amyloid-beta protein. Roher AE, Baudry J, Chaney MO, Kuo YM, Stine WB, Emmerling MR. Biochim Biophys Acta 1502 31-43 (2000)
  11. Engineering peptides and proteins that undergo alpha-to-beta transitions. Mihara H, Takahashi Y. Curr Opin Struct Biol 7 501-508 (1997)
  12. Generalization of the prion hypothesis to other neurodegenerative diseases: an imperfect fit. Guest WC, Silverman JM, Pokrishevsky E, O'Neill MA, Grad LI, Cashman NR. J Toxicol Environ Health A 74 1433-1459 (2011)
  13. Structure of beta-amyloid fibrils and its relevance to their neurotoxicity: implications for the pathogenesis of Alzheimer's disease. Irie K, Murakami K, Masuda Y, Morimoto A, Ohigashi H, Ohashi R, Takegoshi K, Nagao M, Shimizu T, Shirasawa T. J Biosci Bioeng 99 437-447 (2005)
  14. The role of molecular simulations in the development of inhibitors of amyloid β-peptide aggregation for the treatment of Alzheimer's disease. Lemkul JA, Bevan DR. ACS Chem Neurosci 3 845-856 (2012)
  15. Brain amyloid--a physicochemical perspective. Maggio JE, Mantyh PW. Brain Pathol 6 147-162 (1996)
  16. Novel approaches in diagnosis and therapy of Creutzfeldt-Jakob disease. Müller WE, Laplanche JL, Ushijima H, Schröder HC. Mech Ageing Dev 116 193-218 (2000)
  17. Mirror-image phage display: aiming at the mirror. Wiesehan K, Willbold D. Chembiochem 4 811-815 (2003)
  18. Design of peptides undergoing self-catalytic alpha-to-beta transition and amyloidogenesis. Mihara H, Takahashi Y, Ueno A. Biopolymers 47 83-92 (1998)
  19. Towards a true protein movie: a perspective on the potential impact of the ensemble-based structure determination using exact NOEs. Vögeli B, Orts J, Strotz D, Chi C, Minges M, Wälti MA, Güntert P, Riek R. J Magn Reson 241 53-59 (2014)
  20. The use of conformation-specific ligands and assays to dissect the molecular mechanisms of neurodegenerative diseases. Leliveld SR, Korth C. J Neurosci Res 85 2285-2297 (2007)
  21. Protein truncation as a common denominator of human neurodegenerative foldopathies. Jadhav S, Zilka N, Novak M. Mol Neurobiol 48 516-532 (2013)
  22. The physics of the interactions governing folding and association of proteins. Guo W, Shea JE, Berry RS. Ann N Y Acad Sci 1066 34-53 (2005)
  23. Amyloid from a histochemical perspective. A review of the structure, properties and types of amyloid, and a proposed staining mechanism for Congo red staining. Dapson RW. Biotech Histochem 93 543-556 (2018)

Articles citing this publication (107)

  1. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC. J Mol Biol 273 729-739 (1997)
  2. Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. Kirkitadze MD, Condron MM, Teplow DB. J Mol Biol 312 1103-1119 (2001)
  3. Solution structure of the Alzheimer amyloid beta-peptide (1-42) in an apolar microenvironment. Similarity with a virus fusion domain. Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D'Ursi AM, Temussi PA, Picone D. Eur J Biochem 269 5642-5648 (2002)
  4. Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer's beta-amyloid fibrils. Antzutkin ON, Balbach JJ, Leapman RD, Rizzo NW, Reed J, Tycko R. Proc Natl Acad Sci U S A 97 13045-13050 (2000)
  5. On the nucleation of amyloid beta-protein monomer folding. Lazo ND, Grant MA, Condron MC, Rigby AC, Teplow DB. Protein Sci 14 1581-1596 (2005)
  6. Two types of Alzheimer's beta-amyloid (1-40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. Bokvist M, Lindström F, Watts A, Gröbner G. J Mol Biol 335 1039-1049 (2004)
  7. The Alzheimer's peptide a beta adopts a collapsed coil structure in water. Zhang S, Iwata K, Lachenmann MJ, Peng JW, Li S, Stimson ER, Lu Y, Felix AM, Maggio JE, Lee JP. J Struct Biol 130 130-141 (2000)
  8. Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. Fezoui Y, Teplow DB. J Biol Chem 277 36948-36954 (2002)
  9. The alpha-to-beta conformational transition of Alzheimer's Abeta-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. Tomaselli S, Esposito V, Vangone P, van Nuland NA, Bonvin AM, Guerrini R, Tancredi T, Temussi PA, Picone D. Chembiochem 7 257-267 (2006)
  10. Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of Alzheimer's disease. Shao H, Jao S, Ma K, Zagorski MG. J Mol Biol 285 755-773 (1999)
  11. Structural analysis of Alzheimer's beta(1-40) amyloid: protofilament assembly of tubular fibrils. Malinchik SB, Inouye H, Szumowski KE, Kirschner DA. Biophys J 74 537-545 (1998)
  12. Mutations that reduce aggregation of the Alzheimer's Abeta42 peptide: an unbiased search for the sequence determinants of Abeta amyloidogenesis. Wurth C, Guimard NK, Hecht MH. J Mol Biol 319 1279-1290 (2002)
  13. Conformational transition of amyloid beta-peptide. Xu Y, Shen J, Luo X, Zhu W, Chen K, Ma J, Jiang H. Proc Natl Acad Sci U S A 102 5403-5407 (2005)
  14. Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth. McLaurin J, Franklin T, Zhang X, Deng J, Fraser PE. Eur J Biochem 266 1101-1110 (1999)
  15. Amyloid beta-protein monomer folding: free-energy surfaces reveal alloform-specific differences. Yang M, Teplow DB. J Mol Biol 384 450-464 (2008)
  16. Amyloid-beta peptide assembly: a critical step in fibrillogenesis and membrane disruption. Yip CM, McLaurin J. Biophys J 80 1359-1371 (2001)
  17. Linking folding with aggregation in Alzheimer's beta-amyloid peptides. Khandogin J, Brooks CL. Proc Natl Acad Sci U S A 104 16880-16885 (2007)
  18. Structure and dynamics of the Abeta(21-30) peptide from the interplay of NMR experiments and molecular simulations. Fawzi NL, Phillips AH, Ruscio JZ, Doucleff M, Wemmer DE, Head-Gordon T. J Am Chem Soc 130 6145-6158 (2008)
  19. Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. Prog Nucl Magn Reson Spectrosc 55 335-360 (2009)
  20. Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer's amyloidogenesis. Dedeoglu A, Cormier K, Payton S, Tseitlin KA, Kremsky JN, Lai L, Li X, Moir RD, Tanzi RE, Bush AI, Kowall NW, Rogers JT, Huang X. Exp Gerontol 39 1641-1649 (2004)
  21. An atomic model for the pleated beta-sheet structure of Abeta amyloid protofilaments. Li L, Darden TA, Bartolotti L, Kominos D, Pedersen LG. Biophys J 76 2871-2878 (1999)
  22. Positioning of the Alzheimer Abeta(1-40) peptide in SDS micelles using NMR and paramagnetic probes. Jarvet J, Danielsson J, Damberg P, Oleszczuk M, Gräslund A. J Biomol NMR 39 63-72 (2007)
  23. Solvent and mutation effects on the nucleation of amyloid beta-protein folding. Cruz L, Urbanc B, Borreguero JM, Lazo ND, Teplow DB, Stanley HE. Proc Natl Acad Sci U S A 102 18258-18263 (2005)
  24. Zinc binding to Alzheimer's Abeta(1-16) peptide results in stable soluble complex. Kozin SA, Zirah S, Rebuffat S, Hoa GH, Debey P. Biochem Biophys Res Commun 285 959-964 (2001)
  25. Why is the amyloid beta peptide of Alzheimer's disease neurotoxic? Rauk A. Dalton Trans 1273-1282 (2008)
  26. Amyloid β-Protein Assembly and Alzheimer's Disease: Dodecamers of Aβ42, but Not of Aβ40, Seed Fibril Formation. Economou NJ, Giammona MJ, Do TD, Zheng X, Teplow DB, Buratto SK, Bowers MT. J Am Chem Soc 138 1772-1775 (2016)
  27. Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field. Rojas A, Liwo A, Browne D, Scheraga HA. J Mol Biol 404 537-552 (2010)
  28. The role of intrinsically unstructured proteins in neurodegenerative diseases. Raychaudhuri S, Dey S, Bhattacharyya NP, Mukhopadhyay D. PLoS One 4 e5566 (2009)
  29. Nuclear translocation uncovers the amyloid peptide Aβ42 as a regulator of gene transcription. Barucker C, Harmeier A, Weiske J, Fauler B, Albring KF, Prokop S, Hildebrand P, Lurz R, Heppner FL, Huber O, Multhaup G. J Biol Chem 289 20182-20191 (2014)
  30. Alzheimer Aβ peptide interactions with lipid membranes: fibrils, oligomers and polymorphic amyloid channels. Tofoleanu F, Buchete NV. Prion 6 339-345 (2012)
  31. The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments. Granata D, Baftizadeh F, Habchi J, Galvagnion C, De Simone A, Camilloni C, Laio A, Vendruscolo M. Sci Rep 5 15449 (2015)
  32. Up-and-down topological mode of amyloid beta-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters. Utsumi M, Yamaguchi Y, Sasakawa H, Yamamoto N, Yanagisawa K, Kato K. Glycoconj J 26 999-1006 (2009)
  33. Structures and free-energy landscapes of the wild type and mutants of the Abeta(21-30) peptide are determined by an interplay between intrapeptide electrostatic and hydrophobic interactions. Tarus B, Straub JE, Thirumalai D. J Mol Biol 379 815-829 (2008)
  34. Structure of amyloid beta fragments in aqueous environments. Takano K, Endo S, Mukaiyama A, Chon H, Matsumura H, Koga Y, Kanaya S. FEBS J 273 150-158 (2006)
  35. Assemblies of Alzheimer's peptides A beta 25-35 and A beta 31-35: reverse-turn conformation and side-chain interactions revealed by X-ray diffraction. Bond JP, Deverin SP, Inouye H, el-Agnaf OM, Teeter MM, Kirschner DA. J Struct Biol 141 156-170 (2003)
  36. Assembling amyloid fibrils from designed structures containing a significant amyloid beta-peptide fragment. Tjernberg LO, Tjernberg A, Bark N, Shi Y, Ruzsicska BP, Bu Z, Thyberg J, Callaway DJ. Biochem J 366 343-351 (2002)
  37. Stabilization of discordant helices in amyloid fibril-forming proteins. Päiviö A, Nordling E, Kallberg Y, Thyberg J, Johansson J. Protein Sci 13 1251-1259 (2004)
  38. Interplay of histidine residues of the Alzheimer's disease Aβ peptide governs its Zn-induced oligomerization. Istrate AN, Kozin SA, Zhokhov SS, Mantsyzov AB, Kechko OI, Pastore A, Makarov AA, Polshakov VI. Sci Rep 6 21734 (2016)
  39. Prevention of Alzheimer's disease-associated Abeta aggregation by rationally designed nonpeptidic beta-sheet ligands. Rzepecki P, Nagel-Steger L, Feuerstein S, Linne U, Molt O, Zadmard R, Aschermann K, Wehner M, Schrader T, Riesner D. J Biol Chem 279 47497-47505 (2004)
  40. Residual structure in the Alzheimer's disease peptide: probing the origin of a central hydrophobic cluster. Zhang S, Casey N, Lee JP. Fold Des 3 413-422 (1998)
  41. Differential effects of Phe19 and Phe20 on fibril formation by amyloidogenic peptide A beta 16-22 (Ac-KLVFFAE-NH2). Inouye H, Gleason KA, Zhang D, Decatur SM, Kirschner DA. Proteins 78 2306-2321 (2010)
  42. Free-energy landscape of a chameleon sequence in explicit water and its inherent alpha/beta bifacial property. Ikeda K, Higo J. Protein Sci 12 2542-2548 (2003)
  43. The human cytochrome P4507B1: catalytic activity studies. Kim SB, Chalbot S, Pompon D, Jo DH, Morfin R. J Steroid Biochem Mol Biol 92 383-389 (2004)
  44. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers. Sarkar B, Das AK, Maiti S. Front Physiol 4 84 (2013)
  45. A sulfated proteoglycan aggregation factor mediates amyloid-beta peptide fibril formation and neurotoxicity. McLaurin J, Franklin T, Kuhns WJ, Fraser PE. Amyloid 6 233-243 (1999)
  46. A study of the α-helical intermediate preceding the aggregation of the amino-terminal fragment of the β amyloid peptide (Aβ(1-28)). Rojas AV, Liwo A, Scheraga HA. J Phys Chem B 115 12978-12983 (2011)
  47. Comparison of the structures of beta amyloid peptide (25-35) and substance P in trifluoroethanol/water solution. Lee S, Suh YH, Kim S, Kim Y. J Biomol Struct Dyn 17 381-391 (1999)
  48. Solution structures in aqueous SDS micelles of two amyloid beta peptides of A beta(1-28) mutated at the alpha-secretase cleavage site (K16E, K16F). Poulsen SA, Watson AA, Fairlie DP, Craik DJ. J Struct Biol 130 142-152 (2000)
  49. The structures of the E22Δ mutant-type amyloid-β alloforms and the impact of E22Δ mutation on the structures of the wild-type amyloid-β alloforms. Coskuner O, Wise-Scira O, Perry G, Kitahara T. ACS Chem Neurosci 4 310-320 (2013)
  50. Amyloid peptide Aβ40 inhibits aggregation of Aβ42: evidence from molecular dynamics simulations. Viet MH, Li MS. J Chem Phys 136 245105 (2012)
  51. Molecular dynamics simulation and molecular docking studies of Angiotensin converting enzyme with inhibitor lisinopril and amyloid Beta Peptide. Jalkute CB, Barage SH, Dhanavade MJ, Sonawane KD. Protein J 32 356-364 (2013)
  52. Early events in protein aggregation: molecular flexibility and hydrophobicity/charge interaction in amyloid peptides as studied by molecular dynamics simulations. Valerio M, Colosimo A, Conti F, Giuliani A, Grottesi A, Manetti C, Zbilut JP. Proteins 58 110-118 (2005)
  53. Homology modeling, molecular docking and MD simulation studies to investigate role of cysteine protease from Xanthomonas campestris in degradation of Aβ peptide. Dhanavade MJ, Jalkute CB, Barage SH, Sonawane KD. Comput Biol Med 43 2063-2070 (2013)
  54. Physico-chemical features of the environment affect the protein conformation and the immunoglobulin E reactivity of kiwellin (Act d 5). Bernardi ML, Picone D, Tuppo L, Giangrieco I, Petrella G, Palazzo P, Ferrara R, Tamburrini M, Mari A, Ciardiello MA. Clin Exp Allergy 40 1819-1826 (2010)
  55. Structural analysis of the pyroglutamate-modified isoform of the Alzheimer's disease-related amyloid-β using NMR spectroscopy. Sun N, Hartmann R, Lecher J, Stoldt M, Funke SA, Gremer L, Ludwig HH, Demuth HU, Kleinschmidt M, Willbold D. J Pept Sci 18 691-695 (2012)
  56. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid. Mukherjee A, Bagchi B. J Chem Phys 120 1602-1612 (2004)
  57. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution. Klinger AL, Kiselar J, Ilchenko S, Komatsu H, Chance MR, Axelsen PH. Biochemistry 53 7724-7734 (2014)
  58. Comparative studies on peptides representing the so-called tachykinin-like region of the Alzheimer Abeta peptide [Abeta(25-35)]. El-Agnaf OM, Irvine GB, Fitzpatrick G, Glass WK, Guthrie DJ. Biochem J 336 ( Pt 2) 419-427 (1998)
  59. Optimal superpositioning of flexible molecule ensembles. Gapsys V, de Groot BL. Biophys J 104 196-207 (2013)
  60. Structural Analysis and Aggregation Propensity of Pyroglutamate Aβ(3-40) in Aqueous Trifluoroethanol. Dammers C, Gremer L, Reiß K, Klein AN, Neudecker P, Hartmann R, Sun N, Demuth HU, Schwarten M, Willbold D. PLoS One 10 e0143647 (2015)
  61. Structural analysis of membrane-bound hECE-1 dimer using molecular modeling techniques: insights into conformational changes and Aβ1-42 peptide binding. Sonawane KD, Barage SH. Amino Acids 47 543-559 (2015)
  62. Structural and functional properties of peptides based on the N-terminus of HIV-1 gp41 and the C-terminus of the amyloid-beta protein. Gordon LM, Nisthal A, Lee AB, Eskandari S, Ruchala P, Jung CL, Waring AJ, Mobley PW. Biochim Biophys Acta 1778 2127-2137 (2008)
  63. Structural studies of the tethered N-terminus of the Alzheimer's disease amyloid-β peptide. Nisbet RM, Nuttall SD, Robert R, Caine JM, Dolezal O, Hattarki M, Pearce LA, Davydova N, Masters CL, Varghese JN, Streltsov VA. Proteins 81 1748-1758 (2013)
  64. The phosphorylation of Hsp20 enhances its association with amyloid-β to increase protection against neuronal cell death. Cameron RT, Quinn SD, Cairns LS, MacLeod R, Samuel ID, Smith BO, Carlos Penedo J, Baillie GS. Mol Cell Neurosci 61 46-55 (2014)
  65. Effects of detergents on the secondary structures of prion protein peptides as studied by CD spectroscopy. Kuroda Y, Maeda Y, Sawa S, Shibata K, Miyamoto K, Nakagawa T. J Pept Sci 9 212-220 (2003)
  66. Molecular modeling approach to explore the role of cathepsin B from Hordeum vulgare in the degradation of Aβ peptides. Dhanavade MJ, Parulekar RS, Kamble SA, Sonawane KD. Mol Biosyst 12 162-168 (2016)
  67. A capillary electrophoresis method for evaluation of Abeta proteolysis in vitro. Alper BJ, Schmidt WK. J Neurosci Methods 178 40-45 (2009)
  68. Alzheimer's disease amyloid beta peptides in vitro electrochemical oxidation. Enache TA, Oliveira-Brett AM. Bioelectrochemistry 114 13-23 (2017)
  69. Structure of human immunodeficiency virus type 1 Vpr(34-51) peptide in micelle containing aqueous solution. Engler A, Stangler T, Willbold D. Eur J Biochem 269 3264-3269 (2002)
  70. Aggregation of amyloid Abeta((1-40)) peptide in perdeuterated 2,2,2-trifluoroethanol caused by ultrasound sonication. Filippov AV, Gröbner G, Antzutkin ON. Magn Reson Chem 48 427-434 (2010)
  71. Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques. Dhanavade MJ, Sonawane KD. Amino Acids 46 1853-1866 (2014)
  72. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants. Tiwari MK, Kepp KP. J Alzheimers Dis 47 215-229 (2015)
  73. Modeling the binding mechanism of Alzheimer's Aβ1-42 to nicotinic acetylcholine receptors based on similarity with snake α-neurotoxins. Maatuk N, Samson AO. Neurotoxicology 34 236-242 (2013)
  74. Why does the Aβ peptide of Alzheimer share structural similarity with antimicrobial peptides? Pastore A, Raimondi F, Rajendran L, Temussi PA. Commun Biol 3 135 (2020)
  75. pH effects on the conformational preferences of amyloid beta-peptide (1-40) in HFIP aqueous solution by NMR spectroscopy. Valerio M, Porcelli F, Zbilut JP, Giuliani A, Manetti C, Conti F. ChemMedChem 3 833-843 (2008)
  76. Molecular modeling of the amyloid-beta-peptide using the homology to a fragment of triosephosphate isomerase that forms amyloid in vitro. Contreras CF, Canales MA, Alvarez A, De Ferrari GV, Inestrosa NC. Protein Eng 12 959-966 (1999)
  77. On the metal ion (Zn(2+), Cu(2+)) coordination with beta-amyloid peptide: DFT computational study. Marino T, Russo N, Toscano M, Pavelka M. Interdiscip Sci 2 57-69 (2010)
  78. Purification of recombinantly expressed and cytotoxic human amyloid-beta peptide 1-42. Wiesehan K, Funke SA, Fries M, Willbold D. J Chromatogr B Analyt Technol Biomed Life Sci 856 229-233 (2007)
  79. β-amyloid expression in age-related cataract lens epithelia and the effect of β-amyloid on oxidative damage in human lens epithelial cells. Xu J, Li D, Zheng T, Lu Y. Mol Vis 23 1015-1028 (2017)
  80. Beta-amyloid oligomers: recent developments. Borutaite V, Morkuniene R, Valincius G. Biomol Concepts 2 211-222 (2011)
  81. Dominance of misfolded intermediates in the dynamics of α-helix folding. Lin MM, Shorokhov D, Zewail AH. Proc Natl Acad Sci U S A 111 14424-14429 (2014)
  82. A routine method for cloning, expressing and purifying Aβ(1-42) for structural NMR studies. Weber DK, Sani MA, Gehman JD. Amino Acids 46 2415-2426 (2014)
  83. Membrane-Induced Dichotomous Conformation of Amyloid β with the Disordered N-Terminal Segment Followed by the Stable C-Terminal β Structure. Yagi-Utsumi M, Kato K, Nishimura K. PLoS One 11 e0146405 (2016)
  84. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. Cieplak AS. PLoS One 12 e0180905 (2017)
  85. Sequence-based modeling of Abeta42 soluble oligomers. Dulin F, Callebaut I, Colloc'h N, Mornon JP. Biopolymers 85 422-437 (2007)
  86. Structural determinants in adenovirus 12 E1A involved in the interaction with C-terminal binding protein 1. Molloy DP, Barral PM, Bremner KH, Gallimore PH, Grand RJ. Virology 277 156-166 (2000)
  87. Conformational solution studies of the SDS micelle-bound 11-28 fragment of two Alzheimer's beta-amyloid variants (E22K and A21G) using CD, NMR, and MD techniques. Rodziewicz-Motowidło S, Juszczyk P, Kołodziejczyk AS, Sikorska E, Skwierawska A, Oleszczuk M, Grzonka Z. Biopolymers 87 23-39 (2007)
  88. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments. Narayan P, Krishnarjuna B, Vishwanathan V, Jagadeesh Kumar D, Babu S, Ramanathan KV, Easwaran KR, Nagendra HG, Raghothama S. Chem Biol Drug Des 82 48-59 (2013)
  89. Pyroglutamate-Modified Amyloid-β(3-42) Shows α-Helical Intermediates before Amyloid Formation. Dammers C, Reiss K, Gremer L, Lecher J, Ziehm T, Stoldt M, Schwarten M, Willbold D. Biophys J 112 1621-1633 (2017)
  90. Searching for an endogenous anti-Alzheimer molecule: identifying small molecules in the brain that slow Alzheimer disease progression by inhibition of ß-amyloid aggregation. Meek AR, Simms GA, Weaver DF. J Psychiatry Neurosci 38 269-275 (2013)
  91. The Arctic mutation alters helix length and type in the 11-28 beta-amyloid peptide monomer-CD, NMR and MD studies in an SDS micelle. Rodziewicz-Motowidło S, Czaplewska P, Sikorska E, Spodzieja M, Kołodziejczyk AS. J Struct Biol 164 199-209 (2008)
  92. Circular dichroism and Fourier transform infrared spectroscopic studies on self-assembly of tetrapeptide derivative in solution and solvated film. Ganesh S, Jayakumar R. J Pept Res 61 122-128 (2003)
  93. Folding a protein with equal probability of being helix or hairpin. Lin CY, Chen NY, Mou CY. Biophys J 103 99-108 (2012)
  94. Positive evolutionary selection of an HD motif on Alzheimer precursor protein orthologues suggests a functional role. Miklós I, Zádori Z. PLoS Comput Biol 8 e1002356 (2012)
  95. Cell size effects in the molecular dynamics of the intrinsically disordered Aβ peptide. Mehra R, Kepp KP. J Chem Phys 151 085101 (2019)
  96. Development of multifunctional heterocyclic Schiff base as a potential metal chelator: a comprehensive spectroscopic approach towards drug discovery. Jadhao M, Das C, Rawat A, Kumar H, Joshi R, Maiti S, Ghosh SK. J Biol Inorg Chem 22 47-59 (2017)
  97. Internal and environmental effects on folding and dimerization of the Alzheimer's β amyloid peptide. Anand P, Hansmann UH. Mol Simul 37 (2011)
  98. Spatial structure of heptapeptide Aβ(16-22) (beta-amyloid Aβ(1-40) active fragment) in solution and in complex with a biological membrane model. Usachev KS, Efimov SV, Yulmetov AR, Filippov AV, Antzutkin ON, Afonin S, Klochkov VV. Magn Reson Chem 50 784-792 (2012)
  99. The molecular behavior of a single β-amyloid inside a dipalmitoylphosphatidylcholine bilayer at three different temperatures: An atomistic simulation study: Aβ interaction with DPPC: Atomistic simulation. Kargar F, Emadi S, Fazli H. Proteins 85 1298-1310 (2017)
  100. Amyloidogenecity and pitrilysin sensitivity of a lysine-free derivative of amyloid beta-peptide cleaved from a recombinant fusion protein. Cornista JC, Koga Y, Takano K, Kanaya S. J Biotechnol 122 186-197 (2006)
  101. Calcium inhibits penetration of Alzheimer's Aβ1 -42 monomers into the membrane. Boopathi S, Garduño-Juárez R. Proteins 90 2124-2143 (2022)
  102. Diastereomeric selective effects of double-stranded peptides conjugated with -Phe-Phe- residue for growth inhibition and permeability of Ca(2+) on A431, src(ts)NRK, and A549 cells proliferation. Kobayashi S, Wakamatsu H, Atuchi N, Miyajima R, Kawada A, Hattori M. Chem Pharm Bull (Tokyo) 55 7-14 (2007)
  103. Historical Article 50 years of The FEBS Journal: looking back as well as ahead. Chenette EJ, Martin SJ. FEBS J 284 4162-4171 (2017)
  104. Combined High-Pressure and Multiquantum NMR and Molecular Simulation Propose a Role for N-Terminal Salt Bridges in Amyloid-Beta. Vemulapalli SPB, Becker S, Griesinger C, Rezaei-Ghaleh N. J Phys Chem Lett 12 9933-9939 (2021)
  105. Epitope Mapping by NMR of a Novel Anti-Aβ Antibody (STAB-MAb). Posado-Fernández A, Afonso CF, Dória G, Flores O, Cabrita EJ. Sci Rep 9 12241 (2019)
  106. Monitoring the Conformational Changes of the Aβ(25-35) Peptide in SDS Micelles: A Matter of Time. Santoro A, Buonocore M, Grimaldi M, Napolitano E, D'Ursi AM. Int J Mol Sci 24 971 (2023)
  107. Prediction of membrane separation efficiency for hydrophobic and hydrophilic proteins : A coarse-grained Brownian dynamics simulation study. Zhang Y, Zhang Y, McCready MJ, Maginn EJ. J Mol Model 25 132 (2019)