1agm Citations

Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution.

J Biol Chem 269 15631-9 (1994)
Related entries: 1glm, 3gly

Cited: 65 times
EuropePMC logo PMID: 8195212

Abstract

The three-dimensional structure of the pseudotetrasaccharide acarbose complexed with glucoamylase II(471) from Aspergillus awamori var. X100 has been determined to 2.4-A resolution. The model includes residues corresponding to 1-471 of glucoamylase I from Aspergillus niger, a single molecule of bound acarbose, and 535 sites for water molecules. The crystallographic R factor from refinement is 0.124, and the root-mean-squared deviation in bond distances is 0.013 A. Electron density for a single molecule of bound acarbose defines what may be the first four subsites in the binding of extended maltooligosaccharides. Hydrogen bonds between acarbose and the enzyme involve Arg54, Asp55, Arg305, carbonyl177, main chain amide121, Glu179, Glu180, and carbonyl179. Glu179 forms a salt link to the imino linkage between the first and second residues of acarbose. This buried salt link probably contributes significantly to the unusually tight association (Kd approximately 10(-12) M) of acarbose with glucoamylase. In addition, a significant hydrophobic contact between the third residue of acarbose and the side chain of Trp120 distorts the three-center angle of the glucosidic linkage between the second and third residues of acarbose. A water molecule (water500) hydrogen bonds to Glu400 and the 6-hydroxyl of the valienamine moiety of acarbose and is at an approximate distance of 3.7 A from the "anomeric" carbon of the inhibitor. The relevance of the acarbose-glucoamylase complex to the mechanism of enzymic hydrolysis of oligosaccharides is discussed.

Articles - 1agm mentioned but not cited (6)

  1. A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Xie L, Xie L, Bourne PE. Bioinformatics 25 i305-12 (2009)
  2. Glycan Reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins. Jo S, Song KC, Desaire H, MacKerell AD, Im W. J Comput Chem 32 3135-3141 (2011)
  3. Biochemical and structural analyses of a bacterial endo-β-1,2-glucanase reveal a new glycoside hydrolase family. Abe K, Nakajima M, Yamashita T, Matsunaga H, Kamisuki S, Nihira T, Takahashi Y, Sugimoto N, Miyanaga A, Nakai H, Arakawa T, Fushinobu S, Taguchi H. J. Biol. Chem. 292 7487-7506 (2017)
  4. Structure of the catalytic domain of glucoamylase from Aspergillus niger. Lee J, Paetzel M. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 188-192 (2011)
  5. Geomfinder: a multi-feature identifier of similar three-dimensional protein patterns: a ligand-independent approach. Núñez-Vivanco G, Valdés-Jiménez A, Besoaín F, Reyes-Parada M. J Cheminform 8 19 (2016)
  6. Split-Ubiquitin Two-Hybrid Screen for Proteins Interacting with slToc159-1 and slToc159-2, Two Chloroplast Preprotein Import Receptors in Tomato (Solanum lycopersicum). Wang Q, Yue J, Zhang C, Yan J. Plants (Basel) 11 2923 (2022)


Reviews citing this publication (6)

  1. Mechanisms of enzymatic glycoside hydrolysis. McCarter JD, Withers SG. Curr. Opin. Struct. Biol. 4 885-892 (1994)
  2. Glycosylation inhibitors in biology and medicine. Jacob GS. Curr. Opin. Struct. Biol. 5 605-611 (1995)
  3. Approaches to labeling and identification of active site residues in glycosidases. Withers SG, Aebersold R. Protein Sci. 4 361-372 (1995)
  4. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Janeček Š, Svensson B, MacGregor EA. Cell. Mol. Life Sci. 71 1149-1170 (2014)
  5. Microbial glucoamylases: characteristics and applications. Kumar P, Satyanarayana T. Crit. Rev. Biotechnol. 29 225-255 (2009)
  6. Design and synthesis of biologically active carbaglycosylamines: From glycosidase inhibitors to pharmacological chaperones. Ogawa S, Kuno S, Toyokuni T. Proc Jpn Acad Ser B Phys Biol Sci 98 336-360 (2022)

Articles citing this publication (53)

  1. Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis. Kadziola A, Søgaard M, Svensson B, Haser R. J. Mol. Biol. 278 205-217 (1998)
  2. Crystal structure of alginate lyase A1-III from Sphingomonas species A1 at 1.78 A resolution. Yoon HJ, Mikami B, Hashimoto W, Murata K. J. Mol. Biol. 290 505-514 (1999)
  3. Glucoamylase structural, functional, and evolutionary relationships. Coutinho PM, Reilly PJ. Proteins 29 334-347 (1997)
  4. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Kim TJ, Kim MJ, Kim BC, Kim JC, Cheong TK, Kim JW, Park KH. Appl. Environ. Microbiol. 65 1644-1651 (1999)
  5. Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors. Gibson RP, Gloster TM, Roberts S, Warren RA, Storch de Gracia I, García A, Chiara JL, Davies GJ. Angew. Chem. Int. Ed. Engl. 46 4115-4119 (2007)
  6. Refined structure for the complex of D-gluco-dihydroacarbose with glucoamylase from Aspergillus awamori var. X100 to 2.2 A resolution: dual conformations for extended inhibitors bound to the active site of glucoamylase. Stoffer B, Aleshin AE, Firsov LM, Svensson B, Honzatko RB. FEBS Lett. 358 57-61 (1995)
  7. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors. Park KH, Kim MJ, Lee HS, Han NS, Kim D, Robyt JF. Carbohydr. Res. 313 235-246 (1998)
  8. Two potent competitive inhibitors discriminating alpha-glucosidase family I from family II. Kimura A, Lee JH, Lee IS, Lee HS, Park KH, Chiba S, Kim D. Carbohydr. Res. 339 1035-1040 (2004)
  9. Crystal structure of N-acyl-D-glucosamine 2-epimerase from porcine kidney at 2.0 A resolution. Itoh T, Mikami B, Maru I, Ohta Y, Hashimoto W, Murata K. J. Mol. Biol. 303 733-744 (2000)
  10. Putative stress sensors WscA and WscB are involved in hypo-osmotic and acidic pH stress tolerance in Aspergillus nidulans. Futagami T, Nakao S, Kido Y, Oka T, Kajiwara Y, Takashita H, Omori T, Furukawa K, Goto M. Eukaryotic Cell 10 1504-1515 (2011)
  11. X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus. Implications for the synthesis of large cyclic glucans. Przylas I, Terada Y, Fujii K, Takaha T, Saenger W, Sträter N. Eur. J. Biochem. 267 6903-6913 (2000)
  12. Automated docking of monosaccharide substrates and analogues and methyl alpha-acarviosinide in the glucoamylase active site. Coutinho PM, Dowd MK, Reilly PJ. Proteins 27 235-248 (1997)
  13. N-glycan modification in Aspergillus species. Kainz E, Gallmetzer A, Hatzl C, Nett JH, Li H, Schinko T, Pachlinger R, Berger H, Reyes-Dominguez Y, Bernreiter A, Gerngross T, Wildt S, Strauss J. Appl. Environ. Microbiol. 74 1076-1086 (2008)
  14. Why is sialic acid attracting interest now? Complete enzymatic synthesis of sialic acid with N-acylglucosamine 2-epimerase. Maru I, Ohnishi J, Ohta Y, Tsukada Y. J. Biosci. Bioeng. 93 258-265 (2002)
  15. Chemoselective capture of glycans for analysis on gold nanoparticles: carbohydrate oxime tautomers provide functional recognition by proteins. Thygesen MB, Sauer J, Jensen KJ. Chemistry 15 1649-1660 (2009)
  16. Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts. Fierobe HP, Mirgorodskaya E, Frandsen TP, Roepstorff P, Svensson B. Protein Expr. Purif. 9 159-170 (1997)
  17. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. Sevcík J, Hostinová E, Solovicová A, Gasperík J, Dauter Z, Wilson KS. FEBS J. 273 2161-2171 (2006)
  18. Modeling protein recognition of carbohydrates. Laederach A, Reilly PJ. Proteins 60 591-597 (2005)
  19. Study of the inhibition of four alpha amylases by acarbose and its 4IV-alpha-maltohexaosyl and 4IV-alpha-maltododecaosyl analogues. Yoon SH, Robyt JF. Carbohydr. Res. 338 1969-1980 (2003)
  20. Predicting and annotating catalytic residues: an information theoretic approach. Sterner B, Singh R, Berger B. J. Comput. Biol. 14 1058-1073 (2007)
  21. Purification and biochemical characterization of a thermostable extracellular glucoamylase produced by the thermotolerant fungus Paecilomyces variotii. Michelin M, Ruller R, Ruller R, Ward RJ, Moraes LA, Jorge JA, Terenzi HF, Polizeli Mde L. J. Ind. Microbiol. Biotechnol. 35 17-25 (2008)
  22. Synthesis of acarbose analogues by transglycosylation reactions of Leuconostoc mesenteroides B-512FMC and B-742CB dextransucrases. Yoon SH, Robyt JF. Carbohydr. Res. 337 2427-2435 (2002)
  23. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Nakai H, Hachem MA, Petersen BO, Westphal Y, Mannerstedt K, Baumann MJ, Dilokpimol A, Schols HA, Duus JØ, Svensson B. Biochimie 92 1818-1826 (2010)
  24. Synthesis of alpha-glucosidase I inhibitors showing antiviral (HIV-1) and immunosuppressive activity. van den Broek LA, Kat-Van Den Nieuwenhof MW, Butters TD, Van Boeckel CA. J. Pharm. Pharmacol. 48 172-178 (1996)
  25. 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Jacks AJ, Sorimachi K, Le Gal-Coëffet MF, Williamson G, Archer DB, Williamson MP. Eur. J. Biochem. 233 568-578 (1995)
  26. A Gibbs free energy correlation for automated docking of carbohydrates. Hill AD, Reilly PJ. J Comput Chem 29 1131-1141 (2008)
  27. Automated docking of glucosyl disaccharides in the glucoamylase active site. Coutinho PM, Dowd MK, Reilly PJ. Proteins 28 162-173 (1997)
  28. Some details of the reaction mechanism of glucoamylase from Aspergillus niger--kinetic and structural studies on Trp52-->Phe and Trp317-->Phe mutants. Christensen T, Stoffer BB, Svensson B, Christensen U. Eur. J. Biochem. 250 638-645 (1997)
  29. Addition of maltodextrins to the nonreducing-end of acarbose by reaction of acarbose with cyclomaltohexaose and cyclomaltodextrin glucanyltransferase. Yoon SH, Robyt JF. Carbohydr. Res. 337 509-516 (2002)
  30. Inhibition of beta-glycosidases by acarbose analogues containing cellobiose and lactose structures. Lee SB, Park KH, Robyt JF. Carbohydr. Res. 331 13-18 (2001)
  31. Molecular modelling of the interaction between the catalytic site of pig pancreatic alpha-amylase and amylose fragments. Casset F, Imberty A, Haser R, Payan F, Perez S. Eur. J. Biochem. 232 284-293 (1995)
  32. Cloning, heterologous expression, and enzymatic characterization of a thermostable glucoamylase from Talaromyces emersonii. Nielsen BR, Lehmbeck J, Frandsen TP. Protein Expr. Purif. 26 1-8 (2002)
  33. Molecular cloning of soluble trehalase from Chironomus riparius larvae, its heterologous expression in Escherichia coli and bioinformatic analysis. Forcella M, Mozzi A, Bigi A, Parenti P, Fusi P. Arch. Insect Biochem. Physiol. 81 77-89 (2012)
  34. Molecular dynamics simulations of the unfolding mechanism of the catalytic domain from Aspergillus awamori var. X100 glucoamylase. Liu HL, Wang WC, Hsu CM. J. Biomol. Struct. Dyn. 20 567-574 (2003)
  35. Structure-function relationships in glucoamylases encoded by variant Saccharomycopsis fibuligera genes. Solovicová A, Christensen T, Hostinová E, Gasperík J, Sevcĭk J, Svensson B. Eur. J. Biochem. 264 756-764 (1999)
  36. Kinetic analysis of inhibition of glucoamylase and active site mutants via chemoselective oxime immobilization of acarbose on SPR chip surfaces. Sauer J, Abou Hachem M, Svensson B, Jensen KJ, Thygesen MB. Carbohydr. Res. 375 21-28 (2013)
  37. Purification, characterization, and subsite affinities of Thermoactinomyces vulgaris R-47 maltooligosaccharide-metabolizing enzyme homologous to glucoamylases. Ichikawa K, Tonozuka T, Uotsu-Tomita R, Akeboshi H, Nishikawa A, Sakano Y. Biosci. Biotechnol. Biochem. 68 413-420 (2004)
  38. UV resonance Raman study of cation-π interactions in an indole crown ether. Schlamadinger DE, Daschbach MM, Gokel GW, Kim JE. J Raman Spectrosc 42 633-638 (2011)
  39. A cyclic phosphonamidate analogue of glucose as a selective inhibitor of inverting glycosidases. Darrow JW, Drueckhammer DG. Bioorg. Med. Chem. 4 1341-1348 (1996)
  40. Characterization of a neutral and thermostable glucoamylase from the thermophilic mold Thermomucor indicae-seudaticae: activity, stability, and structural correlation. Kumar P, Islam A, Ahmad F, Satyanarayana T. Appl. Biochem. Biotechnol. 160 879-890 (2010)
  41. pH-dependence of the fast step of maltose hydrolysis catalysed by glucoamylase G1 from Aspergillus niger. Christensen U. Biochem. J. 349 623-628 (2000)
  42. A thermostable glucoamylase from Bispora sp. MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity. Hua H, Luo H, Bai Y, Wang K, Niu C, Huang H, Shi P, Wang C, Yang P, Yao B. PLoS ONE 9 e113581 (2014)
  43. Giant Glycosidase Inhibitors: First- and Second-Generation Fullerodendrimers with a Dense Iminosugar Shell. Nierengarten JF, Schneider JP, Trinh TMN, Joosten A, Holler M, Lepage ML, Bodlenner A, García-Moreno MI, Ortiz Mellet C, Compain P. Chemistry 24 2483-2492 (2018)
  44. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases. Parasuram R, Mills CL, Wang Z, Somasundaram S, Beuning PJ, Ondrechen MJ. Methods 93 51-63 (2016)
  45. Structure of a bacterial glycoside hydrolase family 63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity. Miyazaki T, Ichikawa M, Yokoi G, Kitaoka M, Mori H, Kitano Y, Nishikawa A, Tonozuka T. FEBS J. 280 4560-4571 (2013)
  46. Synthesis and glycosidase inhibitory activity of 5-thioglucopyranosylamines. Molecular modeling of complexes with glucoamylase. Randell KD, Frandsen TP, Stoffer B, Johnson MA, Svensson B, Pinto BM. Carbohydr. Res. 321 143-156 (1999)
  47. Synthesis of 1,4-dideoxy-1,4-iminoheptitol and 1,5-dideoxy-1,5-iminooctitols from D-xylose. Kumar A, Alam MA, Rani S, Vankar YD. Carbohydr. Res. 345 1142-1148 (2010)
  48. Automated docking of glucoamylase substrates and inhibitors. Coutinho PM, Dowd MK, Reilly PJ. Ann. N. Y. Acad. Sci. 799 164-171 (1996)
  49. Characterization of SdGA, a cold-adapted glucoamylase from Saccharophagus degradans. Wayllace NM, Hedín N, Busi MV, Gomez-Casati DF. Biotechnol Rep (Amst) 30 e00625 (2021)
  50. Cloning and heterologous expression of a glucodextranase gene from Arthrobacter globiformis I42, and experimental evidence for the catalytic diad of the recombinant enzyme. Morimoto N, Yasukawa Y, Watanabe K, Unno T, Ito H, Matsui H. J. Biosci. Bioeng. 97 127-130 (2004)
  51. Crystal structure of the enzyme-product complex reveals sugar ring distortion during catalysis by family 63 inverting α-glycosidase. Miyazaki T, Nishikawa A, Tonozuka T. J. Struct. Biol. 196 479-486 (2016)
  52. Structural insight into industrially relevant glucoamylases: flexible positions of starch-binding domains. Roth C, Moroz OV, Ariza A, Skov LK, Ayabe K, Davies GJ, Wilson KS. Acta Crystallogr D Struct Biol 74 463-470 (2018)
  53. Use of a diffusion model for mono- and bicomponent anion-exchange of two isoenzymes of glucoamylase from Aspergillus niger in a fixed bed. Soriano R, Bautista LF, Martínez M, Aracil J. Biotechnol. Prog. 19 1283-1291 (2003)


Related citations provided by authors (3)

  1. Refined crystal structures of glucoamylase from Aspergillus awamori var. X100.. Aleshin AE, Hoffman C, Firsov LM, Honzatko RB J Mol Biol 238 575-91 (1994)
  2. Refined Structure of the Complex of 1-Deoxynojirimycin with Glucoamylase from Aspergillus Awamori Var. X100 to 2.4 Angstroms Resolution. Harris EMS, Aleshin AE, Firsov LM, Honzatko RB Biochemistry 32 1618- (1993)
  3. Crystal Structure of Glucoamylase from Aspergillus Awamori Var. X100 to 2.2 Angstroms Resolution. Aleshin AE, Golubev A, Firsov LM, Honzatko RB J. Biol. Chem. 267 19291- (1992)