1am2 Citations

Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing.

Nat Struct Biol 5 31-6 (1998)
Cited: 136 times
EuropePMC logo PMID: 9437427

Abstract

Several genes from prokaryotes and lower eukaryotes have been found to contain an in-frame open reading frame, which encodes for an internal protein (intein). Post-translationally, the internal polypeptide auto-splices and ligates the external sequences to yield a functional external protein (extein) and an intein. Most, but not all inteins, contain, apart from a splicing domain, a separate endonucleolytic domain that enables them to maintain their presence by a homing mechanism. We report here the crystal structure of an intein found in the gyrase A subunit from Mycobacterium xenopi at 2.2 A resolution. The structure contains an unusual beta-fold with the catalytic splice junctions at the ends of two adjacent antiparallel beta-strands. The arrangement of the active site residues Ser 1, Thr 72, His 75, His 197, and Asn 198 is consistent with a four-step mechanism for the cleavage-ligation reaction. Using site-directed mutagenesis, the N-terminal cysteine, proposed as the nucleophile in the first step of the splicing reaction, was changed to a Ser 1 and Ala 0, thus capturing the intein in a pre-spliced state.

Reviews - 1am2 mentioned but not cited (2)

  1. Chemical strategies to understand the language of ubiquitin signaling. Weller CE, Pilkerton ME, Chatterjee C. Biopolymers 101 144-155 (2014)
  2. The Evolution of Intein-Based Affinity Methods as Reflected in 30 years of Patent History. Prabhala SV, Gierach I, Wood DW. Front Mol Biosci 9 857566 (2022)

Articles - 1am2 mentioned but not cited (9)

  1. Inteins: Nature's Gift to Protein Chemists. Shah NH, Muir TW. Chem Sci 5 446-461 (2014)
  2. Crystallographic and mutational studies of Mycobacterium tuberculosis recA mini-inteins suggest a pivotal role for a highly conserved aspartate residue. Van Roey P, Pereira B, Li Z, Hiraga K, Belfort M, Derbyshire V. J Mol Biol 367 162-173 (2007)
  3. Branched intermediate formation stimulates peptide bond cleavage in protein splicing. Frutos S, Goger M, Giovani B, Cowburn D, Muir TW. Nat Chem Biol 6 527-533 (2010)
  4. High resolution crystal structure of domain I of the Saccharomyces cerevisiae homing endonuclease PI-SceI. Werner E, Wende W, Pingoud A, Heinemann U. Nucleic Acids Res 30 3962-3971 (2002)
  5. Structural and mutational studies of a hyperthermophilic intein from DNA polymerase II of Pyrococcus abyssi. Du Z, Liu J, Albracht CD, Hsu A, Chen W, Marieni MD, Colelli KM, Williams JE, Reitter JN, Mills KV, Wang C. J Biol Chem 286 38638-38648 (2011)
  6. Structure of the branched intermediate in protein splicing. Liu Z, Frutos S, Bick MJ, Vila-Perelló M, Debelouchina GT, Darst SA, Muir TW. Proc Natl Acad Sci U S A 111 8422-8427 (2014)
  7. An evolved Mxe GyrA intein for enhanced production of fusion proteins. Marshall CJ, Grosskopf VA, Moehling TJ, Tillotson BJ, Wiepz GJ, Abbott NL, Raines RT, Shusta EV. ACS Chem Biol 10 527-538 (2015)
  8. Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study. A Santos JC, Nassif H, Page D, Muggleton SH, E Sternberg MJ. BMC Bioinformatics 13 162 (2012)
  9. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge. Nassif H, Al-Ali H, Khuri S, Keirouz W, Page D. Inductive Log Program 5989 149-165 (2010)


Reviews citing this publication (25)

  1. Semisynthesis of proteins by expressed protein ligation. Muir TW. Annu Rev Biochem 72 249-289 (2003)
  2. Protein splicing and related forms of protein autoprocessing. Paulus H. Annu Rev Biochem 69 447-496 (2000)
  3. Interactions between Hedgehog proteins and their binding partners come into view. Beachy PA, Hymowitz SG, Lazarus RA, Leahy DJ, Siebold C. Genes Dev 24 2001-2012 (2010)
  4. Inteins: structure, function, and evolution. Gogarten JP, Senejani AG, Zhaxybayeva O, Olendzenski L, Hilario E. Annu Rev Microbiol 56 263-287 (2002)
  5. Protein-splicing intein: Genetic mobility, origin, and evolution. Liu XQ. Annu Rev Genet 34 61-76 (2000)
  6. Protein splicing in cis and in trans. Saleh L, Perler FB. Chem Rec 6 183-193 (2006)
  7. Intein-mediated ligation and cyclization of expressed proteins. Xu MQ, Evans TC. Methods 24 257-277 (2001)
  8. Inteins, valuable genetic elements in molecular biology and biotechnology. Elleuche S, Pöggeler S. Appl Microbiol Biotechnol 87 479-489 (2010)
  9. Protein splicing: how inteins escape from precursor proteins. Mills KV, Johnson MA, Perler FB. J Biol Chem 289 14498-14505 (2014)
  10. Expressed protein ligation. Method and applications. David R, Richter MP, Beck-Sickinger AG. Eur J Biochem 271 663-677 (2004)
  11. Recent progress in intein research: from mechanism to directed evolution and applications. Volkmann G, Mootz HD. Cell Mol Life Sci 70 1185-1206 (2013)
  12. The 2-pyridone antibacterial agents: bacterial topoisomerase inhibitors. Li Q, Mitscher LA, Shen LL. Med Res Rev 20 231-293 (2000)
  13. Structural and dynamical features of inteins and implications on protein splicing. Eryilmaz E, Shah NH, Muir TW, Cowburn D. J Biol Chem 289 14506-14511 (2014)
  14. SAIL--stereo-array isotope labeling. Kainosho M, Güntert P. Q Rev Biophys 42 247-300 (2009)
  15. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology. Burke HM, McSweeney L, Scanlan EM. Nat Commun 8 15655 (2017)
  16. Protein splicing and its applications. Perler FB, Adam E. Curr Opin Biotechnol 11 377-383 (2000)
  17. Peptide ligation and its application to protein engineering. Cotton GJ, Muir TW. Chem Biol 6 R247-56 (1999)
  18. Protein fold irregularities that hinder sequence analysis. Russell RB, Russell RB, Ponting CP. Curr Opin Struct Biol 8 364-371 (1998)
  19. Protein splicing elements and plants: from transgene containment to protein purification. Evans TC, Xu MQ, Pradhan S. Annu Rev Plant Biol 56 375-392 (2005)
  20. A natural example of protein trans-splicing. Perler FB. Trends Biochem Sci 24 209-211 (1999)
  21. Inteins in Science: Evolution to Application. Nanda A, Nasker SS, Mehra A, Panda S, Nayak S. Microorganisms 8 E2004 (2020)
  22. Incorporation of non-natural modules into proteins: structural features beyond the genetic code. Arnold U. Biotechnol Lett 31 1129-1139 (2009)
  23. Reflections on protein splicing: structures, functions and mechanisms. Anraku Y, Satow Y. Proc Jpn Acad Ser B Phys Biol Sci 85 409-421 (2009)
  24. Inteins as Drug Targets and Therapeutic Tools. Tharappel AM, Li Z, Li H. Front Mol Biosci 9 821146 (2022)
  25. Intein-Mediated Protein Engineering for Cell-Based Biosensors. Kang C, Shrestha KL, Kwon S, Park S, Kim J, Kwon Y. Biosensors (Basel) 12 283 (2022)

Articles citing this publication (100)

  1. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Wu H, Hu Z, Liu XQ. Proc Natl Acad Sci U S A 95 9226-9231 (1998)
  2. A genetic system yields self-cleaving inteins for bioseparations. Wood DW, Wu W, Belfort G, Derbyshire V, Belfort M. Nat Biotechnol 17 889-892 (1999)
  3. Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Romanelli A, Shekhtman A, Cowburn D, Muir TW. Proc Natl Acad Sci U S A 101 6397-6402 (2004)
  4. The three-dimensional structure of the autoproteolytic, nuclear pore-targeting domain of the human nucleoporin Nup98. Hodel AE, Hodel MR, Griffis ER, Hennig KA, Ratner GA, Xu S, Powers MA. Mol Cell 10 347-358 (2002)
  5. Peptide bonds revisited. Weiss MS, Jabs A, Hilgenfeld R. Nat Struct Biol 5 676 (1998)
  6. Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing. Ding Y, Xu MQ, Ghosh I, Chen X, Ferrandon S, Lesage G, Rao Z. J Biol Chem 278 39133-39142 (2003)
  7. Autoproteolysis in nucleoporin biogenesis. Rosenblum JS, Blobel G. Proc Natl Acad Sci U S A 96 11370-11375 (1999)
  8. Structural insights into the mechanism of intramolecular proteolysis. Xu Q, Buckley D, Guan C, Guo HC. Cell 98 651-661 (1999)
  9. Modulation of intein activity by its neighboring extein substrates. Amitai G, Callahan BP, Stanger MJ, Belfort G, Belfort M. Proc Natl Acad Sci U S A 106 11005-11010 (2009)
  10. SUMO protease SENP1 induces isomerization of the scissile peptide bond. Shen L, Tatham MH, Dong C, Zagórska A, Naismith JH, Hay RT. Nat Struct Mol Biol 13 1069-1077 (2006)
  11. Synthetic two-piece and three-piece split inteins for protein trans-splicing. Sun W, Yang J, Liu XQ. J Biol Chem 279 35281-35286 (2004)
  12. Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing. Sun P, Ye S, Ferrandon S, Evans TC, Xu MQ, Rao Z. J Mol Biol 353 1093-1105 (2005)
  13. An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile. Southworth MW, Benner J, Perler FB. EMBO J 19 5019-5026 (2000)
  14. Biosynthesis of a fully functional cyclotide inside living bacterial cells. Camarero JA, Kimura RH, Woo YH, Shekhtman A, Cantor J. Chembiochem 8 1363-1366 (2007)
  15. Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Callahan BP, Topilina NI, Stanger MJ, Van Roey P, Belfort M. Nat Struct Mol Biol 18 630-633 (2011)
  16. Improved segmental isotope labeling of proteins and application to a larger protein. Otomo T, Teruya K, Uegaki K, Yamazaki T, Kyogoku Y. J Biomol NMR 14 105-114 (1999)
  17. NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein. Oeemig JS, Zhou D, Kajander T, Wlodawer A, Iwaï H. J Mol Biol 421 85-99 (2012)
  18. InBase, the Intein Database. Perler FB. Nucleic Acids Res 28 344-345 (2000)
  19. Protein-splicing reaction via a thiazolidine intermediate: crystal structure of the VMA1-derived endonuclease bearing the N and C-terminal propeptides. Mizutani R, Nogami S, Kawasaki M, Ohya Y, Anraku Y, Satow Y. J Mol Biol 316 919-929 (2002)
  20. Highly conserved histidine plays a dual catalytic role in protein splicing: a pKa shift mechanism. Du Z, Shemella PT, Liu Y, McCallum SA, Pereira B, Nayak SK, Belfort G, Belfort M, Wang C. J Am Chem Soc 131 11581-11589 (2009)
  21. Minimization and stabilization of the Mycobacterium tuberculosis recA intein. Hiraga K, Derbyshire V, Dansereau JT, Van Roey P, Belfort M. J Mol Biol 354 916-926 (2005)
  22. Novel split intein for trans-splicing synthetic peptide onto C terminus of protein. Appleby JH, Zhou K, Volkmann G, Liu XQ. J Biol Chem 284 6194-6199 (2009)
  23. Protein splicing of a Pyrococcus abyssi intein with a C-terminal glutamine. Mills KV, Manning JS, Garcia AM, Wuerdeman LA. J Biol Chem 279 20685-20691 (2004)
  24. Peptide and protein thioester synthesis via N-->S acyl transfer. Kang J, Macmillan D. Org Biomol Chem 8 1993-2002 (2010)
  25. Structural constraints on protein self-processing in L-aspartate-alpha-decarboxylase. Schmitzberger F, Kilkenny ML, Lobley CM, Webb ME, Vinkovic M, Matak-Vinkovic D, Witty M, Chirgadze DY, Smith AG, Abell C, Blundell TL. EMBO J 22 6193-6204 (2003)
  26. NMR structure of a KlbA intein precursor from Methanococcus jannaschii. Johnson MA, Southworth MW, Herrmann T, Brace L, Perler FB, Wüthrich K. Protein Sci 16 1316-1328 (2007)
  27. Intermolecular domain swapping induces intein-mediated protein alternative splicing. Aranko AS, Oeemig JS, Kajander T, Iwaï H. Nat Chem Biol 9 616-622 (2013)
  28. pK(a) coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate. Du Z, Zheng Y, Patterson M, Liu Y, Wang C. J Am Chem Soc 133 10275-10282 (2011)
  29. Elimination of in vivo cleavage between target protein and intein in the intein-mediated protein purification systems. Cui C, Zhao W, Chen J, Wang J, Li Q. Protein Expr Purif 50 74-81 (2006)
  30. Site-specific chemical modification of proteins with a prelabelled cysteine tag using the artificially split Mxe GyrA intein. Kurpiers T, Mootz HD. Chembiochem 9 2317-2325 (2008)
  31. Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity. Mabbitt PD, Loreto A, Déry MA, Fletcher AJ, Stanley M, Pao KC, Wood NT, Coleman MP, Virdee S. Nat Chem Biol 16 1227-1236 (2020)
  32. Letter Bioinspired strategy for the ribosomal synthesis of thioether-bridged macrocyclic peptides in bacteria. Bionda N, Cryan AL, Fasan R. ACS Chem Biol 9 2008-2013 (2014)
  33. Herbicide resistance from a divided EPSPS protein: the split Synechocystis DnaE intein as an in vivo affinity domain. Chen L, Pradhan S, Evans TC. Gene 263 39-48 (2001)
  34. Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification. Ramirez M, Valdes N, Guan D, Chen Z. Protein Eng Des Sel 26 215-223 (2013)
  35. Structure-based engineering and comparison of novel split inteins for protein ligation. Aranko AS, Oeemig JS, Zhou D, Kajander T, Wlodawer A, Iwaï H. Mol Biosyst 10 1023-1034 (2014)
  36. Kinetic analysis of the individual steps of protein splicing for the Pyrococcus abyssi PolII intein. Mills KV, Dorval DM, Lewandowski KT. J Biol Chem 280 2714-2720 (2005)
  37. An in vivo screening system against protein splicing useful for the isolation of non-splicing mutants or inhibitors of the RecA intein of Mycobacterium tuberculosis. Lew BM, Paulus H. Gene 282 169-177 (2002)
  38. Comment Breaking up is easy with esters. Perler FB. Nat Struct Biol 5 249-252 (1998)
  39. Mechanism for intein C-terminal cleavage: a proposal from quantum mechanical calculations. Shemella P, Pereira B, Zhang Y, Van Roey P, Belfort G, Garde S, Nayak SK. Biophys J 92 847-853 (2007)
  40. A conserved threonine spring-loads precursor for intein splicing. Dearden AK, Callahan B, Roey PV, Li Z, Kumar U, Belfort M, Nayak SK. Protein Sci 22 557-563 (2013)
  41. A dual role for an aspartic acid in glycosylasparaginase autoproteolysis. Qian X, Guan C, Guo HC. Structure 11 997-1003 (2003)
  42. A functional interplay between intein and extein sequences in protein splicing compensates for the essential block B histidine. Friedel K, Popp MA, Matern JCJ, Gazdag EM, Thiel IV, Volkmann G, Blankenfeldt W, Mootz HD. Chem Sci 10 239-251 (2019)
  43. Comment Breaking up is hard to do. Stoddard BL, Pietrokovski S. Nat Struct Biol 5 3-5 (1998)
  44. Macrocyclization of organo-peptide hybrids through a dual bio-orthogonal ligation: insights from structure-reactivity studies. Frost JR, Vitali F, Jacob NT, Brown MD, Fasan R. Chembiochem 14 147-160 (2013)
  45. Crystal structure of intein homing endonuclease II encoded in DNA polymerase gene from hyperthermophilic archaeon Thermococcus kodakaraensis strain KOD1. Matsumura H, Takahashi H, Inoue T, Yamamoto T, Hashimoto H, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Kai Y. Proteins 63 711-715 (2006)
  46. Reactivity of the cysteine residues in the protein splicing active center of the Mycobacterium tuberculosis RecA intein. Shingledecker K, Jiang Sq, Paulus H. Arch Biochem Biophys 375 138-144 (2000)
  47. The protein splicing domain of the homing endonuclease PI-sceI is responsible for specific DNA binding. Grindl W, Wende W, Pingoud V, Pingoud A. Nucleic Acids Res 26 1857-1862 (1998)
  48. Crystallographic snapshot of glycosylasparaginase precursor poised for autoprocessing. Wang Y, Guo HC. J Mol Biol 403 120-130 (2010)
  49. Degeneration of a homing endonuclease and its target sequence in a wild yeast strain. Gimble FS. Nucleic Acids Res 29 4215-4223 (2001)
  50. Target highlights in CASP14: Analysis of models by structure providers. Alexander LT, Lepore R, Kryshtafovych A, Adamopoulos A, Alahuhta M, Arvin AM, Bomble YJ, Böttcher B, Breyton C, Chiarini V, Chinnam NB, Chiu W, Fidelis K, Grinter R, Gupta GD, Hartmann MD, Hayes CS, Heidebrecht T, Ilari A, Joachimiak A, Kim Y, Linares R, Lovering AL, Lunin VV, Lupas AN, Makbul C, Michalska K, Moult J, Mukherjee PK, Nutt WS, Oliver SL, Perrakis A, Stols L, Tainer JA, Topf M, Tsutakawa SE, Valdivia-Delgado M, Schwede T. Proteins 89 1647-1672 (2021)
  51. Minimization of a eukaryotic mini-intein. Elleuche S, Döring K, Pöggeler S. Biochem Biophys Res Commun 366 239-243 (2008)
  52. SEA domain autoproteolysis accelerated by conformational strain: energetic aspects. Sandberg A, Johansson DG, Macao B, Härd T. J Mol Biol 377 1117-1129 (2008)
  53. The Deinococcus radiodurans Snf2 intein caught in the act: detection of the Class 3 intein signature Block F branched intermediate. Brace LE, Southworth MW, Tori K, Cushing ML, Perler F. Protein Sci 19 1525-1533 (2010)
  54. Analysis of inteins in the Candida parapsilosis complex for simple and accurate species identification. Prandini TH, Theodoro RC, Bruder-Nascimento AC, Scheel CM, Bagagli E. J Clin Microbiol 51 2830-2836 (2013)
  55. Expression and purification of an active form of the Mycobacterium leprae DNA gyrase and its inhibition by quinolones. Matrat S, Petrella S, Cambau E, Sougakoff W, Jarlier V, Aubry A. Antimicrob Agents Chemother 51 1643-1648 (2007)
  56. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins. Lin Y, Li M, Song H, Xu L, Meng Q, Liu XQ. PLoS One 8 e59516 (2013)
  57. Self-cleavage of the Pseudomonas aeruginosa Cell-surface Signaling Anti-sigma Factor FoxR Occurs through an N-O Acyl Rearrangement. Bastiaansen KC, van Ulsen P, Wijtmans M, Bitter W, Llamas MA. J Biol Chem 290 12237-12246 (2015)
  58. Sequence requirements for splicing by the Cne PRP8 intein. Pearl EJ, Tyndall JD, Poulter RT, Wilbanks SM. FEBS Lett 581 3000-3004 (2007)
  59. Structural constraints on autoprocessing of the human nucleoporin Nup98. Sun Y, Guo HC. Protein Sci 17 494-505 (2008)
  60. Electronic structure of neighboring extein residue modulates intein C-terminal cleavage activity. Shemella PT, Topilina NI, Soga I, Pereira B, Belfort G, Belfort M, Nayak SK. Biophys J 100 2217-2225 (2011)
  61. Mechanism of C-terminal intein cleavage in protein splicing from QM/MM molecular dynamics simulations. Mujika JI, Lopez X, Mulholland AJ. Org Biomol Chem 10 1207-1218 (2012)
  62. Structural Basis for the Persistence of Homing Endonucleases in Transcription Factor IIB Inteins. Iwaï H, Mikula KM, Oeemig JS, Zhou D, Li M, Wlodawer A. J Mol Biol 429 3942-3956 (2017)
  63. Chemical bypass of intein-catalyzed N-S acyl shift in protein splicing. Binschik J, Mootz HD. Angew Chem Int Ed Engl 52 4260-4264 (2013)
  64. Branched intermediate formation is the slowest step in the protein splicing reaction of the Ala1 KlbA intein from Methanococcus jannaschii. Saleh L, Southworth MW, Considine N, O'Neill C, Benner J, Bollinger JM, Perler FB. Biochemistry 50 10576-10589 (2011)
  65. Clostridium difficile cell wall protein CwpV undergoes enzyme-independent intramolecular autoproteolysis. Dembek M, Reynolds CB, Fairweather NF. J Biol Chem 287 1538-1544 (2012)
  66. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli. Ma Y, Yu J, Lin J, Wu S, Li S, Wang J. Biomed Res Int 2016 3758941 (2016)
  67. Creation of an artificial bifunctional intein by grafting a homing endonuclease into a mini-intein. Fitzsimons Hall M, Noren CJ, Perler FB, Schildkraut I. J Mol Biol 323 173-179 (2002)
  68. An intein with genetically selectable markers provides a new approach to internally label proteins with GFP. Ramsden R, Arms L, Davis TN, Muller EG. BMC Biotechnol 11 71 (2011)
  69. Intein lacking conserved C-terminal motif G retains controllable N-cleavage activity. Volkmann G, Liu XQ. FEBS J 278 3431-3446 (2011)
  70. Protein purification via temperature-dependent, intein-mediated cleavage from an immobilized metal affinity resin. Mills KV, Connor KR, Dorval DM, Lewandowski KT. Anal Biochem 356 86-93 (2006)
  71. Trans-splicing of an artificially split fungal mini-intein. Elleuche S, Pöggeler S. Biochem Biophys Res Commun 355 830-834 (2007)
  72. Protein splicing of the three Pyrococcus abyssi ribonucleotide reductase inteins. Kerrigan AM, Powers TL, Dorval DM, Reitter JN, Mills KV. Biochem Biophys Res Commun 387 153-157 (2009)
  73. Comment Breaking up with a kinky SUMO. Huang DT, Schulman BA. Nat Struct Mol Biol 13 1045-1047 (2006)
  74. Adding 'splice' to protein engineering. Holford M, Muir TW. Structure 6 951-956 (1998)
  75. Approach control. Stereoelectronic origin of geometric constraints on N-to-S and N-to-O acyl shifts in peptides. Devaraj NK, Perrin CL. Chem Sci 9 1789-1794 (2018)
  76. Hedgehog proteins create a dynamic cholesterol interface. Mafi A, Purohit R, Vielmas E, Lauinger AR, Lam B, Cheng YS, Zhang T, Huang Y, Kim SK, Goddard WA, Ondrus AE. PLoS One 16 e0246814 (2021)
  77. Protein trans-splicing of an atypical split intein showing structural flexibility and cross-reactivity. Song H, Meng Q, Liu XQ. PLoS One 7 e45355 (2012)
  78. A mechanistic study of the spontaneous hydrolysis of glycylserine as the simplest model for protein self-cleavage. Mihaylov TT, Parac-Vogt TN, Pierloot K. Chemistry 20 456-466 (2014)
  79. Design of Fusion Proteins for Efficient and Soluble Production of Immunogenic Ebola Virus Glycoprotein in Escherichia coli. Ji Y, Lu Y, Yan Y, Liu X, Su N, Zhang C, Bi S, Xing XH. Biotechnol J 13 e1700627 (2018)
  80. Detection of Matrix Metalloproteinase Activity by Bioluminescence via Intein-Mediated Biotinylation of Luciferase. Nguyen DL, Kim H, Kim D, Lee JO, Gye MC, Kim YP. Sensors (Basel) 18 E875 (2018)
  81. Comment Fine-tuning an engineered intein. Amitai G, Pietrokovski S. Nat Biotechnol 17 854-855 (1999)
  82. Fused Split Inteins: Tools for Introducing Multiple Protein Modifications. Lim BJ, Berkeley RF, Debelouchina GT. Methods Mol Biol 2133 163-181 (2020)
  83. Mechanism of protein splicing of the Pyrococcus abyssi lon protease intein. O'Brien KM, Schufreider AK, McGill MA, O'Brien KM, Reitter JN, Mills KV. Biochem Biophys Res Commun 403 457-461 (2010)
  84. Protein trans-splicing as a protein ligation tool to study protein structure and function. Aranko AS, Volkmann G. Biomol Concepts 2 183-198 (2011)
  85. Recombinant Expression of Cyclotides Using Expressed Protein Ligation. Campbell MJ, Su J, Camarero JA. Methods Mol Biol 2133 327-341 (2020)
  86. Spontaneous C-cleavage of a mini-intein without its conserved N-terminal motif A. Qi X, Meng Q, Liu XQ. FEBS Lett 585 2513-2518 (2011)
  87. Characterization of secondary amide peptide bond isomerization: thermodynamics and kinetics from 2D NMR spectroscopy. Zhang J, Germann MW. Biopolymers 95 755-762 (2011)
  88. Noncovalent-interaction-promoted ligation for protein labeling. Hori Y, Egashira Y, Kamiura R, Kikuchi K. Chembiochem 11 646-648 (2010)
  89. Peptide bond conformation in peptides and proteins probed by dipolar coupling-chemical shift tensor correlation solid-state NMR. Mukhopadhyay D, Gupta C, Theint T, Jaroniec CP. J Magn Reson 297 152-160 (2018)
  90. Protein multifunctionality: principles and mechanisms. Zaretsky JZ, Wreschner DH. Transl Oncogenomics 3 99-136 (2008)
  91. Allosteric Influence of Extremophile Hairpin Motif Mutations on the Protein Splicing Activity of a Hyperthermophilic Intein. Chiarolanzio KC, Pusztay JM, Chavez A, Zhao J, Xie J, Wang C, Mills KV. Biochemistry 59 2459-2467 (2020)
  92. Backbone assignments of mini-RecA intein with short native exteins and an active N-terminal catalytic cysteine. Pearson CS, Belfort G, Belfort M, Shekhtman A. Biomol NMR Assign 9 235-238 (2015)
  93. Comparative analysis of the effectiveness of C-terminal cleavage intein-based constructs in producing a recombinant analog of anophelin, an anticoagulant from Anopheles albimanus. Esipov RS, Kostromina MA. Appl Biochem Biotechnol 175 2468-2488 (2015)
  94. Restricting the ψ Torsion Angle Has Stereoelectronic Consequences on a Scissile Bond: An Electronic Structure Analysis. Strieter ER, Andrew TL. Biochemistry 54 5748-5756 (2015)
  95. Structural stability and endonuclease activity of a PI-SceI GFP-fusion protein. Senejani AG, Gogarten JP. Int J Biol Sci 3 205-211 (2007)
  96. Structure of an engineered intein reveals thiazoline ring and provides mechanistic insight. Pearson CS, Nemati R, Liu B, Zhang J, Scalabrin M, Li Z, Li H, Fabris D, Belfort M, Belfort G. Biotechnol Bioeng 116 709-721 (2019)
  97. A computational study of the glycylserine hydrolysis at physiological pH: a zwitterionic versus anionic mechanism. Mihaylov TT, Parac-Vogt TN, Pierloot K. Org Biomol Chem 12 1395-1404 (2014)
  98. An alternative domain-swapped structure of the Pyrococcus horikoshii PolII mini-intein. Williams JE, Jaramillo MV, Li Z, Zhao J, Wang C, Li H, Mills KV. Sci Rep 11 11680 (2021)
  99. Branching out of the intein active site in protein splicing. Callahan BP, Belfort M. Proc Natl Acad Sci U S A 111 8323-8324 (2014)
  100. SufB intein splicing in Mycobacterium tuberculosis is influenced by two remote conserved N-extein histidines. Panda S, Nanda A, Sahu N, Ojha DK, Pradhan B, Rai A, Suryawanshi AR, Banavali N, Nayak S. Biosci Rep 42 BSR20212207 (2022)