1ain Citations

Crystal structure of human annexin I at 2.5 A resolution.

Protein Sci. 2 448-58 (1993)
Cited: 61 times
EuropePMC logo PMID: 8453382


cDNA coding for N-terminally truncated human annexin I, a member of the family of Ca(2+)-dependent phospholipid binding proteins, has been cloned and expressed in Escherichia coli. The expressed protein is biologically active, and has been purified and crystallized in space group P2(1)2(1)2(1) with cell dimensions a = 139.36 A, b = 67.50 A, and c = 42.11 A. The crystal structure has been determined by molecular replacement at 3.0 A resolution using the annexin V core structure as the search model. The average backbone deviation between these two structures is 2.34 A. The structure has been refined to an R-factor of 17.7% at 2.5 A resolution. Six calcium sites have been identified in the annexin I structure. Each is located in the loop region of the helix-loop-helix motif. Two of the six calcium sites in annexin I are not occupied in the annexin V structure. The superpositions of the corresponding loop regions in the four domains show that the calcium binding loops in annexin I can be divided into two classes: type II and type III. Both classes are different from the well-known EF-hand motif (type I).

Reviews citing this publication (17)

  1. Fungal annexins: a mini review. Khalaj K, Aminollahi E, Bordbar A, Khalaj V. Springerplus 4 721 (2015)
  2. On the segregation of protein ionic residues by charge type. Parker MS, Balasubramaniam A, Parker SL. Amino Acids 43 2231-2247 (2012)
  3. Molecular regulators of resolution of inflammation: potential therapeutic targets in the reproductive system. Hutchinson JL, Rajagopal SP, Sales KJ, Jabbour HN. Reproduction 142 15-28 (2011)
  4. Parasite annexins--new molecules with potential for drug and vaccine development. Hofmann A, Osman A, Leow CY, Driguez P, McManus DP, Jones MK. Bioessays 32 967-976 (2010)
  5. The annexins: spatial and temporal coordination of signaling events during cellular stress. Monastyrskaya K, Babiychuk EB, Draeger A. Cell. Mol. Life Sci. 66 2623-2642 (2009)
  6. S100-annexin complexes--structural insights. Rintala-Dempsey AC, Rezvanpour A, Shaw GS. FEBS J. 275 4956-4966 (2008)
  7. New reagents for phosphatidylserine recognition and detection of apoptosis. Hanshaw RG, Smith BD. Bioorg. Med. Chem. 13 5035-5042 (2005)
  8. Annexins: linking Ca2+ signalling to membrane dynamics. Gerke V, Creutz CE, Moss SE. Nat. Rev. Mol. Cell Biol. 6 449-461 (2005)
  9. Protein repeats: structures, functions, and evolution. Andrade MA, Perez-Iratxeta C, Ponting CP. J. Struct. Biol. 134 117-131 (2001)
  10. Analysis of the protection afforded by annexin 1 in ischaemia-reperfusion injury: focus on neutrophil recruitment. La M, Tailor A, D'Amico M, Flower RJ, Perretti M. Eur. J. Pharmacol. 429 263-278 (2001)
  11. Biophysical and molecular properties of annexin-formed channels. Kourie JI, Wood HB. Prog. Biophys. Mol. Biol. 73 91-134 (2000)
  12. Annexin V and phospholipid metabolism. Russo-Marie F. Clin. Chem. Lab. Med. 37 287-291 (1999)
  13. Lipocortin 1: a second messenger of glucocorticoid action in the hypothalamo-pituitary-adrenocortical axis. Buckingham JC, Flower RJ. Mol Med Today 3 296-302 (1997)
  14. Annexins: a novel family of calcium- and membrane-binding proteins in search of a function. Liemann S, Lewit-Bentley A. Structure 3 233-237 (1995)
  15. Annexin II tetramer: structure and function. Waisman DM. Mol. Cell. Biochem. 149-150 301-322 (1995)
  16. The annexins. Reutelingsperger CP. Lupus 3 213-216 (1994)
  17. Lipocortin-derived peptides. Perretti M. Biochem. Pharmacol. 47 931-938 (1994)

Articles citing this publication (44)

  1. X-ray structure of full-length annexin 1 and implications for membrane aggregation. Rosengarth A, Gerke V, Luecke H. J. Mol. Biol. 306 489-498 (2001)
  2. Crystal structure of the annexin XII hexamer and implications for bilayer insertion. Luecke H, Chang BT, Mailliard WS, Schlaepfer DD, Haigler HT. Nature 378 512-515 (1995)
  3. Annexin A2 heterotetramer: structure and function. Bharadwaj A, Bydoun M, Holloway R, Waisman D. Int J Mol Sci 14 6259-6305 (2013)
  4. A calcium-driven conformational switch of the N-terminal and core domains of annexin A1. Rosengarth A, Luecke H. J. Mol. Biol. 326 1317-1325 (2003)
  5. Structural analysis of junctions formed between lipid membranes and several annexins by cryo-electron microscopy. Lambert O, Gerke V, Bader MF, Porte F, Brisson A. J. Mol. Biol. 272 42-55 (1997)
  6. Transfection of annexin 1 in monocytic cells produces a high degree of spontaneous and stimulated apoptosis associated with caspase-3 activation. Solito E, de Coupade C, Canaider S, Goulding NJ, Perretti M. Br. J. Pharmacol. 133 217-228 (2001)
  7. A systematic comparative and structural analysis of protein phosphorylation sites based on the mtcPTM database. Jiménez JL, Hegemann B, Hutchins JR, Peters JM, Durbin R. Genome Biol. 8 R90 (2007)
  8. The association of annexin I with early endosomes is regulated by Ca2+ and requires an intact N-terminal domain. Seemann J, Weber K, Osborn M, Parton RG, Gerke V. Mol. Biol. Cell 7 1359-1374 (1996)
  9. Annexins. Moss SE. Trends Cell Biol. 7 87-89 (1997)
  10. Mapping of a regulatory important site for protein kinase C phosphorylation in the N-terminal domain of annexin II. Jost M, Gerke V. Biochim. Biophys. Acta 1313 283-289 (1996)
  11. Characterization of the interaction between annexin I and profilin. Alvarez-Martinez MT, Mani JC, Porte F, Faivre-Sarrailh C, Liautard JP, Sri Widada J. Eur. J. Biochem. 238 777-784 (1996)
  12. Crystal structure of annexin V with its ligand K-201 as a calcium channel activity inhibitor. Kaneko N, Ago H, Matsuda R, Inagaki E, Miyano M. J. Mol. Biol. 274 16-20 (1997)
  13. Annexins I and II show differences in subcellular localization and differentiation-related changes in human epidermal keratinocytes. Ma AS, Ozers LJ. Arch. Dermatol. Res. 288 596-603 (1996)
  14. Differential tissue expression of Annexin VIII in human. Reutelingsperger CP, van Heerde W, Hauptmann R, Maassen C, van Gool RG, de Leeuw P, Tiebosch A. FEBS Lett. 349 120-124 (1994)
  15. N- and C-terminal cooperation in rotavirus enterotoxin: novel mechanism of modulation of the properties of a multifunctional protein by a structurally and functionally overlapping conformational domain. Jagannath MR, Kesavulu MM, Deepa R, Sastri PN, Kumar SS, Suguna K, Rao CD. J. Virol. 80 412-425 (2006)
  16. The annexin I sequence gln(9)-ala(10)-trp(11)-phe(12) is a core structure for interaction with the formyl peptide receptor 1. Movitz C, Brive L, Hellstrand K, Rabiet MJ, Dahlgren C. J. Biol. Chem. 285 14338-14345 (2010)
  17. Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity. Cohen BE, Lee G, Arispe N, Pollard HB. FEBS Lett. 377 444-450 (1995)
  18. A comparison of the energetics of annexin I and annexin V. Rosengarth A, Rösgen J, Hinz HJ, Gerke V. J. Mol. Biol. 288 1013-1025 (1999)
  19. Crystal structure of the C-terminal tetrad repeat from synexin (annexin VII) of Dictyostelium discoideum. Liemann S, Bringemeier I, Benz J, Göttig P, Hofmann A, Huber R, Noegel AA, Jacob U. J. Mol. Biol. 270 79-88 (1997)
  20. Modes of annexin-membrane interactions analyzed by employing chimeric annexin proteins. König J, Gerke V. Biochim. Biophys. Acta 1498 174-180 (2000)
  21. Detecting local structural similarity in proteins by maximizing number of equivalent residues. Standley DM, Toh H, Nakamura H. Proteins 57 381-391 (2004)
  22. Identification of a novel class of annexin genes. Khalaj V, Smith L, Brookman J, Tuckwell D. FEBS Lett. 562 79-86 (2004)
  23. Atypical properties displayed by annexin A9, a novel member of the annexin family of Ca(2+) and lipid binding proteins. Goebeler V, Ruhe D, Gerke V, Rescher U. FEBS Lett. 546 359-364 (2003)
  24. Folding energetics of ligand binding proteins II. Cooperative binding of Ca2+ to annexin I. Rosengarth A, Rösgen J, Hinz HJ, Gerke V. J. Mol. Biol. 306 825-835 (2001)
  25. Exploring the folding pathways of annexin I, a multidomain protein. II. Hierarchy in domain folding propensities may govern the folding process. Cordier-Ochsenbein F, Guerois R, Russo-Marie F, Neumann JM, Sanson A. J. Mol. Biol. 279 1177-1185 (1998)
  26. Solution structure and membrane-binding property of the N-terminal tail domain of human annexin I. Yoon MK, Park SH, Won HS, Na DS, Lee BJ. FEBS Lett. 484 241-245 (2000)
  27. Annexin A4 binding to anionic phospholipid vesicles modulated by pH and calcium. Zschörnig O, Opitz F, Müller M. Eur. Biophys. J. 36 415-424 (2007)
  28. Phase diagrams: a graphical representation of linkage relations. Rösgen J, Hinz HJ. J. Mol. Biol. 328 255-271 (2003)
  29. Visualization of annexin I binding to calcium-induced phosphatidylserine domains. Janshoff A, Ross M, Gerke V, Steinem C. Chembiochem 2 587-590 (2001)
  30. Exploring the folding pathways of annexin I, a multidomain protein. I. non-native structures stabilize the partially folded state of the isolated domain 2 of annexin I. Cordier-Ochsenbein F, Guerois R, Baleux F, Huynh-Dinh T, Lirsac PN, Russo-Marie F, Neumann JM, Sanson A. J. Mol. Biol. 279 1163-1175 (1998)
  31. The expression of different annexins in the fish embryo is developmentally regulated. Ivanenkov VV, Weber K, Gerke V. FEBS Lett. 352 227-230 (1994)
  32. Annexin5 plays a vital role in Arabidopsis pollen development via Ca2+-dependent membrane trafficking. Zhu J, Wu X, Yuan S, Qian D, Nan Q, An L, Xiang Y. PLoS ONE 9 e102407 (2014)
  33. Characterization of annexin A1 glycan binding reveals binding to highly sulfated glycans with preference for highly sulfated heparan sulfate and heparin. Horlacher T, Noti C, de Paz JL, Bindschädler P, Hecht ML, Smith DF, Fukuda MN, Seeberger PH. Biochemistry 50 2650-2659 (2011)
  34. Translocation of lipocortin (annexin) 1 to the membrane of U937 cells induced by phorbol ester, but not by dexamethasone. Kang SA, Cho YJ, Moon HB, Na DS. Br. J. Pharmacol. 117 1780-1784 (1996)
  35. NMR analyses of the interactions of human annexin I with ATP, Ca2+, and Mg2+. Han HY, Lee YH, Oh JY, Na DS, Lee BJ. FEBS Lett. 425 523-527 (1998)
  36. Cloning and functional activity of a novel truncated form of annexin IV in mouse macrophages. Sable CL, Riches DW. Biochem. Biophys. Res. Commun. 258 162-167 (1999)
  37. Binding to phosphatidyl serine membranes causes a conformational change in the concave face of annexin I. de la Fuente M, Ossa CG. Biophys. J. 72 383-387 (1997)
  38. Dynamical characterization of residual and non-native structures in a partially folded protein by (15)N NMR relaxation using a model based on a distribution of correlation times. Ochsenbein F, Neumann JM, Guittet E, van Heijenoort C. Protein Sci. 11 957-964 (2002)
  39. Annexin B1 from Taenia solium metacestodes is a newly characterized member of the annexin family. Zhang Y, Wang KH, Guo YJ, Lu YM, Yan HL, Song YL, Wang F, Ding FX, Sun SH. Biol. Chem. 388 601-610 (2007)
  40. Protein unfolding transitions in an intrinsically unstable annexin domain: molecular dynamics simulation and comparison with nuclear magnetic resonance data. Huynh T, Smith JC, Sanson A. Biophys. J. 83 681-698 (2002)
  41. Structural and functional characterisation of the mouse annexin A9 promoter. Chlystun M, Markoff A, Gerke V. Biochim. Biophys. Acta 1742 141-149 (2004)
  42. Conformational preference of ChaK1 binding peptides: a molecular dynamics study. Zhang J, King CA, Dalby K, Ren P. PMC Biophys 3 2 (2010)
  43. Analysis and characterisation of bovine oocyte and embryo biomarkers by matrix-assisted desorption ionisation mass spectrometry imaging. Gonçalves RF, Ferreira MS, de Oliveira DN, Canevarolo R, Achilles MA, D'Ercole DL, Bols PE, Visintin JA, Killian GJ, Catharino RR. Reprod. Fertil. Dev. 28 293-301 (2016)
  44. Structure of human annexin I: comparison of homology modelling and crystallographic experiment. Musat GV, Neumann JM, Smith JC, Sanson A. Biochimie 79 691-703 (1997)