1ad5 Citations

Crystal structure of the Src family tyrosine kinase Hck.

Nature 385 602-9 (1997)
Cited: 690 times
EuropePMC logo PMID: 9024658

Abstract

The crystal structure of the haematopoietic cell kinase Hck has been determined at 2.6/2.9 A resolution. Inhibition of enzymatic activity is a consequence of intramolecular interactions of the enzyme's Src-homology domains SH2 and SH3, with concomitant displacement of elements of the catalytic domain. The conformation of the active site has similarities with that of inactive cyclin-dependent protein kinases.

Reviews - 1ad5 mentioned but not cited (3)

  1. Structure and dynamic regulation of Src-family kinases. Engen JR, Wales TE, Hochrein JM, Meyn MA, Banu Ozkan S, Bahar I, Smithgall TE. Cell Mol Life Sci 65 3058-3073 (2008)
  2. Mechanisms of drug resistance in kinases. Barouch-Bentov R, Sauer K. Expert Opin Investig Drugs 20 153-208 (2011)
  3. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1ad5 mentioned but not cited (15)

  1. Native protein sequences are close to optimal for their structures. Kuhlman B, Baker D. Proc. Natl. Acad. Sci. U.S.A. 97 10383-10388 (2000)
  2. On the importance of a funneled energy landscape for the assembly and regulation of multidomain Src tyrosine kinases. Faraldo-Gómez JD, Roux B. Proc. Natl. Acad. Sci. U.S.A. 104 13643-13648 (2007)
  3. Involvement of a heptad repeat in the carboxyl terminus of the dihydropyridine receptor beta1a subunit in the mechanism of excitation-contraction coupling in skeletal muscle. Sheridan DC, Cheng W, Carbonneau L, Ahern CA, Coronado R. Biophys. J. 87 929-942 (2004)
  4. Alignment of protein structures in the presence of domain motions. Mosca R, Brannetti B, Schneider TR. BMC Bioinformatics 9 352 (2008)
  5. Selective targeting of distinct active site nucleophiles by irreversible SRC-family kinase inhibitors. Gushwa NN, Kang S, Chen J, Taunton J. J. Am. Chem. Soc. 134 20214-20217 (2012)
  6. Flexibility and charge asymmetry in the activation loop of Src tyrosine kinases. Banavali NK, Roux B. Proteins 74 378-389 (2009)
  7. A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function. Barouch-Bentov R, Che J, Lee CC, Yang Y, Herman A, Jia Y, Velentza A, Watson J, Sternberg L, Kim S, Ziaee N, Miller A, Jackson C, Fujimoto M, Young M, Batalov S, Liu Y, Warmuth M, Wiltshire T, Cooke MP, Sauer K. Mol. Cell 33 43-52 (2009)
  8. Unraveling the molecular architecture of a G protein-coupled receptor/β-arrestin/Erk module complex. Bourquard T, Landomiel F, Reiter E, Crépieux P, Ritchie DW, Azé J, Poupon A. Sci Rep 5 10760 (2015)
  9. Testing the Coulomb/Accessible Surface Area solvent model for protein stability, ligand binding, and protein design. am Busch MS, Lopes A, Amara N, Bathelt C, Simonson T. BMC Bioinformatics 9 148 (2008)
  10. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. Wang Q, Vogan EM, Nocka LM, Rosen CE, Zorn JA, Harrison SC, Kuriyan J. Elife 4 (2015)
  11. HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck. Pene-Dumitrescu T, Shu ST, Wales TE, Alvarado JJ, Shi H, Narute P, Moroco JA, Yeh JI, Engen JR, Smithgall TE. BMC Chem Biol 12 1 (2012)
  12. Structure, dynamics, and Hck interaction of full-length HIV-1 Nef. Jung J, Byeon IJ, Ahn J, Gronenborn AM. Proteins 79 1609-1622 (2011)
  13. Bakuchiol suppresses proliferation of skin cancer cells by directly targeting Hck, Blk, and p38 MAP kinase. Kim JE, Kim JH, Lee Y, Yang H, Heo YS, Bode AM, Lee KW, Dong Z. Oncotarget 7 14616-14627 (2016)
  14. Structure-functional prediction and analysis of cancer mutation effects in protein kinases. Dixit A, Verkhivker GM. Comput Math Methods Med 2014 653487 (2014)
  15. Nucleotide binding domain and leucine-rich repeat pyrin domain-containing protein 12: characterization of its binding to hematopoietic cell kinase. Zhang Y, Okamoto CT. Int J Biol Sci 16 1507-1525 (2020)


Reviews citing this publication (163)

  1. Free radicals in the physiological control of cell function. Dröge W. Physiol. Rev. 82 47-95 (2002)
  2. Cellular functions regulated by Src family kinases. Thomas SM, Brugge JS. Annu. Rev. Cell Dev. Biol. 13 513-609 (1997)
  3. The conformational plasticity of protein kinases. Huse M, Kuriyan J. Cell 109 275-282 (2002)
  4. Phosphoinositide kinases. Fruman DA, Meyers RE, Cantley LC. Annu. Rev. Biochem. 67 481-507 (1998)
  5. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. Kay BK, Williamson MP, Sudol M. FASEB J. 14 231-241 (2000)
  6. Regulation of protein kinases; controlling activity through activation segment conformation. Nolen B, Taylor S, Ghosh G. Mol. Cell 15 661-675 (2004)
  7. Protein tyrosine kinase structure and function. Hubbard SR, Till JH. Annu. Rev. Biochem. 69 373-398 (2000)
  8. The immunological synapse. Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. Annu. Rev. Immunol. 19 375-396 (2001)
  9. Oncogenes and cancer. Croce CM. N. Engl. J. Med. 358 502-511 (2008)
  10. Reading protein modifications with interaction domains. Seet BT, Dikic I, Zhou MM, Pawson T. Nat. Rev. Mol. Cell Biol. 7 473-483 (2006)
  11. Src kinases as therapeutic targets for cancer. Kim LC, Song L, Haura EB. Nat Rev Clin Oncol 6 587-595 (2009)
  12. Structure and regulation of Src family kinases. Boggon TJ, Eck MJ. Oncogene 23 7918-7927 (2004)
  13. The hunting of the Src. Martin GS. Nat. Rev. Mol. Cell Biol. 2 467-475 (2001)
  14. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Gallo KA, Johnson GL. Nat. Rev. Mol. Cell Biol. 3 663-672 (2002)
  15. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  16. Crk family adaptors-signalling complex formation and biological roles. Feller SM. Oncogene 20 6348-6371 (2001)
  17. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Quintás-Cardama A, Cortes J. Blood 113 1619-1630 (2009)
  18. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Bhattacharyya RP, Reményi A, Yeh BJ, Lim WA. Annu. Rev. Biochem. 75 655-680 (2006)
  19. Genetic analysis of B cell antigen receptor signaling. Kurosaki T. Annu. Rev. Immunol. 17 555-592 (1999)
  20. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Hantschel O, Superti-Furga G. Nat. Rev. Mol. Cell Biol. 5 33-44 (2004)
  21. Selected glimpses into the activation and function of Src kinase. Bjorge JD, Jakymiw A, Fujita DJ. Oncogene 19 5620-5635 (2000)
  22. Src protein-tyrosine kinase structure and regulation. Roskoski R. Biochem. Biophys. Res. Commun. 324 1155-1164 (2004)
  23. Src family tyrosine kinases and growth factor signaling. Abram CL, Courtneidge SA. Exp. Cell Res. 254 1-13 (2000)
  24. Structures of Src-family tyrosine kinases. Sicheri F, Kuriyan J. Curr. Opin. Struct. Biol. 7 777-785 (1997)
  25. The origin of protein interactions and allostery in colocalization. Kuriyan J, Eisenberg D. Nature 450 983-990 (2007)
  26. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Genestra M. Cell. Signal. 19 1807-1819 (2007)
  27. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu. Rev. Biochem. 81 587-613 (2012)
  28. Phosphotyrosine-binding domains in signal transduction. Yaffe MB. Nat. Rev. Mol. Cell Biol. 3 177-186 (2002)
  29. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. Mol. Cell 42 9-22 (2011)
  30. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Traxler P, Furet P. Pharmacol. Ther. 82 195-206 (1999)
  31. Polyproline-II helix in proteins: structure and function. Adzhubei AA, Sternberg MJ, Makarov AA. J. Mol. Biol. 425 2100-2132 (2013)
  32. Resveratrol: one molecule, many targets. Pirola L, Fröjdö S. IUBMB Life 60 323-332 (2008)
  33. Positive and negative regulation of T-cell activation through kinases and phosphatases. Mustelin T, Taskén K. Biochem. J. 371 15-27 (2003)
  34. SH2 and PTB domains in tyrosine kinase signaling. Schlessinger J, Lemmon MA. Sci. STKE 2003 RE12 (2003)
  35. Autoinhibitory domains: modular effectors of cellular regulation. Pufall MA, Graves BJ. Annu. Rev. Cell Dev. Biol. 18 421-462 (2002)
  36. The structure, regulation, and function of ZAP-70. Au-Yeung BB, Deindl S, Hsu LY, Palacios EH, Levin SE, Kuriyan J, Weiss A. Immunol. Rev. 228 41-57 (2009)
  37. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Barford D, Neel BG. Structure 6 249-254 (1998)
  38. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. Johnson LN, Lowe ED, Noble ME, Owen DJ. FEBS Lett. 430 1-11 (1998)
  39. SH3 domains and drug design: ligands, structure, and biological function. Dalgarno DC, Botfield MC, Rickles RJ. Biopolymers 43 383-400 (1997)
  40. Variation on an Src-like theme. Harrison SC. Cell 112 737-740 (2003)
  41. Positive and negative regulation of Src-family membrane kinases by CD45. Thomas ML, Brown EJ. Immunol. Today 20 406-411 (1999)
  42. Unnatural ligands for engineered proteins: new tools for chemical genetics. Bishop A, Buzko O, Heyeck-Dumas S, Jung I, Kraybill B, Liu Y, Shah K, Ulrich S, Witucki L, Yang F, Zhang C, Shokat KM. Annu Rev Biophys Biomol Struct 29 577-606 (2000)
  43. Protein tyrosine kinase inhibitors as novel therapeutic agents. Levitzki A. Pharmacol. Ther. 82 231-239 (1999)
  44. The Src, Syk, and Tec family kinases: distinct types of molecular switches. Bradshaw JM. Cell. Signal. 22 1175-1184 (2010)
  45. Tyrosine kinases and their substrates in B lymphocytes. Kurosaki T, Hikida M. Immunol. Rev. 228 132-148 (2009)
  46. Structure-activity relationship: analyses of p-glycoprotein substrates and inhibitors. Wang RB, Kuo CL, Lien LL, Lien EJ. J Clin Pharm Ther 28 203-228 (2003)
  47. The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Li Z, Xie Z. Pflugers Arch. 457 635-644 (2009)
  48. The chemical biology of protein phosphorylation. Tarrant MK, Cole PA. Annu. Rev. Biochem. 78 797-825 (2009)
  49. Recognition of proline-rich motifs by protein-protein-interaction domains. Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H. Angew. Chem. Int. Ed. Engl. 44 2852-2869 (2005)
  50. Structural basis of the unfolded protein response. Korennykh A, Walter P. Annu. Rev. Cell Dev. Biol. 28 251-277 (2012)
  51. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Horne WC, Sanjay A, Bruzzaniti A, Baron R. Immunol. Rev. 208 106-125 (2005)
  52. Redox-linked signal transduction pathways for protein tyrosine kinase activation. Nakashima I, Kato M, Akhand AA, Suzuki H, Takeda K, Hossain K, Kawamoto Y. Antioxid. Redox Signal. 4 517-531 (2002)
  53. The modular logic of signaling proteins: building allosteric switches from simple binding domains. Lim WA. Curr. Opin. Struct. Biol. 12 61-68 (2002)
  54. The road to Src. Martin GS. Oncogene 23 7910-7917 (2004)
  55. Recent advances in the discovery of flavonoids and analogs with high-affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance. Boumendjel A, Di Pietro A, Dumontet C, Barron D. Med Res Rev 22 512-529 (2002)
  56. Diversity in protein recognition by PTB domains. Forman-Kay JD, Pawson T. Curr. Opin. Struct. Biol. 9 690-695 (1999)
  57. Early events in M-CSF receptor signaling. Bourette RP, Rohrschneider LR. Growth Factors 17 155-166 (2000)
  58. Chemical genetic approaches for the elucidation of signaling pathways. Alaimo PJ, Shogren-Knaak MA, Shokat KM. Curr Opin Chem Biol 5 360-367 (2001)
  59. Fyn, a Src family tyrosine kinase. Resh MD. Int. J. Biochem. Cell Biol. 30 1159-1162 (1998)
  60. c-Abl: activation and nuclear targets. Shaul Y. Cell Death Differ. 7 10-16 (2000)
  61. Insights into Src kinase functions: structural comparisons. Williams JC, Wierenga RK, Saraste M. Trends Biochem. Sci. 23 179-184 (1998)
  62. Peroxynitrite activates kinases of the src family and upregulates tyrosine phosphorylation signaling. Minetti M, Mallozzi C, Di Stasi AM. Free Radic. Biol. Med. 33 744-754 (2002)
  63. Structural modes of stabilization of permissive phosphorylation sites in protein kinases: distinct strategies in Ser/Thr and Tyr kinases. Krupa A, Preethi G, Srinivasan N. J. Mol. Biol. 339 1025-1039 (2004)
  64. Oncogenic re-wiring of cellular signaling pathways. Pawson T, Warner N. Oncogene 26 1268-1275 (2007)
  65. The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Liu J, Xie ZJ. Biochim. Biophys. Acta 1802 1237-1245 (2010)
  66. Protein-protein interactions in the allosteric regulation of protein kinases. Pellicena P, Kuriyan J. Curr. Opin. Struct. Biol. 16 702-709 (2006)
  67. Kinome signaling through regulated protein-protein interactions in normal and cancer cells. Pawson T, Kofler M. Curr. Opin. Cell Biol. 21 147-153 (2009)
  68. Dynamic interactions of proteins in complex networks: a more structured view. Stein A, Pache RA, Bernadó P, Pons M, Aloy P. FEBS J. 276 5390-5405 (2009)
  69. C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)--endogenous negative regulators of Src-family protein kinases. Chong YP, Mulhern TD, Cheng HC. Growth Factors 23 233-244 (2005)
  70. CD45 and Src-family kinases: and now for something completely different. Ashwell JD, D'Oro U. Immunol. Today 20 412-416 (1999)
  71. SH2 domains: modulators of nonreceptor tyrosine kinase activity. Filippakopoulos P, Müller S, Knapp S. Curr. Opin. Struct. Biol. 19 643-649 (2009)
  72. Development of inhibitors for protein tyrosine kinases. Al-Obeidi FA, Lam KS. Oncogene 19 5690-5701 (2000)
  73. Recent advances in chemical approaches to the study of biological systems. Shogren-Knaak MA, Alaimo PJ, Shokat KM. Annu. Rev. Cell Dev. Biol. 17 405-433 (2001)
  74. Structural aspects of protein kinase control-role of conformational flexibility. Engh RA, Bossemeyer D. Pharmacol. Ther. 93 99-111 (2002)
  75. Tec family of protein-tyrosine kinases: an overview of their structure and function. Mano H. Cytokine Growth Factor Rev. 10 267-280 (1999)
  76. BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations. Pane F, Intrieri M, Quintarelli C, Izzo B, Muccioli GC, Salvatore F. Oncogene 21 8652-8667 (2002)
  77. Autoinhibition and adapter function of Syk. Kulathu Y, Grothe G, Reth M. Immunol. Rev. 232 286-299 (2009)
  78. Src family kinases as mediators of endothelial permeability: effects on inflammation and metastasis. Kim MP, Park SI, Kopetz S, Gallick GE. Cell Tissue Res. 335 249-259 (2009)
  79. Src inhibitors: drugs for the treatment of osteoporosis, cancer or both? Susva M, Missbach M, Green J. Trends Pharmacol. Sci. 21 489-495 (2000)
  80. The capable ABL: what is its biological function? Wang JY. Mol. Cell. Biol. 34 1188-1197 (2014)
  81. Determinants of substrate recognition in nonreceptor tyrosine kinases. Miller WT. Acc. Chem. Res. 36 393-400 (2003)
  82. Modular evolution of phosphorylation-based signalling systems. Jin J, Pawson T. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 2540-2555 (2012)
  83. New insights into the regulation and functions of Tec family tyrosine kinases in the immune system. Miller AT, Berg LJ. Curr. Opin. Immunol. 14 331-340 (2002)
  84. Protein tyrosine kinases: structure, substrate specificity, and drug discovery. al-Obeidi FA, Wu JJ, Lam KS. Biopolymers 47 197-223 (1998)
  85. Retroviral oncogenes: a historical primer. Vogt PK. Nat. Rev. Cancer 12 639-648 (2012)
  86. Docking Screens for Novel Ligands Conferring New Biology. Irwin JJ, Shoichet BK. J. Med. Chem. 59 4103-4120 (2016)
  87. Mechanisms of transformation by the BCR-ABL oncogene: new perspectives in the post-imatinib era. Van Etten RA. Leuk. Res. 28 Suppl 1 S21-8 (2004)
  88. Redox control of catalytic activities of membrane-associated protein tyrosine kinases. Nakashima I, Takeda K, Kawamoto Y, Okuno Y, Kato M, Suzuki H. Arch. Biochem. Biophys. 434 3-10 (2005)
  89. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. Liu BA, Engelmann BW, Nash PD. FEBS Lett. 586 2597-2605 (2012)
  90. A glimpse of structural biology through X-ray crystallography. Shi Y. Cell 159 995-1014 (2014)
  91. Regulation of cardiac ion channels via non-genomic action of sex steroid hormones: implication for the gender difference in cardiac arrhythmias. Furukawa T, Kurokawa J. Pharmacol. Ther. 115 106-115 (2007)
  92. Treatment for chronic myelogenous leukemia: the long road to imatinib. Hunter T. J. Clin. Invest. 117 2036-2043 (2007)
  93. Role of Btk in B cell development and signaling. Desiderio S. Curr. Opin. Immunol. 9 534-540 (1997)
  94. Membrane domains and the immunological synapse: keeping T cells resting and ready. Dustin ML. J. Clin. Invest. 109 155-160 (2002)
  95. Cellular functions regulated by phosphorylation of EGFR on Tyr845. Sato K. Int J Mol Sci 14 10761-10790 (2013)
  96. Biology of Aurora A kinase: implications in cancer manifestation and therapy. Karthigeyan D, Prasad SB, Shandilya J, Agrawal S, Kundu TK. Med Res Rev 31 757-793 (2011)
  97. Lck protein tyrosine kinase is a key regulator of T-cell activation and a target for signal intervention by Herpesvirus saimiri and other viral gene products. Isakov N, Biesinger B. Eur. J. Biochem. 267 3413-3421 (2000)
  98. Signal transduction: clamping down on Src activity. Mayer BJ. Curr. Biol. 7 R295-8 (1997)
  99. Multiple roles for Src in a PDGF-stimulated cell. DeMali KA, Godwin SL, Soltoff SP, Kazlauskas A. Exp. Cell Res. 253 271-279 (1999)
  100. Phosphoryltyrosyl mimetics in the design of peptide-based signal transduction inhibitors. Burke TR, Yao ZJ, Liu DG, Voigt J, Gao Y. Biopolymers 60 32-44 (2001)
  101. Disabling Abl-perspectives on Abl kinase regulation and cancer therapeutics. Sawyers CL. Cancer Cell 1 13-15 (2002)
  102. Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft. Taylor SS, Radzio-Andzelm E, Madhusudan, Cheng X, Ten Eyck L, Narayana N. Pharmacol. Ther. 82 133-141 (1999)
  103. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Wagner MJ, Stacey MM, Liu BA, Pawson T. Cold Spring Harb Perspect Biol 5 a008987 (2013)
  104. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch. Pharm. (Weinheim) 343 193-206 (2010)
  105. Synthetic modular systems--reverse engineering of signal transduction. Pawson T, Linding R. FEBS Lett. 579 1808-1814 (2005)
  106. SRChing for the substrates of Src. Reynolds AB, Kanner SB, Bouton AH, Schaller MD, Weed SA, Flynn DC, Parsons JT. Oncogene 33 4537-4547 (2014)
  107. Natural products as kinase inhibitors. Liu J, Hu Y, Waller DL, Wang J, Liu Q. Nat Prod Rep 29 392-403 (2012)
  108. Spatiotemporal regulation of Src and its substrates at invadosomes. Boateng LR, Huttenlocher A. Eur. J. Cell Biol. 91 878-888 (2012)
  109. Keeping the (kinase) party going: SLP-76 and ITK dance to the beat. Qi Q, August A. Sci. STKE 2007 pe39 (2007)
  110. Medicinal chemistry of ATP synthase: a potential drug target of dietary polyphenols and amphibian antimicrobial peptides. Ahmad Z, Laughlin TF. Curr. Med. Chem. 17 2822-2836 (2010)
  111. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships. Di Pietro A, Dayan G, Conseil G, Steinfels E, Krell T, Trompier D, Baubichon-Cortay H, Jault J. Braz. J. Med. Biol. Res. 32 925-939 (1999)
  112. Protein kinase inhibition: natural and synthetic variations on a theme. Taylor SS, Radzio-Andzelm E. Curr Opin Chem Biol 1 219-226 (1997)
  113. The protein kinase activity modulation sites: mechanisms for cellular regulation - targets for therapeutic intervention. Engh RA, Bossemeyer D. Adv. Enzyme Regul. 41 121-149 (2001)
  114. A review of kinases implicated in pancreatic cancer. Giroux V, Dagorn JC, Iovanna JL. Pancreatology 9 738-754 (2009)
  115. ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Duda T, Venkataraman V, Ravichandran S, Sharma RK. Peptides 26 969-984 (2005)
  116. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Poh AR, O'Donoghue RJ, Ernst M. Oncotarget 6 15752-15771 (2015)
  117. Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Sharma RK, Yadav P, Duda T. Can. J. Physiol. Pharmacol. 79 682-691 (2001)
  118. Regulation of T-cell responses and disease by tec kinase Itk. August A, Ragin MJ. Int Rev Immunol 31 155-165 (2012)
  119. Small molecule inhibitors of the platelet-derived growth factor receptor, the fibroblast growth factor receptor, and Src family tyrosine kinases. Showalter HD, Kraker AJ. Pharmacol. Ther. 76 55-71 (1997)
  120. Structural elements and allosteric mechanisms governing regulation and catalysis of CSK-family kinases and their inhibition of Src-family kinases. Ia KK, Mills RD, Hossain MI, Chan KC, Jarasrassamee B, Jorissen RN, Cheng HC. Growth Factors 28 329-350 (2010)
  121. The discovery of modular binding domains: building blocks of cell signalling. Mayer BJ. Nat. Rev. Mol. Cell Biol. 16 691-698 (2015)
  122. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs. Wright B, Spencer JP, Lovegrove JA, Gibbins JM. Cardiovasc. Res. 97 13-22 (2013)
  123. Sin: good or bad? A T lymphocyte perspective. Alexandropoulos K, Donlin LT, Xing L, Regelmann AG. Immunol. Rev. 192 181-195 (2003)
  124. Ste20-like kinase SLK, at the crossroads: a matter of life and death. Al-Zahrani KN, Baron KD, Sabourin LA. Cell Adh Migr 7 1-10 (2013)
  125. A crystal milestone: the structure of regulated Src. Superti-Furga G, Gonfloni S. Bioessays 19 447-450 (1997)
  126. Molecular interdiction of Src-family kinase signaling in hematopoietic cells. Geahlen RL, Handley MD, Harrison ML. Oncogene 23 8024-8032 (2004)
  127. Pathways of metastasis suppression in bladder cancer. Said N, Theodorescu D. Cancer Metastasis Rev. 28 327-333 (2009)
  128. Src family kinases and the MEK/ERK pathway in the regulation of myeloid differentiation and myeloid leukemogenesis. Johnson DE. Adv. Enzyme Regul. 48 98-112 (2008)
  129. The role of the protein tyrosine phosphatase CD45 in regulation of B lymphocyte activation. Justement LB. Int. Rev. Immunol. 20 713-738 (2001)
  130. X-linked agammaglobulinemia: lack of mature B lineage cells caused by mutations in the Btk kinase. Smith CI, Bäckesjö CM, Berglöf A, Brandén LJ, Islam T, Mattsson PT, Mohamed AJ, Müller S, Nore B, Vihinen M. Springer Semin. Immunopathol. 19 369-381 (1998)
  131. The role of membrane rafts in Lck transport, regulation and signalling in T-cells. Ventimiglia LN, Alonso MA. Biochem. J. 454 169-179 (2013)
  132. Chemical approaches to the study of protein tyrosine kinases and their implications for mechanism and inhibitor design. Cole PA, Sondhi D, Kim K. Pharmacol. Ther. 82 219-229 (1999)
  133. Conformational diversity of catalytic cores of protein kinases. Sowadski JM, Epstein LF, Lankiewicz L, Karlsson R. Pharmacol. Ther. 82 157-164 (1999)
  134. Inhibition and activation of c-Src: the head and tail of a coin. Fukami Y, Nagao T, Iwasaki T, Sato K. Pharmacol. Ther. 93 263-270 (2002)
  135. Meeting at mitosis: cell cycle-specific regulation of c-Src by RPTPalpha. Mustelin T, Hunter T. Sci. STKE 2002 pe3 (2002)
  136. SPLINTS: small-molecule protein ligand interface stabilizers. Fischer ES, Park E, Eck MJ, Thomä NH. Curr. Opin. Struct. Biol. 37 115-122 (2016)
  137. The Fyn-ADAP Axis: Cytotoxicity Versus Cytokine Production in Killer Cells. Gerbec ZJ, Thakar MS, Malarkannan S. Front Immunol 6 472 (2015)
  138. Allosteric networks governing regulation and catalysis of Src-family protein tyrosine kinases: implications for disease-associated kinases. Cheng HC, Johnson TM, Mills RD, Chong YP, Chan KC, Culvenor JG. Clin. Exp. Pharmacol. Physiol. 37 93-101 (2010)
  139. Consequences of a mutation in the UNC119 gene for T cell function in idiopathic CD4 lymphopenia. Gorska MM, Alam R. Curr Allergy Asthma Rep 12 396-401 (2012)
  140. Engineering protein kinases with distinct nucleotide specificities and inhibitor sensitivities by mutation of a single amino acid. Cohen P, Goedert M. Chem. Biol. 5 R161-4 (1998)
  141. Contribution of phosphoproteomics in understanding SRC signaling in normal and tumor cells. Sirvent A, Urbach S, Roche S. Proteomics 15 232-244 (2015)
  142. Modeling conformational transitions in kinases by molecular dynamics simulations: achievements, difficulties, and open challenges. D'Abramo M, Besker N, Chillemi G, Grottesi A. Front Genet 5 128 (2014)
  143. New trends in macromolecular X-ray crystallography. Wery JP, Schevitz RW. Curr Opin Chem Biol 1 365-369 (1997)
  144. Update on lymphocyte specific kinase inhibitors: a patent survey. Martin MW, Machacek MR. Expert Opin Ther Pat 20 1573-1593 (2010)
  145. Evolution of a dynamic molecular switch. Taylor SS, Meharena HS, Kornev AP. IUBMB Life 71 672-684 (2019)
  146. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Dornan GL, Burke JE. Front Immunol 9 575 (2018)
  147. NMR structure of phospho-tyrosine signaling complexes. Post CB, Gaul BS, Eisenmesser EZ, Schneider ML. Med Res Rev 19 295-305 (1999)
  148. Protein Adducts and Protein Oxidation as Molecular Mechanisms of Flavonoid Bioactivity. Joyner PM. Molecules 26 5102 (2021)
  149. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Ortiz MA, Mikhailova T, Li X, Porter BA, Bah A, Kotula L. Cell Commun Signal 19 67 (2021)
  150. The modular architecture of leukocyte cell-surface receptors. Campbell ID. Immunol. Rev. 163 11-18 (1998)
  151. Implications for Src kinases in hematopoiesis: signal transduction therapeutics. Sinha S, Corey SJ. J. Hematother. Stem Cell Res. 8 465-480 (1999)
  152. New Structural Perspectives in G Protein-Coupled Receptor-Mediated Src Family Kinase Activation. Berndt S, Liebscher I. Int J Mol Sci 22 6489 (2021)
  153. Structural insights into redox-active cysteine residues of the Src family kinases. Heppner DE. Redox Biol 41 101934 (2021)
  154. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Shah NH, Amacher JF, Nocka LM, Kuriyan J. Crit. Rev. Biochem. Mol. Biol. 53 535-563 (2018)
  155. ZAP-70 in Signaling, Biology, and Disease. Au-Yeung BB, Shah NH, Shen L, Weiss A. Annu. Rev. Immunol. 36 127-156 (2018)
  156. Detailed analysis of the atrial natriuretic factor receptor hormone-binding domain crystal structure. van den Akker F. Can. J. Physiol. Pharmacol. 79 692-704 (2001)
  157. Dynamic regulatory features of the protein tyrosine kinases. Amatya N, Lin DY, Andreotti AH. Biochem Soc Trans 47 1101-1116 (2019)
  158. Protein kinases entering the information age. Wang JY. J. Biomed. Sci. 5 73 (1998)
  159. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. Staudt RP, Alvarado JJ, Emert-Sedlak LA, Shi H, Shu ST, Wales TE, Engen JR, Smithgall TE. J Biol Chem 295 15158-15171 (2020)
  160. Three-Dimensional Interactions Analysis of the Anticancer Target c-Src Kinase with Its Inhibitors. Jha V, Macchia M, Tuccinardi T, Poli G. Cancers (Basel) 12 (2020)
  161. Viruses: exquisite models for cell strategies. Bernardi F, Haenni AL. Biochimie 80 1035-1041 (1998)
  162. Compounds from Natural Sources as Protein Kinase Inhibitors. Baier A, Szyszka R. Biomolecules 10 (2020)
  163. On the relevance of defining protein structures in cancer research. Muñoz IG, Blanco FJ, Montoya G. Clin Transl Oncol 10 204-212 (2008)

Articles citing this publication (509)

  1. Three-dimensional structure of the tyrosine kinase c-Src. Xu W, Harrison SC, Eck MJ. Nature 385 595-602 (1997)
  2. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL. Mol. Cell 6 909-919 (2000)
  3. Expressed protein ligation: a general method for protein engineering. Muir TW, Sondhi D, Cole PA. Proc. Natl. Acad. Sci. U.S.A. 95 6705-6710 (1998)
  4. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Xu W, Doshi A, Lei M, Eck MJ, Harrison SC. Mol. Cell 3 629-638 (1999)
  5. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ. Cancer Cell 11 217-227 (2007)
  6. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Elia AE, Rellos P, Haire LF, Chao JW, Ivins FJ, Hoepker K, Mohammad D, Cantley LC, Smerdon SJ, Yaffe MB. Cell 115 83-95 (2003)
  7. Crystal structure of the tyrosine phosphatase SHP-2. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Cell 92 441-450 (1998)
  8. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ. Cell 90 859-869 (1997)
  9. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Wary KK, Mariotti A, Zurzolo C, Giancotti FG. Cell 94 625-634 (1998)
  10. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, Zheng W, Austin CP. Proc. Natl. Acad. Sci. U.S.A. 103 11473-11478 (2006)
  11. Molecular dynamics and protein function. Karplus M, Kuriyan J. Proc. Natl. Acad. Sci. U.S.A. 102 6679-6685 (2005)
  12. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee CH, Kuriyan J, Miller WT. Nature 385 650-653 (1997)
  13. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. Couet J, Sargiacomo M, Lisanti MP. J. Biol. Chem. 272 30429-30438 (1997)
  14. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Shamah SM, Lin MZ, Goldberg JL, Estrach S, Sahin M, Hu L, Bazalakova M, Neve RL, Corfas G, Debant A, Greenberg ME. Cell 105 233-244 (2001)
  15. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH. Cell 105 721-732 (2001)
  16. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Proc. Natl. Acad. Sci. U.S.A. 100 13298-13302 (2003)
  17. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, Wemmer DE, Zhang X, Kuriyan J. Cell 137 1293-1307 (2009)
  18. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, Yan C, McConnell P, Spessard C, Banotai C, Mueller WT, Delaney A, Omer C, Sebolt-Leopold J, Dudley DT, Leung IK, Flamme C, Warmus J, Kaufman M, Barrett S, Tecle H, Hasemann CA. Nat. Struct. Mol. Biol. 11 1192-1197 (2004)
  19. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. Cloutier JF, Veillette A. J. Exp. Med. 189 111-121 (1999)
  20. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. Armon A, Graur D, Ben-Tal N. J. Mol. Biol. 307 447-463 (2001)
  21. The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Durocher D, Taylor IA, Sarbassova D, Haire LF, Westcott SL, Jackson SP, Smerdon SJ, Yaffe MB. Mol. Cell 6 1169-1182 (2000)
  22. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD. J. Cell Biol. 143 65-79 (1998)
  23. Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE, Kahana JA, Kral AM, Leander K, Lee LL, Malinowski J, McAvoy EM, Nahas DD, Robinson RG, Huber HE. Biochem. J. 385 399-408 (2005)
  24. Src tyrosine kinase is a novel direct effector of G proteins. Ma YC, Huang J, Ali S, Lowry W, Huang XY. Cell 102 635-646 (2000)
  25. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R. EMBO J. 18 2137-2148 (1999)
  26. Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12. Huse M, Chen YG, Massagué J, Kuriyan J. Cell 96 425-436 (1999)
  27. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J. Cell 105 115-126 (2001)
  28. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Schindler T, Sicheri F, Pico A, Gazit A, Levitzki A, Kuriyan J. Mol. Cell 3 639-648 (1999)
  29. A myristoyl/phosphotyrosine switch regulates c-Abl. Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J, Superti-Furga G. Cell 112 845-857 (2003)
  30. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Azam M, Seeliger MA, Gray NS, Kuriyan J, Daley GQ. Nat. Struct. Mol. Biol. 15 1109-1118 (2008)
  31. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Cell 113 343-355 (2003)
  32. Staging and resetting T cell activation in SMACs. Freiberg BA, Kupfer H, Maslanik W, Delli J, Kappler J, Zaller DM, Kupfer A. Nat. Immunol. 3 911-917 (2002)
  33. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Conseil G, Baubichon-Cortay H, Dayan G, Jault JM, Barron D, Di Pietro A. Proc. Natl. Acad. Sci. U.S.A. 95 9831-9836 (1998)
  34. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. Cell 106 745-757 (2001)
  35. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Yoo SK, Starnes TW, Deng Q, Huttenlocher A. Nature 480 109-112 (2011)
  36. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Saharinen P, Takaluoma K, Silvennoinen O. Mol. Cell. Biol. 20 3387-3395 (2000)
  37. How does a drug molecule find its target binding site? Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA, Shaw DE. J. Am. Chem. Soc. 133 9181-9183 (2011)
  38. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Gledhill JR, Montgomery MG, Leslie AG, Walker JE. Proc. Natl. Acad. Sci. U.S.A. 104 13632-13637 (2007)
  39. RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Chang BY, Conroy KB, Machleder EM, Cartwright CA. Mol. Cell. Biol. 18 3245-3256 (1998)
  40. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T. Structure 13 861-871 (2005)
  41. The C2 domain of PKCdelta is a phosphotyrosine binding domain. Benes CH, Wu N, Elia AE, Dharia T, Cantley LC, Soltoff SP. Cell 121 271-280 (2005)
  42. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. Proc. Natl. Acad. Sci. U.S.A. 106 21608-21613 (2009)
  43. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Wen ST, Van Etten RA. Genes Dev. 11 2456-2467 (1997)
  44. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. Mol. Cell 7 1047-1057 (2001)
  45. A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. Zheng XM, Resnick RJ, Shalloway D. EMBO J. 19 964-978 (2000)
  46. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Deindl S, Kadlecek TA, Brdicka T, Cao X, Weiss A, Kuriyan J. Cell 129 735-746 (2007)
  47. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massagué J, Shi Y. Mol. Cell 8 1277-1289 (2001)
  48. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Brazin KN, Mallis RJ, Fulton DB, Andreotti AH. Proc. Natl. Acad. Sci. U.S.A. 99 1899-1904 (2002)
  49. A Src-like inactive conformation in the abl tyrosine kinase domain. Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M, Karplus M, Cole PA, Kuriyan J. PLoS Biol. 4 e144 (2006)
  50. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Rao VD, Misra S, Boronenkov IV, Anderson RA, Hurley JH. Cell 94 829-839 (1998)
  51. Structural basis for selective inhibition of Src family kinases by PP1. Liu Y, Bishop A, Witucki L, Kraybill B, Shimizu E, Tsien J, Ubersax J, Blethrow J, Morgan DO, Shokat KM. Chem. Biol. 6 671-678 (1999)
  52. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. McGee AW, Dakoji SR, Olsen O, Bredt DS, Lim WA, Prehoda KE. Mol. Cell 8 1291-1301 (2001)
  53. Design of allele-specific inhibitors to probe protein kinase signaling. Bishop AC, Shah K, Liu Y, Witucki L, Kung C, Shokat KM. Curr. Biol. 8 257-266 (1998)
  54. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Roumiantsev S, Shah NP, Gorre ME, Nicoll J, Brasher BB, Sawyers CL, Van Etten RA. Proc. Natl. Acad. Sci. U.S.A. 99 10700-10705 (2002)
  55. A conserved protonation-dependent switch controls drug binding in the Abl kinase. Shan Y, Seeliger MA, Eastwood MP, Frank F, Xu H, Jensen MØ, Dror RO, Kuriyan J, Shaw DE. Proc. Natl. Acad. Sci. U.S.A. 106 139-144 (2009)
  56. Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Zhu X, Kim JL, Newcomb JR, Rose PE, Stover DR, Toledo LM, Zhao H, Morgenstern KA. Structure 7 651-661 (1999)
  57. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Li J, Williams BL, Haire LF, Goldberg M, Wilker E, Durocher D, Yaffe MB, Jackson SP, Smerdon SJ. Mol. Cell 9 1045-1054 (2002)
  58. The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling. Arold S, Franken P, Strub MP, Hoh F, Benichou S, Benarous R, Dumas C. Structure 5 1361-1372 (1997)
  59. The 2.35 A crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. Williams JC, Weijland A, Gonfloni S, Thompson A, Courtneidge SA, Superti-Furga G, Wierenga RK. J. Mol. Biol. 274 757-775 (1997)
  60. Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. Brenman JE, Topinka JR, Cooper EC, McGee AW, Rosen J, Milroy T, Ralston HJ, Bredt DS. J. Neurosci. 18 8805-8813 (1998)
  61. A survey of left-handed polyproline II helices. Stapley BJ, Creamer TP. Protein Sci. 8 587-595 (1999)
  62. An intramolecular SH3-domain interaction regulates c-Abl activity. Barilá D, Superti-Furga G. Nat. Genet. 18 280-282 (1998)
  63. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. Yang J, Roe SM, Cliff MJ, Williams MA, Ladbury JE, Cohen PT, Barford D. EMBO J. 24 1-10 (2005)
  64. A novel protein kinase that controls carbon catabolite repression in bacteria. Reizer J, Hoischen C, Titgemeyer F, Rivolta C, Rabus R, Stülke J, Karamata D, Saier MH, Hillen W. Mol. Microbiol. 27 1157-1169 (1998)
  65. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Saharinen P, Vihinen M, Silvennoinen O. Mol. Biol. Cell 14 1448-1459 (2003)
  66. Domain rearrangements in protein evolution. Björklund AK, Ekman D, Light S, Frey-Skött J, Elofsson A. J. Mol. Biol. 353 911-923 (2005)
  67. High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Seeliger MA, Young M, Henderson MN, Pellicena P, King DS, Falick AM, Kuriyan J. Protein Sci. 14 3135-3139 (2005)
  68. Complex formation with focal adhesion kinase: A mechanism to regulate activity and subcellular localization of Src kinases. Schaller MD, Hildebrand JD, Parsons JT. Mol. Biol. Cell 10 3489-3505 (1999)
  69. Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase. Nagar B, Hantschel O, Seeliger M, Davies JM, Weis WI, Superti-Furga G, Kuriyan J. Mol. Cell 21 787-798 (2006)
  70. Functional roles for fatty acylated amino-terminal domains in subcellular localization. McCabe JB, Berthiaume LG. Mol. Biol. Cell 10 3771-3786 (1999)
  71. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, Salah E, Neudecker P, Kay LE, Turk BE, Superti-Furga G, Pawson T, Knapp S. Cell 134 793-803 (2008)
  72. Active site-directed protein regulation. Kobe B, Kemp BE. Nature 402 373-376 (1999)
  73. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. Lowe ED, Noble ME, Skamnaki VT, Oikonomakos NG, Owen DJ, Johnson LN. EMBO J. 16 6646-6658 (1997)
  74. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Binns KL, Taylor PP, Sicheri F, Pawson T, Holland SJ. Mol. Cell. Biol. 20 4791-4805 (2000)
  75. Activation pathway of Src kinase reveals intermediate states as targets for drug design. Shukla D, Meng Y, Roux B, Pande VS. Nat Commun 5 3397 (2014)
  76. Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. Pike AC, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH, Knapp S. EMBO J. 27 704-714 (2008)
  77. A new method for isolating tyrosine kinase substrates used to identify fish, an SH3 and PX domain-containing protein, and Src substrate. Lock P, Abram CL, Gibson T, Courtneidge SA. EMBO J. 17 4346-4357 (1998)
  78. PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. Liang F, Liang J, Wang WQ, Sun JP, Udho E, Zhang ZY. J Biol Chem 282 5413-5419 (2007)
  79. Engineering Src family protein kinases with unnatural nucleotide specificity. Liu Y, Shah K, Yang F, Witucki L, Shokat KM. Chem. Biol. 5 91-101 (1998)
  80. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. Holdorf AD, Green JM, Levin SD, Denny MF, Straus DB, Link V, Changelian PS, Allen PM, Shaw AS. J. Exp. Med. 190 375-384 (1999)
  81. Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Oda H, Kumar S, Howley PM. Proc. Natl. Acad. Sci. U.S.A. 96 9557-9562 (1999)
  82. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Seeliger MA, Nagar B, Frank F, Cao X, Henderson MN, Kuriyan J. Structure 15 299-311 (2007)
  83. Crystal structure of aurora-2, an oncogenic serine/threonine kinase. Cheetham GM, Knegtel RM, Coll JT, Renwick SB, Swenson L, Weber P, Lippke JA, Austen DA. J. Biol. Chem. 277 42419-42422 (2002)
  84. Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Fröjdö S, Cozzone D, Vidal H, Pirola L. Biochem. J. 406 511-518 (2007)
  85. Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. Tavares GA, Panepucci EH, Brunger AT. Mol. Cell 8 1313-1325 (2001)
  86. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Larson SM, Davidson AR. Protein Sci. 9 2170-2180 (2000)
  87. A novel inhibitor of the tyrosine kinase Src suppresses phosphorylation of its major cellular substrates and reduces bone resorption in vitro and in rodent models in vivo. Missbach M, Jeschke M, Feyen J, Müller K, Glatt M, Green J, Susa M. Bone 24 437-449 (1999)
  88. Multidomain assembled states of Hck tyrosine kinase in solution. Yang S, Blachowicz L, Makowski L, Roux B. Proc. Natl. Acad. Sci. U.S.A. 107 15757-15762 (2010)
  89. Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Chan PM, Ilangumaran S, La Rose J, Chakrabartty A, Rottapel R. Mol. Cell. Biol. 23 3067-3078 (2003)
  90. Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Wiseman RL, Zhang Y, Lee KP, Harding HP, Haynes CM, Price J, Sicheri F, Ron D. Mol. Cell 38 291-304 (2010)
  91. Two distinct phosphorylation pathways have additive effects on Abl family kinase activation. Tanis KQ, Veach D, Duewel HS, Bornmann WG, Koleske AJ. Mol. Cell. Biol. 23 3884-3896 (2003)
  92. Clustering of activating mutations in c-KIT's juxtamembrane coding region in canine mast cell neoplasms. Ma Y, Longley BJ, Wang X, Blount JL, Langley K, Caughey GH. J. Invest. Dermatol. 112 165-170 (1999)
  93. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. Xu Q, Fu HH, Gupta R, Luan S. Plant Cell 10 849-857 (1998)
  94. Crystal structure of inhibitor of κB kinase β. Xu G, Lo YC, Li Q, Napolitano G, Wu X, Jiang X, Dreano M, Karin M, Wu H. Nature 472 325-330 (2011)
  95. Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Yu X, Sun JP, He Y, Guo X, Liu S, Zhou B, Hudmon A, Zhang ZY. Proc. Natl. Acad. Sci. U.S.A. 104 19767-19772 (2007)
  96. Ubiquitin-dependent degradation of active Src. Hakak Y, Martin GS. Curr. Biol. 9 1039-1042 (1999)
  97. HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. Trible RP, Emert-Sedlak L, Smithgall TE. J. Biol. Chem. 281 27029-27038 (2006)
  98. C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Sim CH, Lio DS, Mok SS, Masters CL, Hill AF, Culvenor JG, Cheng HC. Hum. Mol. Genet. 15 3251-3262 (2006)
  99. An intramolecular interaction between Src homology 3 domain and guanylate kinase-like domain required for channel clustering by postsynaptic density-95/SAP90. Shin H, Hsueh YP, Yang FC, Kim E, Sheng M. J. Neurosci. 20 3580-3587 (2000)
  100. Pleiotropic contributions of phospholipase C-gamma1 (PLC-gamma1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-gamma1-deficient Jurkat T-cell line. Irvin BJ, Williams BL, Nilson AE, Maynor HO, Abraham RT. Mol. Cell. Biol. 20 9149-9161 (2000)
  101. The role of the linker between the SH2 domain and catalytic domain in the regulation and function of Src. Gonfloni S, Williams JC, Hattula K, Weijland A, Wierenga RK, Superti-Furga G. EMBO J. 16 7261-7271 (1997)
  102. Autoinhibition of Bcr-Abl through its SH3 domain. Smith KM, Yacobi R, Van Etten RA. Mol. Cell 12 27-37 (2003)
  103. Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. Citri A, Gan J, Mosesson Y, Vereb G, Szollosi J, Yarden Y. EMBO Rep. 5 1165-1170 (2004)
  104. Transitions to catalytically inactive conformations in EGFR kinase. Shan Y, Arkhipov A, Kim ET, Pan AC, Shaw DE. Proc. Natl. Acad. Sci. U.S.A. 110 7270-7275 (2013)
  105. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. Yoo SK, Freisinger CM, LeBert DC, Huttenlocher A. J. Cell Biol. 199 225-234 (2012)
  106. Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: critical residues for protein oligomerization and DNA binding. Lutzke RA, Plasterk RH. J. Virol. 72 4841-4848 (1998)
  107. The structural basis of localization and signaling by the focal adhesion targeting domain. Arold ST, Hoellerer MK, Noble ME. Structure 10 319-327 (2002)
  108. Structural mechanism for lipid activation of the Rac-specific GAP, beta2-chimaerin. Canagarajah B, Leskow FC, Ho JY, Mischak H, Saidi LF, Kazanietz MG, Hurley JH. Cell 119 407-418 (2004)
  109. Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine. Lamers MB, Antson AA, Hubbard RE, Scott RK, Williams DH. J. Mol. Biol. 285 713-725 (1999)
  110. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Seeliger MA, Ranjitkar P, Kasap C, Shan Y, Shaw DE, Shah NP, Kuriyan J, Maly DJ. Cancer Res. 69 2384-2392 (2009)
  111. Regulation of c-SRC activity and function by the adapter protein CAS. Burnham MR, Bruce-Staskal PJ, Harte MT, Weidow CL, Ma A, Weed SA, Bouton AH. Mol. Cell. Biol. 20 5865-5878 (2000)
  112. Integrins and Src: dynamic duo of adhesion signaling. Shattil SJ. Trends Cell Biol. 15 399-403 (2005)
  113. Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2alpha protein kinase GCN2. Padyana AK, Qiu H, Roll-Mecak A, Hinnebusch AG, Burley SK. J Biol Chem 280 29289-29299 (2005)
  114. Improving SH3 domain ligand selectivity using a non-natural scaffold. Nguyen JT, Porter M, Amoui M, Miller WT, Zuckermann RN, Lim WA. Chem. Biol. 7 463-473 (2000)
  115. Intramolecular interactions regulate SAP97 binding to GKAP. Wu H, Reissner C, Kuhlendahl S, Coblentz B, Reuver S, Kindler S, Gundelfinger ED, Garner CC. EMBO J. 19 5740-5751 (2000)
  116. Myristoylation and membrane binding regulate c-Src stability and kinase activity. Patwardhan P, Resh MD. Mol. Cell. Biol. 30 4094-4107 (2010)
  117. Mitochondrial AKAP121 binds and targets protein tyrosine phosphatase D1, a novel positive regulator of src signaling. Cardone L, Carlucci A, Affaitati A, Livigni A, DeCristofaro T, Garbi C, Varrone S, Ullrich A, Gottesman ME, Avvedimento EV, Feliciello A. Mol. Cell. Biol. 24 4613-4626 (2004)
  118. The Cbl proto-oncogene product negatively regulates the Src-family tyrosine kinase Fyn by enhancing its degradation. Andoniou CE, Lill NL, Thien CB, Lupher ML, Ota S, Bowtell DD, Scaife RM, Langdon WY, Band H. Mol. Cell. Biol. 20 851-867 (2000)
  119. Formation of an endophilin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Chen Y, Deng L, Maeno-Hikichi Y, Lai M, Chang S, Chen G, Zhang JF. Cell 115 37-48 (2003)
  120. Novel recognition mode between Vav and Grb2 SH3 domains. Nishida M, Nagata K, Hachimori Y, Horiuchi M, Ogura K, Mandiyan V, Schlessinger J, Inagaki F. EMBO J. 20 2995-3007 (2001)
  121. Structural basis for the recognition of c-Src by its inactivator Csk. Levinson NM, Seeliger MA, Cole PA, Kuriyan J. Cell 134 124-134 (2008)
  122. miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Zhang J, Xiao Z, Lai D, Sun J, He C, Chu Z, Ye H, Chen S, Wang J. Br. J. Cancer 107 352-359 (2012)
  123. Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. Pisabarro MT, Serrano L, Wilmanns M. J. Mol. Biol. 281 513-521 (1998)
  124. Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival. Xing L, Venegas AM, Chen A, Garrett-Beal L, Boyce BF, Varmus HE, Schwartzberg PL. Genes Dev. 15 241-253 (2001)
  125. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton's tyrosine kinase via alternative receptors. Wahl MI, Fluckiger AC, Kato RM, Park H, Witte ON, Rawlings DJ. Proc. Natl. Acad. Sci. U.S.A. 94 11526-11533 (1997)
  126. Regulation of Sos activity by intramolecular interactions. Corbalan-Garcia S, Margarit SM, Galron D, Yang SS, Bar-Sagi D. Mol. Cell. Biol. 18 880-886 (1998)
  127. In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Hui E, Vale RD. Nat. Struct. Mol. Biol. 21 133-142 (2014)
  128. Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories. Yang S, Banavali NK, Roux B. Proc. Natl. Acad. Sci. U.S.A. 106 3776-3781 (2009)
  129. The role of protein-tyrosine phosphatase 1B in integrin signaling. Liang F, Lee SY, Liang J, Lawrence DS, Zhang ZY. J. Biol. Chem. 280 24857-24863 (2005)
  130. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Azam M, Nardi V, Shakespeare WC, Metcalf CA, Bohacek RS, Wang Y, Sundaramoorthi R, Sliz P, Veach DR, Bornmann WG, Clarkson B, Dalgarno DC, Sawyer TK, Daley GQ. Proc. Natl. Acad. Sci. U.S.A. 103 9244-9249 (2006)
  131. Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Bottger G, Barnett P, Klein AT, Kragt A, Tabak HF, Distel B. Mol. Biol. Cell 11 3963-3976 (2000)
  132. The second catalytic domain of protein tyrosine phosphatase delta (PTP delta) binds to and inhibits the first catalytic domain of PTP sigma. Wallace MJ, Fladd C, Batt J, Rotin D. Mol. Cell. Biol. 18 2608-2616 (1998)
  133. Trafficking of Lyn through the Golgi caveolin involves the charged residues on alphaE and alphaI helices in the kinase domain. Kasahara K, Nakayama Y, Ikeda K, Fukushima Y, Matsuda D, Horimoto S, Yamaguchi N. J. Cell Biol. 165 641-652 (2004)
  134. Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. Engel M, Hindie V, Lopez-Garcia LA, Stroba A, Schaeffer F, Adrian I, Imig J, Idrissova L, Nastainczyk W, Zeuzem S, Alzari PM, Hartmann RW, Piiper A, Biondi RM. EMBO J. 25 5469-5480 (2006)
  135. Src kinase conformational activation: thermodynamics, pathways, and mechanisms. Yang S, Roux B. PLoS Comput. Biol. 4 e1000047 (2008)
  136. Regulation of the nonreceptor tyrosine kinase Brk by autophosphorylation and by autoinhibition. Qiu H, Miller WT. J. Biol. Chem. 277 34634-34641 (2002)
  137. Insulin regulates the dynamic balance between Ras and Rap1 signaling by coordinating the assembly states of the Grb2-SOS and CrkII-C3G complexes. Okada S, Matsuda M, Anafi M, Pawson T, Pessin JE. EMBO J. 17 2554-2565 (1998)
  138. The hairpin structure of the (6)F1(1)F2(2)F2 fragment from human fibronectin enhances gelatin binding. Pickford AR, Smith SP, Staunton D, Boyd J, Campbell ID. EMBO J. 20 1519-1529 (2001)
  139. Structural basis for peptide binding in protein kinase A. Role of glutamic acid 203 and tyrosine 204 in the peptide-positioning loop. Moore MJ, Adams JA, Taylor SS. J. Biol. Chem. 278 10613-10618 (2003)
  140. When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families. Denessiouk KA, Johnson MS. Proteins 38 310-326 (2000)
  141. A novel adaptor-like protein which is a substrate for the non-receptor tyrosine kinase, BRK. Mitchell PJ, Sara EA, Crompton MR. Oncogene 19 4273-4282 (2000)
  142. Cbp deficiency alters Csk localization in lipid rafts but does not affect T-cell development. Xu S, Huo J, Tan JE, Lam KP. Mol. Cell. Biol. 25 8486-8495 (2005)
  143. Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Segawa Y, Suga H, Iwabe N, Oneyama C, Akagi T, Miyata T, Okada M. Proc. Natl. Acad. Sci. U.S.A. 103 12021-12026 (2006)
  144. Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide. Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD. Proc. Natl. Acad. Sci. U.S.A. 99 14053-14058 (2002)
  145. Topography for independent binding of alpha-helical and PPII-helical ligands to a peroxisomal SH3 domain. Douangamath A, Filipp FV, Klein AT, Barnett P, Zou P, Voorn-Brouwer T, Vega MC, Mayans OM, Sattler M, Distel B, Wilmanns M. Mol. Cell 10 1007-1017 (2002)
  146. A structural basis for the inhibition of collagen-stimulated platelet function by quercetin and structurally related flavonoids. Wright B, Moraes LA, Kemp CF, Mullen W, Crozier A, Lovegrove JA, Gibbins JM. Br. J. Pharmacol. 159 1312-1325 (2010)
  147. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Galisteo ML, Yang Y, Ureña J, Schlessinger J. Proc. Natl. Acad. Sci. U.S.A. 103 9796-9801 (2006)
  148. Phosphorylation driven motions in the COOH-terminal Src kinase, CSK, revealed through enhanced hydrogen-deuterium exchange and mass spectrometry (DXMS). Hamuro Y, Wong L, Shaffer J, Kim JS, Stranz DD, Jennings PA, Woods VL, Adams JA. J. Mol. Biol. 323 871-881 (2002)
  149. The pp60c-Src inhibitor PP1 is non-competitive against ATP. Karni R, Mizrachi S, Reiss-Sklan E, Gazit A, Livnah O, Levitzki A. FEBS Lett. 537 47-52 (2003)
  150. Hsp90 is essential for the synthesis and subsequent membrane association, but not the maintenance, of the Src-kinase p56(lck). Bijlmakers MJ, Marsh M. Mol. Biol. Cell 11 1585-1595 (2000)
  151. Unc119, a novel activator of Lck/Fyn, is essential for T cell activation. Gorska MM, Stafford SJ, Cen O, Sur S, Alam R. J. Exp. Med. 199 369-379 (2004)
  152. Determination of the substrate-docking site of protein tyrosine kinase C-terminal Src kinase. Lee S, Lin X, Nam NH, Parang K, Sun G. Proc. Natl. Acad. Sci. U.S.A. 100 14707-14712 (2003)
  153. Fyn-dependent regulation of energy expenditure and body weight is mediated by tyrosine phosphorylation of LKB1. Yamada E, Pessin JE, Kurland IJ, Schwartz GJ, Bastie CC. Cell Metab. 11 113-124 (2010)
  154. Conformational disturbance in Abl kinase upon mutation and deregulation. Iacob RE, Pene-Dumitrescu T, Zhang J, Gray NS, Smithgall TE, Engen JR. Proc. Natl. Acad. Sci. U.S.A. 106 1386-1391 (2009)
  155. Physical and functional interaction between Hck tyrosine kinase and guanine nucleotide exchange factor C3G results in apoptosis, which is independent of C3G catalytic domain. Shivakrupa R, Radha V, Sudhakar Ch, Swarup G. J. Biol. Chem. 278 52188-52194 (2003)
  156. A specific intermolecular association between the regulatory domains of a Tec family kinase. Brazin KN, Fulton DB, Andreotti AH. J. Mol. Biol. 302 607-623 (2000)
  157. Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase. Iyer GH, Garrod S, Woods VL, Taylor SS. J. Mol. Biol. 351 1110-1122 (2005)
  158. Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. Li W, Young SL, King N, Miller WT. J. Biol. Chem. 283 15491-15501 (2008)
  159. Src kinase activation: A switched electrostatic network. Ozkirimli E, Post CB. Protein Sci. 15 1051-1062 (2006)
  160. Structural basis for the inhibition of Polo-like kinase 1. Xu J, Shen C, Wang T, Quan J. Nat. Struct. Mol. Biol. 20 1047-1053 (2013)
  161. Hit-to-lead studies: the discovery of potent, orally active, thiophenecarboxamide IKK-2 inhibitors. Baxter A, Brough S, Cooper A, Floettmann E, Foster S, Harding C, Kettle J, McInally T, Martin C, Mobbs M, Needham M, Newham P, Paine S, St-Gallay S, Salter S, Unitt J, Xue Y. Bioorg. Med. Chem. Lett. 14 2817-2822 (2004)
  162. JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors. Dusa A, Mouton C, Pecquet C, Herman M, Constantinescu SN. PLoS ONE 5 e11157 (2010)
  163. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase. Foda ZH, Shan Y, Kim ET, Shaw DE, Seeliger MA. Nat Commun 6 5939 (2015)
  164. A ubiquitin-interacting motif from Hrs binds to and occludes the ubiquitin surface necessary for polyubiquitination in monoubiquitinated proteins. Shekhtman A, Cowburn D. Biochem. Biophys. Res. Commun. 296 1222-1227 (2002)
  165. Cutting Edge: IL-1 receptor-associated kinase 4 structures reveal novel features and multiple conformations. Kuglstatter A, Villaseñor AG, Shaw D, Lee SW, Tsing S, Niu L, Song KW, Barnett JW, Browner MF. J Immunol 178 2641-2645 (2007)
  166. Genetically encoded Förster resonance energy transfer sensors for the conformation of the Src family kinase Lck. Paster W, Paar C, Eckerstorfer P, Jakober A, Drbal K, Schütz GJ, Sonnleitner A, Stockinger H. J Immunol 182 2160-2167 (2009)
  167. Phosphorylation of the insulin receptor kinase by phosphocreatine in combination with hydrogen peroxide: the structural basis of redox priming. Schmid E, Hotz-Wagenblatt A, Hacj V, Dröge W. FASEB J. 13 1491-1500 (1999)
  168. Bruton's tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein. Yamadori T, Baba Y, Matsushita M, Hashimoto S, Kurosaki M, Kurosaki T, Kishimoto T, Tsukada S. Proc. Natl. Acad. Sci. U.S.A. 96 6341-6346 (1999)
  169. Chemical ligation of unprotected peptides directly from a solid support. Camarero JA, Cotton GJ, Adeva A, Muir TW. J Pept Res 51 303-316 (1998)
  170. Conserved water molecules contribute to the extensive network of interactions at the active site of protein kinase A. Shaltiel S, Cox S, Taylor SS. Proc. Natl. Acad. Sci. U.S.A. 95 484-491 (1998)
  171. Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein. Randak C, Auerswald EA, Assfalg-Machleidt I, Reenstra WW, Machleidt W. Biochem. J. 340 ( Pt 1) 227-235 (1999)
  172. Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. Pérez Y, Gairí M, Pons M, Bernadó P. J. Mol. Biol. 391 136-148 (2009)
  173. Synapsin I interacts with c-Src and stimulates its tyrosine kinase activity. Onofri F, Giovedì S, Vaccaro P, Czernik AJ, Valtorta F, De Camilli P, Greengard P, Benfenati F. Proc. Natl. Acad. Sci. U.S.A. 94 12168-12173 (1997)
  174. The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD. Sci Signal 4 ra83 (2011)
  175. Tyrosine kinase inhibitors block sperm-induced egg activation in Xenopus laevis. Glahn D, Mark SD, Behr RK, Nuccitelli R. Dev. Biol. 205 171-180 (1999)
  176. v-Src induces Shc binding to tyrosine 63 in the cytoplasmic domain of the LDL receptor-related protein 1. Barnes H, Ackermann EJ, van der Geer P. Oncogene 22 3589-3597 (2003)
  177. Armadillo: domain boundary prediction by amino acid composition. Dumontier M, Yao R, Feldman HJ, Hogue CW. J. Mol. Biol. 350 1061-1073 (2005)
  178. Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis. Bolduc D, Rahdar M, Tu-Sekine B, Sivakumaren SC, Raben D, Amzel LM, Devreotes P, Gabelli SB, Cole P. Elife 2 e00691 (2013)
  179. The N-terminal end of the catalytic domain of SRC kinase Hck is a conformational switch implicated in long-range allosteric regulation. Banavali NK, Roux B. Structure 13 1715-1723 (2005)
  180. The Shp-2 tyrosine phosphatase activates the Src tyrosine kinase by a non-enzymatic mechanism. Walter AO, Peng ZY, Cartwright CA. Oncogene 18 1911-1920 (1999)
  181. A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Yuzawa S, Suzuki NN, Fujioka Y, Ogura K, Sumimoto H, Inagaki F. Genes Cells 9 443-456 (2004)
  182. Comment New impressions of Src and Hck. Pawson T. Nature 385 582-3, 585 (1997)
  183. Clustered cysteine residues in the kinase domain of v-Src: critical role for protein stability, cell transformation and sensitivity to herbimycin A. Senga T, Miyazaki K, Machida K, Iwata H, Matsuda S, Nakashima I, Hamaguchi M. Oncogene 19 273-279 (2000)
  184. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation. Wong L, Lieser SA, Miyashita O, Miller M, Tasken K, Onuchic JN, Adams JA, Woods VL, Jennings PA. J. Mol. Biol. 351 131-143 (2005)
  185. Insights into the conformational variability and regulation of human Nek2 kinase. Westwood I, Cheary DM, Baxter JE, Richards MW, van Montfort RL, Fry AM, Bayliss R. J. Mol. Biol. 386 476-485 (2009)
  186. Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I. Arnold LD, Calderwood DJ, Dixon RW, Johnston DN, Kamens JS, Munschauer R, Rafferty P, Ratnofsky SE. Bioorg. Med. Chem. Lett. 10 2167-2170 (2000)
  187. Adaptor protein Shc is an isoform-specific direct activator of the tyrosine kinase c-Src. Sato K, Nagao T, Kakumoto M, Kimoto M, Otsuki T, Iwasaki T, Tokmakov AA, Owada K, Fukami Y. J Biol Chem 277 29568-29576 (2002)
  188. Crystal structures of active SRC kinase domain complexes. Breitenlechner CB, Kairies NA, Honold K, Scheiblich S, Koll H, Greiter E, Koch S, Schäfer W, Huber R, Engh RA. J. Mol. Biol. 353 222-231 (2005)
  189. News Structural biology: Proteins in dynamic equilibrium. Bernadó P, Blackledge M. Nature 468 1046-1048 (2010)
  190. Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex. Jacobs MD, Caron PR, Hare BJ. Proteins 70 1451-1460 (2008)
  191. Conformation of full-length Bruton tyrosine kinase (Btk) from synchrotron X-ray solution scattering. Márquez JA, Smith CI, Petoukhov MV, Lo Surdo P, Mattsson PT, Knekt M, Westlund A, Scheffzek K, Saraste M, Svergun DI. EMBO J. 22 4616-4624 (2003)
  192. Hit-to-lead studies on benzimidazole inhibitors of ITK: discovery of a novel class of kinase inhibitors. Snow RJ, Abeywardane A, Campbell S, Lord J, Kashem MA, Khine HH, King J, Kowalski JA, Pullen SS, Roma T, Roth GP, Sarko CR, Wilson NS, Winters MP, Wolak JP, Cywin CL. Bioorg. Med. Chem. Lett. 17 3660-3665 (2007)
  193. Solution structure of Grb2 reveals extensive flexibility necessary for target recognition. Yuzawa S, Yokochi M, Hatanaka H, Ogura K, Kataoka M, Miura K, Mandiyan V, Schlessinger J, Inagaki F. J. Mol. Biol. 306 527-537 (2001)
  194. Structural basis of oncogenic activation caused by point mutations in the kinase domain of the MET proto-oncogene: modeling studies. Miller M, Ginalski K, Lesyng B, Nakaigawa N, Schmidt L, Zbar B. Proteins 44 32-43 (2001)
  195. Structure, regulation, signaling, and targeting of abl kinases in cancer. Hantschel O. Genes Cancer 3 436-446 (2012)
  196. c-Src signaling induced by the adapters Sin and Cas is mediated by Rap1 GTPase. Xing L, Ge C, Zeltser R, Maskevitch G, Mayer BJ, Alexandropoulos K. Mol. Cell. Biol. 20 7363-7377 (2000)
  197. A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. Inouye S, Jain R, Ueki T, Nariya H, Xu CY, Hsu MY, Fernandez-Luque BA, Munoz-Dorado J, Farez-Vidal E, Inouye M. Microb. Comp. Genomics 5 103-120 (2000)
  198. Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Dadi PK, Ahmad M, Ahmad Z. Int. J. Biol. Macromol. 45 72-79 (2009)
  199. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. Yan Q, Barros T, Visperas PR, Deindl S, Kadlecek TA, Weiss A, Kuriyan J. Mol. Cell. Biol. 33 2188-2201 (2013)
  200. Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck. Banavali NK, Roux B. Proteins 67 1096-1112 (2007)
  201. Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Findlay GM, Smith MJ, Lanner F, Hsiung MS, Gish GD, Petsalaki E, Cockburn K, Kaneko T, Huang H, Bagshaw RD, Ketela T, Tucholska M, Taylor L, Bowtell DD, Moffat J, Ikura M, Li SS, Sidhu SS, Rossant J, Pawson T. Cell 152 1008-1020 (2013)
  202. Stimulation by ghrelin of p42/p44 mitogen-activated protein kinase through the GHS-R1a receptor: role of G-proteins and beta-arrestins. Camiña JP, Lodeiro M, Ischenko O, Martini AC, Casanueva FF. J. Cell. Physiol. 213 187-200 (2007)
  203. Structural basis of Src tyrosine kinase inhibition with a new class of potent and selective trisubstituted purine-based compounds. Dalgarno D, Stehle T, Narula S, Schelling P, van Schravendijk MR, Adams S, Andrade L, Keats J, Ram M, Jin L, Grossman T, MacNeil I, Metcalf C, Shakespeare W, Wang Y, Keenan T, Sundaramoorthi R, Bohacek R, Weigele M, Sawyer T. Chem Biol Drug Des 67 46-57 (2006)
  204. The 2.7 A crystal structure of the autoinhibited human c-Fms kinase domain. Walter M, Lucet IS, Patel O, Broughton SE, Bamert R, Williams NK, Fantino E, Wilks AF, Rossjohn J. J. Mol. Biol. 367 839-847 (2007)
  205. Thermal unfolding of small proteins with SH3 domain folding pattern. Knapp S, Mattson PT, Christova P, Berndt KD, Karshikoff A, Vihinen M, Smith CI, Ladenstein R. Proteins 31 309-319 (1998)
  206. An examination of dynamics crosstalk between SH2 and SH3 domains by hydrogen/deuterium exchange and mass spectrometry. Hochrein JM, Lerner EC, Schiavone AP, Smithgall TE, Engen JR. Protein Sci. 15 65-73 (2006)
  207. Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner. Chinnam N, Dadi PK, Sabri SA, Ahmad M, Kabir MA, Ahmad Z. Int. J. Biol. Macromol. 46 478-486 (2010)
  208. Inactivation of SRC family tyrosine kinases by reactive oxygen species in vivo. Tang H, Hao Q, Rutherford SA, Low B, Zhao ZJ. J. Biol. Chem. 280 23918-23925 (2005)
  209. Regulation of the Src family kinase Lck by Hsp90 and ubiquitination. Giannini A, Bijlmakers MJ. Mol. Cell. Biol. 24 5667-5676 (2004)
  210. Structural characterization of the active and inactive states of Src kinase in solution by small-angle X-ray scattering. Bernadó P, Pérez Y, Svergun DI, Pons M. J. Mol. Biol. 376 492-505 (2008)
  211. The tryptophan switch: changing ligand-binding specificity from type I to type II in SH3 domains. Fernandez-Ballester G, Blanes-Mira C, Serrano L. J. Mol. Biol. 335 619-629 (2004)
  212. Activation of the Src family kinase Hck without SH3-linker release. Lerner EC, Trible RP, Schiavone AP, Hochrein JM, Engen JR, Smithgall TE. J. Biol. Chem. 280 40832-40837 (2005)
  213. Benzoflavone activators of the cystic fibrosis transmembrane conductance regulator: towards a pharmacophore model for the nucleotide-binding domain. Springsteel MF, Galietta LJ, Ma T, By K, Berger GO, Yang H, Dicus CW, Choung W, Quan C, Shelat AA, Guy RK, Verkman AS, Kurth MJ, Nantz MH. Bioorg. Med. Chem. 11 4113-4120 (2003)
  214. Crystal structure of the SH3 domain of betaPIX in complex with a high affinity peptide from PAK2. Hoelz A, Janz JM, Lawrie SD, Corwin B, Lee A, Sakmar TP. J. Mol. Biol. 358 509-522 (2006)
  215. How and why phosphotyrosine-containing peptides bind to the SH2 and PTB domains. Zhou Y, Abagyan R. Fold Des 3 513-522 (1998)
  216. Acylglycerol kinase augments JAK2/STAT3 signaling in esophageal squamous cells. Chen X, Ying Z, Lin X, Lin H, Wu J, Li M, Song L. J. Clin. Invest. 123 2576-2589 (2013)
  217. Comparison of SH3 and SH2 domain dynamics when expressed alone or in an SH(3+2) construct: the role of protein dynamics in functional regulation. Engen JR, Smithgall TE, Gmeiner WH, Smith DL. J. Mol. Biol. 287 645-656 (1999)
  218. Crosstalk between Src and major vault protein in epidermal growth factor-dependent cell signalling. Kim E, Lee S, Mian MF, Yun SU, Song M, Yi KS, Ryu SH, Suh PG. FEBS J. 273 793-804 (2006)
  219. Molecular details of Itk activation by prolyl isomerization and phospholigand binding: the NMR structure of the Itk SH2 domain bound to a phosphopeptide. Pletneva EV, Sundd M, Fulton DB, Andreotti AH. J. Mol. Biol. 357 550-561 (2006)
  220. Synthesis and biological activity of 4-alkoxy chalcones: potential hydrophobic modulators of P-glycoprotein-mediated multidrug resistance. Bois F, Boumendjel A, Mariotte AM, Conseil G, Di Petro A. Bioorg. Med. Chem. 7 2691-2695 (1999)
  221. UCS15A, a non-kinase inhibitor of Src signal transduction. Sharma SV, Oneyama C, Yamashita Y, Nakano H, Sugawara K, Hamada M, Kosaka N, Tamaoki T. Oncogene 20 2068-2079 (2001)
  222. Active site profiling reveals coupling between domains in SRC-family kinases. Krishnamurty R, Brigham JL, Leonard SE, Ranjitkar P, Larson ET, Dale EJ, Merritt EA, Maly DJ. Nat. Chem. Biol. 9 43-50 (2013)
  223. Dynamic coupling between the SH2 domain and active site of the COOH terminal Src kinase, Csk. Wong L, Lieser S, Chie-Leon B, Miyashita O, Aubol B, Shaffer J, Onuchic JN, Jennings PA, Woods VL, Adams JA. J. Mol. Biol. 341 93-106 (2004)
  224. Fourier transform-ion cyclotron resonance mass spectrometric resolution, identification, and screening of non-covalent complexes of Hck Src homology 2 domain receptor and ligands from a 324-member peptide combinatorial library. Wigger M, Eyler JR, Benner SA, Li W, Marshall AG. J. Am. Soc. Mass Spectrom. 13 1162-1169 (2002)
  225. Inhibition of tumor angiogenesis by synthetic receptor tyrosine kinase inhibitors. Sun L, McMahon G. Drug Discov. Today 5 344-353 (2000)
  226. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation. Daub M, Jöckel J, Quack T, Weber CK, Schmitz F, Rapp UR, Wittinghofer A, Block C. Mol. Cell. Biol. 18 6698-6710 (1998)
  227. Activation of the focal adhesion kinase signaling pathway by structural alterations in the carboxyl-terminal region of c-Crk II. Zvara A, Fajardo JE, Escalante M, Cotton G, Muir T, Kirsch KH, Birge RB. Oncogene 20 951-961 (2001)
  228. Allosteric activation mechanism of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknB. Lombana TN, Echols N, Good MC, Thomsen ND, Ng HL, Greenstein AE, Falick AM, King DS, Alber T. Structure 18 1667-1677 (2010)
  229. An unrecognized extracellular function for an intracellular adapter protein released from the cytoplasm into the tumor microenvironment. Mintz PJ, Cardó-Vila M, Ozawa MG, Hajitou A, Rangel R, Guzman-Rojas L, Christianson DR, Arap MA, Giordano RJ, Souza GR, Easley J, Salameh A, Oliviero S, Brentani RR, Koivunen E, Arap W, Pasqualini R. Proc. Natl. Acad. Sci. U.S.A. 106 2182-2187 (2009)
  230. Migfilin interacts with Src and contributes to cell-matrix adhesion-mediated survival signaling. Zhao J, Zhang Y, Ithychanda SS, Tu Y, Chen K, Qin J, Wu C. J. Biol. Chem. 284 34308-34320 (2009)
  231. Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck II. Burchat AF, Calderwood DJ, Hirst GC, Holman NJ, Johnston DN, Munschauer R, Rafferty P, Tometzki GB. Bioorg. Med. Chem. Lett. 10 2171-2174 (2000)
  232. Regulation of ZAP-70 intracellular localization: visualization with the green fluorescent protein. Sloan-Lancaster J, Zhang W, Presley J, Williams BL, Abraham RT, Lippincott-Schwartz J, Samelson LE. J. Exp. Med. 186 1713-1724 (1997)
  233. Regulation of alveolar epithelial cell apoptosis and pulmonary fibrosis by coordinate expression of components of the fibrinolytic system. Bhandary YP, Shetty SK, Marudamuthu AS, Gyetko MR, Idell S, Gharaee-Kermani M, Shetty RS, Starcher BC, Shetty S. Am. J. Physiol. Lung Cell Mol. Physiol. 302 L463-73 (2012)
  234. Role of the Brk SH3 domain in substrate recognition. Qiu H, Miller WT. Oncogene 23 2216-2223 (2004)
  235. C-terminal Src kinase-homologous kinase (CHK), a unique inhibitor inactivating multiple active conformations of Src family tyrosine kinases. Chong YP, Chan AS, Chan KC, Williamson NA, Lerner EC, Smithgall TE, Bjorge JD, Fujita DJ, Purcell AW, Scholz G, Mulhern TD, Cheng HC. J Biol Chem 281 32988-32999 (2006)
  236. Crystal structure analysis and solution studies of human Lck-SH3; zinc-induced homodimerization competes with the binding of proline-rich motifs. Romir J, Lilie H, Egerer-Sieber C, Bauer F, Sticht H, Muller YA. J. Mol. Biol. 365 1417-1428 (2007)
  237. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. Georghiou G, Kleiner RE, Pulkoski-Gross M, Liu DR, Seeliger MA. Nat. Chem. Biol. 8 366-374 (2012)
  238. Three-dimensional profiles: a new tool to identify protein surface similarities. de Rinaldis M, Ausiello G, Cesareni G, Helmer-Citterich M. J. Mol. Biol. 284 1211-1221 (1998)
  239. Cancer-associated mutations activate the nonreceptor tyrosine kinase Ack1. Prieto-Echagüe V, Gucwa A, Craddock BP, Brown DA, Miller WT. J. Biol. Chem. 285 10605-10615 (2010)
  240. Chaperone over-expression in Escherichia coli: apparent increased yields of soluble recombinant protein kinases are due mainly to soluble aggregates. Haacke A, Fendrich G, Ramage P, Geiser M. Protein Expr. Purif. 64 185-193 (2009)
  241. Effect of pH and salt bridges on structural assembly: molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain. Kishan KV, Newcomer ME, Rhodes TH, Guilliot SD. Protein Sci. 10 1046-1055 (2001)
  242. Identification of an allosteric signaling network within Tec family kinases. Joseph RE, Xie Q, Andreotti AH. J. Mol. Biol. 403 231-242 (2010)
  243. Proteins at work: a combined small angle X-RAY scattering and theoretical determination of the multiple structures involved on the protein kinase functional landscape. Jamros MA, Oliveira LC, Whitford PC, Onuchic JN, Adams JA, Blumenthal DK, Jennings PA. J. Biol. Chem. 285 36121-36128 (2010)
  244. Regulation of c-Fes tyrosine kinase and biological activities by N-terminal coiled-coil oligomerization domains. Cheng H, Rogers JA, Dunham NA, Smithgall TE. Mol. Cell. Biol. 19 8335-8343 (1999)
  245. Simian immunodeficiency virus and human immunodeficiency virus type 1 nef proteins show distinct patterns and mechanisms of Src kinase activation. Greenway AL, Dutartre H, Allen K, McPhee DA, Olive D, Collette Y. J. Virol. 73 6152-6158 (1999)
  246. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding. Chen S, Brier S, Smithgall TE, Engen JR. Protein Sci. 16 572-581 (2007)
  247. Tyrosine kinase-independent inhibition of cyclic-AMP phosphodiesterase by genistein and tyrphostin 51. Nichols MR, Morimoto BH. Arch. Biochem. Biophys. 366 224-230 (1999)
  248. A cyclic adenosine 3',5'-monophosphate-induced tyrosine phosphorylation of Syk protein tyrosine kinase in the flagella of boar spermatozoa. Harayama H, Muroga M, Miyake M. Mol. Reprod. Dev. 69 436-447 (2004)
  249. ATP competitive inhibitors of D-alanine-D-alanine ligase based on protein kinase inhibitor scaffolds. Triola G, Wetzel S, Ellinger B, Koch MA, Hübel K, Rauh D, Waldmann H. Bioorg. Med. Chem. 17 1079-1087 (2009)
  250. Activation of the Lck tyrosine protein kinase by the Herpesvirus saimiri tip protein involves two binding interactions. Hartley DA, Amdjadi K, Hurley TR, Lund TC, Medveczky PG, Sefton BM. Virology 276 339-348 (2000)
  251. Conserved residues in the HIV-1 Nef hydrophobic pocket are essential for recruitment and activation of the Hck tyrosine kinase. Choi HJ, Smithgall TE. J. Mol. Biol. 343 1255-1268 (2004)
  252. Differential mitotic activation of endogenous c-Src, c-Yes, and Lyn in HeLa cells. Kuga T, Nakayama Y, Hoshino M, Higashiyama Y, Obata Y, Matsuda D, Kasahara K, Fukumoto Y, Yamaguchi N. Arch. Biochem. Biophys. 466 116-124 (2007)
  253. High-affinity binding of silybin derivatives to the nucleotide-binding domain of a Leishmania tropica P-glycoprotein-like transporter and chemosensitization of a multidrug-resistant parasite to daunomycin. Pérez-Victoria JM, Pérez-Victoria FJ, Conseil G, Maitrejean M, Comte G, Barron D, Di Pietro A, Castanys S, Gamarro F. Antimicrob. Agents Chemother. 45 439-446 (2001)
  254. Identification of the binding site for Gqalpha on its effector Bruton's tyrosine kinase. Ma YC, Huang XY. Proc. Natl. Acad. Sci. U.S.A. 95 12197-12201 (1998)
  255. In silico modelling of the interaction of flavonoids with human P-glycoprotein nucleotide-binding domain. Badhan R, Penny J. Eur J Med Chem 41 285-295 (2006)
  256. Protein tyrosine phosphatase activity is necessary for E-cadherin-activated Src signaling. McLachlan RW, Yap AS. Cytoskeleton (Hoboken) 68 32-43 (2011)
  257. Quantifying information transfer by protein domains: analysis of the Fyn SH2 domain structure. Lenaerts T, Ferkinghoff-Borg J, Stricher F, Serrano L, Schymkowitz JW, Rousseau F. BMC Struct. Biol. 8 43 (2008)
  258. The Src-like tyrosine kinase Hck is activated by granulocyte colony-stimulating factor (G-CSF) and docks to the activated G-CSF receptor. Ward AC, Monkhouse JL, Csar XF, Touw IP, Bello PA. Biochem. Biophys. Res. Commun. 251 117-123 (1998)
  259. Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3 domain. Reichman C, Singh K, Liu Y, Singh S, Li H, Fajardo JE, Fiser A, Birge RB. Oncogene 24 8187-8199 (2005)
  260. Activation of C-terminal Src kinase (Csk) by phosphorylation at serine-364 depends on the Csk-Src homology 3 domain. Yaqub S, Abrahamsen H, Zimmerman B, Kholod N, Torgersen KM, Mustelin T, Herberg FW, Taskén K, Vang T. Biochem. J. 372 271-278 (2003)
  261. Characterization of Itk tyrosine kinase: contribution of noncatalytic domains to enzymatic activity. Hawkins J, Marcy A. Protein Expr. Purif. 22 211-219 (2001)
  262. Combination of suboptimal doses of inhibitors targeting different domains of LtrMDR1 efficiently overcomes resistance of Leishmania spp. to Miltefosine by inhibiting drug efflux. Pérez-Victoria JM, Cortés-Selva F, Parodi-Talice A, Bavchvarov BI, Pérez-Victoria FJ, Muñoz-Martínez F, Maitrejean M, Costi MP, Barron D, Di Pietro A, Castanys S, Gamarro F. Antimicrob. Agents Chemother. 50 3102-3110 (2006)
  263. Crystal structure of the Src family kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism. Alvarado JJ, Betts L, Moroco JA, Smithgall TE, Yeh JI. J. Biol. Chem. 285 35455-35461 (2010)
  264. Cyclic AMP-dependent activation of the proenkephalin gene requires phosphorylation of CREB at serine-133 and a Src-related kinase. Kobierski LA, Wong AE, Srivastava S, Borsook D, Hyman SE. J. Neurochem. 73 129-138 (1999)
  265. Dishevelled-2 docks and activates Src in a Wnt-dependent manner. Yokoyama N, Malbon CC. J. Cell. Sci. 122 4439-4451 (2009)
  266. Intermolecular interactions between the SH3 domain and the proline-rich TH region of Bruton's tyrosine kinase. Hansson H, Okoh MP, Smith CI, Vihinen M, Härd T. FEBS Lett. 489 67-70 (2001)
  267. Regulation of Cbl phosphorylation by the Abl tyrosine kinase and the Nck SH2/SH3 adaptor. Miyoshi-Akiyama T, Aleman LM, Smith JM, Adler CE, Mayer BJ. Oncogene 20 4058-4069 (2001)
  268. Regulation of the yeast amphiphysin homologue Rvs167p by phosphorylation. Friesen H, Murphy K, Breitkreutz A, Tyers M, Andrews B. Mol. Biol. Cell 14 3027-3040 (2003)
  269. Survey of the geometric association of domain-domain interfaces. Kim WK, Ison JC. Proteins 61 1075-1088 (2005)
  270. The SH2 domain from the tyrosine kinase Fyn in complex with a phosphotyrosyl peptide reveals insights into domain stability and binding specificity. Mulhern TD, Shaw GL, Morton CJ, Day AJ, Campbell ID. Structure 5 1313-1323 (1997)
  271. The duplicitous nature of the Lyn tyrosine kinase in growth factor signaling. Hibbs ML, Harder KW. Growth Factors 24 137-149 (2006)
  272. Alternative splicing modulates autoinhibition and SH3 accessibility in the Src kinase Fyn. Brignatz C, Paronetto MP, Opi S, Cappellari M, Audebert S, Feuillet V, Bismuth G, Roche S, Arold ST, Sette C, Collette Y. Mol. Cell. Biol. 29 6438-6448 (2009)
  273. Breast cancer resistance protein (BCRP/ABCG2): new inhibitors and QSAR studies by a 3D linear solvation energy approach. Nicolle E, Boccard J, Guilet D, Dijoux-Franca MG, Zelefac F, Macalou S, Grosselin J, Schmidt J, Carrupt PA, Di Pietro A, Boumendjel A. Eur J Pharm Sci 38 39-46 (2009)
  274. Competing modes of self-association in the regulatory domains of Bruton's tyrosine kinase: intramolecular contact versus asymmetric homodimerization. Laederach A, Cradic KW, Brazin KN, Zamoon J, Fulton DB, Huang XY, Andreotti AH. Protein Sci. 11 36-45 (2002)
  275. Cross talk between receptor guanylyl cyclase C and c-src tyrosine kinase regulates colon cancer cell cytostasis. Basu N, Bhandari R, Natarajan VT, Visweswariah SS. Mol. Cell. Biol. 29 5277-5289 (2009)
  276. Effect of autophosphorylation on the catalytic and regulatory properties of protein tyrosine kinase Src. Sun G, Ramdas L, Wang W, Vinci J, McMurray J, Budde RJ. Arch. Biochem. Biophys. 397 11-17 (2002)
  277. Modified AutoDock for accurate docking of protein kinase inhibitors. Buzko OV, Bishop AC, Shokat KM. J. Comput. Aided Mol. Des. 16 113-127 (2002)
  278. Modulation of Lck function through multisite docking to T cell-specific adapter protein. Granum S, Andersen TC, Sørlie M, Jørgensen M, Koll L, Berge T, Lea T, Fleckenstein B, Spurkland A, Sundvold-Gjerstad V. J Biol Chem 283 21909-21919 (2008)
  279. Novel mechanism of regulation of the non-receptor protein tyrosine kinase Csk: insights from NMR mapping studies and site-directed mutagenesis. Shekhtman A, Ghose R, Wang D, Cole PA, Cowburn D. J. Mol. Biol. 314 129-138 (2001)
  280. A 3D linear solvation energy model to quantify the affinity of flavonoid derivatives toward P-glycoprotein. Boccard J, Bajot F, Di Pietro A, Rudaz S, Boumendjel A, Nicolle E, Carrupt PA. Eur J Pharm Sci 36 254-264 (2009)
  281. Stability of an autoinhibitory interface in the structure of the tyrosine kinase ZAP-70 impacts T cell receptor response. Deindl S, Kadlecek TA, Cao X, Kuriyan J, Weiss A. Proc. Natl. Acad. Sci. U.S.A. 106 20699-20704 (2009)
  282. p50(Cdc37) can buffer the temperature-sensitive properties of a mutant of Hck. Scholz G, Hartson SD, Cartledge K, Hall N, Shao J, Dunn AR, Matts RL. Mol. Cell. Biol. 20 6984-6995 (2000)
  283. 4-Hydroxy-6-methoxyaurones with high-affinity binding to cytosolic domain of P-glycoprotein. Boumendjel A, Beney C, Deka N, Mariotte AM, Lawson MA, Trompier D, Baubichon-Cortay H, Di Pietro A. Chem. Pharm. Bull. 50 854-856 (2002)
  284. A pyrrolo-pyrimidine derivative targets human primary AML stem cells in vivo. Saito Y, Yuki H, Kuratani M, Hashizume Y, Takagi S, Honma T, Tanaka A, Shirouzu M, Mikuni J, Handa N, Ogahara I, Sone A, Najima Y, Tomabechi Y, Wakiyama M, Uchida N, Tomizawa-Murasawa M, Kaneko A, Tanaka S, Suzuki N, Kajita H, Aoki Y, Ohara O, Shultz LD, Fukami T, Goto T, Taniguchi S, Yokoyama S, Ishikawa F. Sci Transl Med 5 181ra52 (2013)
  285. Chemical genetics identifies c-Src as an activator of primitive ectoderm formation in murine embryonic stem cells. Meyn MA, Smithgall TE. Sci Signal 2 ra64 (2009)
  286. Conformational basis for SH2-Tyr(P)527 binding in Src inactivation. Ayrapetov MK, Wang YH, Lin X, Gu X, Parang K, Sun G. J Biol Chem 281 23776-23784 (2006)
  287. Identification and characterization of two related murine genes, Eat2a and Eat2b, encoding single SH2-domain adapters. Calpe S, Erdos E, Liao G, Wang N, Rietdijk S, Simarro M, Scholtz B, Mooney J, Lee CH, Shin MS, Rajnavölgyi E, Schatzle J, Morse HC, Terhorst C, Lanyi A. Immunogenetics 58 15-25 (2006)
  288. Isolation and characterization of a novel, transforming allele of the c-Cbl proto-oncogene from a murine macrophage cell line. Bisson SA, Ujack EE, Robbins SM. Oncogene 21 3677-3687 (2002)
  289. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Filipp D, Ballek O, Manning J. Front Immunol 3 155 (2012)
  290. Mutations in the N-terminal regulatory region reduce the catalytic activity of Csk, but do not affect its recognition of Src. Sun G, Budde RJ. Arch. Biochem. Biophys. 367 167-172 (1999)
  291. SH3 in muscles: solution structure of the SH3 domain from nebulin. Politou AS, Millevoi S, Gautel M, Kolmerer B, Pastore A. J. Mol. Biol. 276 189-202 (1998)
  292. Sequential requirements of the N-terminal palmitoylation site and SH2 domain of Src family kinases in the initiation and progression of FcepsilonRI signaling. Honda Zi, Suzuki T, Kono H, Okada M, Yamamoto T, Ra C, Morita Y, Yamamoto K. Mol. Cell. Biol. 20 1759-1771 (2000)
  293. Solution structure and peptide binding studies of the C-terminal src homology 3-like domain of the diphtheria toxin repressor protein. Wang G, Wylie GP, Twigg PD, Caspar DL, Murphy JR, Logan TM. Proc. Natl. Acad. Sci. U.S.A. 96 6119-6124 (1999)
  294. Structural basis for domain-domain communication in a protein tyrosine kinase, the C-terminal Src kinase. Lin X, Wang Y, Ahmadibeni Y, Parang K, Sun G. J. Mol. Biol. 357 1263-1273 (2006)
  295. A putative role for intramolecular regulatory mechanisms in the adaptor function of amphiphysin in endocytosis. Farsad K, Slepnev V, Ochoa G, Daniell L, Haucke V, De Camilli P. Neuropharmacology 45 787-796 (2003)
  296. Identification of the linker-SH2 domain of STAT as the origin of the SH2 domain using two-dimensional structural alignment. Gao Q, Hua J, Kimura R, Headd JJ, Fu XY, Chin YE. Mol. Cell Proteomics 3 704-714 (2004)
  297. Identification of tyrosine residues on ELMO1 that are phosphorylated by the Src-family kinase Hck. Yokoyama N, deBakker CD, Zappacosta F, Huddleston MJ, Annan RS, Ravichandran KS, Miller WT. Biochemistry 44 8841-8849 (2005)
  298. Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. Engen JR, Wales TE, Chen S, Marzluff EM, Hassell KM, Weis DD, Smithgall TE. Int Rev Phys Chem 32 96-127 (2013)
  299. SH3-SH2 domain orientation in Src kinases: NMR studies of Fyn. Ulmer TS, Werner JM, Campbell ID. Structure 10 901-911 (2002)
  300. Translational control of C-terminal Src kinase (Csk) expression by PRL3 phosphatase. Liang F, Luo Y, Dong Y, Walls CD, Liang J, Jiang HY, Sanford JR, Wek RC, Zhang ZY. J. Biol. Chem. 283 10339-10346 (2008)
  301. Conformation-Selective Analogues of Dasatinib Reveal Insight into Kinase Inhibitor Binding and Selectivity. Kwarcinski FE, Brandvold KR, Phadke S, Beleh OM, Johnson TK, Meagher JL, Seeliger MA, Stuckey JA, Soellner MB. ACS Chem Biol 11 1296-1304 (2016)
  302. Cooperative activation of Src family kinases by SH3 and SH2 ligands. Yadav SS, Miller WT. Cancer Lett. 257 116-123 (2007)
  303. Dynamics of the Hck-SH3 domain: comparison of experiment with multiple molecular dynamics simulations. Horita DA, Zhang W, Smithgall TE, Gmeiner WH, Byrd RA. Protein Sci. 9 95-103 (2000)
  304. Genetic evidence of a role for Lck in T-cell receptor function independent or downstream of ZAP-70/Syk protein tyrosine kinases. Wong J, Straus D, Chan AC. Mol. Cell. Biol. 18 2855-2866 (1998)
  305. Genistein activates CFTR-mediated Cl(-) secretion in the murine trachea and colon. Goddard CA, Evans MJ, Colledge WH. Am. J. Physiol., Cell Physiol. 279 C383-92 (2000)
  306. News How Src exercises self-restraint. Nguyen JT, Lim WA. Nat. Struct. Biol. 4 256-260 (1997)
  307. Identification of critical residues of choline kinase A2 from Caenorhabditis elegans. Yuan C, Kent C. J. Biol. Chem. 279 17801-17809 (2004)
  308. ProKinO: a unified resource for mining the cancer kinome. McSkimming DI, Dastgheib S, Talevich E, Narayanan A, Katiyar S, Taylor SS, Kochut K, Kannan N. Hum. Mutat. 36 175-186 (2015)
  309. Regulation of ack-family nonreceptor tyrosine kinases. Prieto-Echagüe V, Miller WT. J Signal Transduct 2011 742372 (2011)
  310. The C terminus of T cell-specific adapter protein (TSAd) is necessary for TSAd-mediated inhibition of Lck activity. Sundvold-Gjerstad V, Granum S, Mustelin T, Andersen TC, Berge T, Shapiro MJ, Shapiro VS, Spurkland A, Lea T. Eur. J. Immunol. 35 1612-1620 (2005)
  311. Three dimensional atomic model and experimental validation for the ATP-Regulated Module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK. Mol. Cell. Biochem. 217 165-172 (2001)
  312. Classification of common functional loops of kinase super-families. Fernandez-Fuentes N, Hermoso A, Espadaler J, Querol E, Aviles FX, Oliva B. Proteins 56 539-555 (2004)
  313. Computational study of the "DFG-flip" conformational transition in c-Abl and c-Src tyrosine kinases. Meng Y, Lin YL, Roux B. J Phys Chem B 119 1443-1456 (2015)
  314. Inhibition of Src by direct interaction with protein phosphatase 2A. Yokoyama N, Miller WT. FEBS Lett. 505 460-464 (2001)
  315. Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. Wang RE, Kao JL, Hilliard CA, Pandita RK, Roti Roti JL, Hunt CR, Taylor JS. J. Med. Chem. 52 1912-1921 (2009)
  316. Insights into the inhibition of the p90 ribosomal S6 kinase (RSK) by the flavonol glycoside SL0101 from the 1.5 Å crystal structure of the N-terminal domain of RSK2 with bound inhibitor. Utepbergenov D, Derewenda U, Olekhnovich N, Szukalska G, Banerjee B, Hilinski MK, Lannigan DA, Stukenberg PT, Derewenda ZS. Biochemistry 51 6499-6510 (2012)
  317. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment. Alvarado JJ, Tarafdar S, Yeh JI, Smithgall TE. J. Biol. Chem. 289 28539-28553 (2014)
  318. Solution structure of the human Hck SH3 domain and identification of its ligand binding site. Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA. J. Mol. Biol. 278 253-265 (1998)
  319. Structural basis for SH2D1A mutations in X-linked lymphoproliferative disease. Lappalainen I, Giliani S, Franceschini R, Bonnefoy JY, Duckett C, Notarangelo LD, Vihinen M. Biochem. Biophys. Res. Commun. 269 124-130 (2000)
  320. The influence of deletion mutations on phospholipase C-gamma 1 activity. Horstman DA, Chattopadhyay A, Carpenter G. Arch. Biochem. Biophys. 361 149-155 (1999)
  321. The tyrosine kinase Csk dimerizes through Its SH3 domain. Levinson NM, Visperas PR, Kuriyan J. PLoS ONE 4 e7683 (2009)
  322. Abl N-terminal cap stabilization of SH3 domain dynamics. Chen S, Dumitrescu TP, Smithgall TE, Engen JR. Biochemistry 47 5795-5803 (2008)
  323. Analysis of the tyrosine phosphorylation and calcium fluxing of human CD6 isoforms with different cytoplasmatic domains. Kobarg J, Whitney GS, Palmer D, Aruffo A, Bowen MA. Eur. J. Immunol. 27 2971-2980 (1997)
  324. Crk at the quarter century mark: perspectives in signaling and cancer. Kumar S, Fajardo JE, Birge RB, Sriram G. J. Cell. Biochem. 115 819-825 (2014)
  325. Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen. Trible RP, Narute P, Emert-Sedlak LA, Alvarado JJ, Atkins K, Thomas L, Kodama T, Yanamala N, Korotchenko V, Day BW, Thomas G, Smithgall TE. Retrovirology 10 135 (2013)
  326. Herpes simplex virus requires VP11/12 to induce phosphorylation of the activation loop tyrosine (Y394) of the Src family kinase Lck in T lymphocytes. Wagner MJ, Smiley JR. J. Virol. 83 12452-12461 (2009)
  327. Identification of N-terminal lobe motifs that determine the kinase activity of the catalytic domains and regulatory strategies of Src and Csk protein tyrosine kinases. Huang K, Wang YH, Brown A, Sun G. J. Mol. Biol. 386 1066-1077 (2009)
  328. In silico activation of Src tyrosine kinase reveals the molecular basis for intramolecular autophosphorylation. Mendieta J, Gago F. J. Mol. Graph. Model. 23 189-198 (2004)
  329. MBNL142 and MBNL143 gene isoforms, overexpressed in DM1-patient muscle, encode for nuclear proteins interacting with Src family kinases. Botta A, Malena A, Tibaldi E, Rocchi L, Loro E, Pena E, Cenci L, Ambrosi E, Bellocchi MC, Pagano MA, Novelli G, Rossi G, Monaco HL, Gianazza E, Pantic B, Romeo V, Marin O, Brunati AM, Vergani L. Cell Death Dis 4 e770 (2013)
  330. Membrane-anchored Cbl suppresses Hck protein-tyrosine kinase mediated cellular transformation. Howlett CJ, Robbins SM. Oncogene 21 1707-1716 (2002)
  331. Mutation of a highly conserved aspartate residue in subdomain IX abolishes Fer protein-tyrosine kinase activity. Cole LA, Zirngibl R, Craig AW, Jia Z, Greer P. Protein Eng. 12 155-162 (1999)
  332. Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors. Xu M, Yu L, Wan B, Yu L, Huang Q. PLoS ONE 6 e22644 (2011)
  333. SH3 ligands in the dopamine D3 receptor. Oldenhof J, Ray A, Vickery R, Van Tol HH. Cell. Signal. 13 411-416 (2001)
  334. The Tec family kinase Itk exists as a folded monomer in vivo. Qi Q, August A. J. Biol. Chem. 284 29882-29892 (2009)
  335. A novel RNA-binding protein, Ossa/C9orf10, regulates activity of Src kinases to protect cells from oxidative stress-induced apoptosis. Tanaka M, Sasaki K, Kamata R, Hoshino Y, Yanagihara K, Sakai R. Mol. Cell. Biol. 29 402-413 (2009)
  336. Interaction between the SH3 domain of Src family kinases and the proline-rich motif of HTLV-1 p13: a novel mechanism underlying delivery of Src family kinases to mitochondria. Tibaldi E, Venerando A, Zonta F, Bidoia C, Magrin E, Marin O, Toninello A, Bordin L, Martini V, Pagano MA, Brunati AM. Biochem. J. 439 505-516 (2011)
  337. Molecular basis for regulation of Src by the docking protein p130Cas. Nasertorabi F, Tars K, Becherer K, Kodandapani R, Liljas L, Vuori K, Ely KR. J. Mol. Recognit. 19 30-38 (2006)
  338. Structure and specificity of the SH2 domain. Waksman G, Kuriyan J. Cell 116 S45-8, 3 p following S48 (2004)
  339. The accessory factor Nef links HIV-1 to Tec/Btk kinases in an Src homology 3 domain-dependent manner. Tarafdar S, Poe JA, Smithgall TE. J. Biol. Chem. 289 15718-15728 (2014)
  340. The kinase-deficient Src acts as a suppressor of the Abl kinase for Cbl phosphorylation. Shishido T, Akagi T, Ouchi T, Georgescu MM, Langdon WY, Hanafusa H. Proc. Natl. Acad. Sci. U.S.A. 97 6439-6444 (2000)
  341. The unique N-terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1. Goel RK, Miah S, Black K, Kalra N, Dai C, Lukong KE. FEBS J. 280 4539-4559 (2013)
  342. Two-dimensional electrophoretic analysis of mixed lineage kinase 2 N-terminal domain binding proteins. Rasmussen RK, Ji H, Eddes JS, Moritz RL, Reid GE, Simpson RJ, Dorow DS. Electrophoresis 19 809-817 (1998)
  343. Yet another "active" pseudokinase, Erb3. Taylor SS, Kornev AP. Proc. Natl. Acad. Sci. U.S.A. 107 8047-8048 (2010)
  344. ATP-phosphopeptide conjugates as inhibitors of Src tyrosine kinases. Nam NH, Lee S, Ye G, Sun G, Parang K. Bioorg. Med. Chem. 12 5753-5766 (2004)
  345. Biochemical basis for the requirement of kinase activity for Cbl-dependent ubiquitinylation and degradation of a target tyrosine kinase. Ghosh AK, Reddi AL, Rao NL, Duan L, Band V, Band H. J. Biol. Chem. 279 36132-36141 (2004)
  346. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement. Moroco JA, Craigo JK, Iacob RE, Wales TE, Engen JR, Smithgall TE. PLoS ONE 9 e105629 (2014)
  347. Interactions of protein kinase CK2 subunits. Korn I, Gutkind S, Srinivasan N, Blundell TL, Allende CC, Allende JE. Mol. Cell. Biochem. 191 75-83 (1999)
  348. Lck-dependent Fyn activation requires C terminus-dependent targeting of kinase-active Lck to lipid rafts. Filipp D, Moemeni B, Ferzoco A, Kathirkamathamby K, Zhang J, Ballek O, Davidson D, Veillette A, Julius M. J. Biol. Chem. 283 26409-26422 (2008)
  349. Prenylated xanthones as potential P-glycoprotein modulators. Tchamo DN, Dijoux-Franca MG, Mariotte AM, Tsamo E, Daskiewicz JB, Bayet C, Barron D, Conseil G, Di Pietro A. Bioorg. Med. Chem. Lett. 10 1343-1345 (2000)
  350. Proteomic, functional and motif-based analysis of C-terminal Src kinase-interacting proteins. Yang G, Li Q, Ren S, Lu X, Fang L, Zhou W, Zhang F, Xu F, Zhang Z, Zeng R, Lottspeich F, Chen Z. Proteomics 9 4944-4961 (2009)
  351. Targeting the unactivated conformations of protein kinases for small molecule drug discovery. Alton GR, Lunney EA. Expert Opin Drug Discov 3 595-605 (2008)
  352. The minimal autoinhibited unit of the guanine nucleotide exchange factor intersectin. Ahmad KF, Lim WA. PLoS ONE 5 e11291 (2010)
  353. Tyrosine Kinase Activation and Conformational Flexibility: Lessons from Src-Family Tyrosine Kinases. Meng Y, Pond MP, Roux B. Acc. Chem. Res. 50 1193-1201 (2017)
  354. Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control. McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. Arch. Biochem. Biophys. 494 216-225 (2010)
  355. Binding of a diphosphorylated-ITAM peptide to spleen tyrosine kinase (Syk) induces distal conformational changes: a hydrogen exchange mass spectrometry study. Catalina MI, Fischer MJ, Dekker FJ, Liskamp RM, Heck AJ. J. Am. Soc. Mass Spectrom. 16 1039-1051 (2005)
  356. Conservation and early expression of zebrafish tyrosine kinases support the utility of zebrafish as a model for tyrosine kinase biology. Challa AK, Chatti K. Zebrafish 10 264-274 (2013)
  357. Cooperative Control of Caspase Recruitment Domain-containing Protein 11 (CARD11) Signaling by an Unusual Array of Redundant Repressive Elements. Jattani RP, Tritapoe JM, Pomerantz JL. J. Biol. Chem. 291 8324-8336 (2016)
  358. Flavonoid dimers as bivalent modulators for p-glycoprotein-based multidrug resistance: structure-activity relationships. Chan KF, Zhao Y, Chow TW, Yan CS, Ma DL, Burkett BA, Wong IL, Chow LM, Chan TH. ChemMedChem 4 594-614 (2009)
  359. Isolation of monobodies that bind specifically to the SH3 domain of the Fyn tyrosine protein kinase. Huang R, Fang P, Kay BK. N Biotechnol 29 526-533 (2012)
  360. Lyn-mediated mitochondrial tyrosine phosphorylation is required to preserve mitochondrial integrity in early liver regeneration. Gringeri E, Carraro A, Tibaldi E, D'Amico FE, D'Amico FE, Mancon M, Toninello A, Pagano MA, Vio C, Cillo U, Brunati AM. Biochem. J. 425 401-412 (2010)
  361. Synthesis and evaluation of 3-phenylpyrazolo[3,4-d]pyrimidine-peptide conjugates as Src kinase inhibitors. Kumar A, Wang Y, Lin X, Sun G, Parang K. ChemMedChem 2 1346-1360 (2007)
  362. The SH3 domain of Src can downregulate its kinase activity in the absence of the SH2 domain-pY527 interaction. Brábek J, Mojzita D, Novotný M, Půta F, Folk P. Biochem. Biophys. Res. Commun. 296 664-670 (2002)
  363. Three-dimensional structure of the Hck SH2 domain in solution. Zhang W, Smithgall TE, Gmeiner WH. J. Biomol. NMR 10 263-272 (1997)
  364. A dynamic mechanism for allosteric activation of Aurora kinase A by activation loop phosphorylation. Ruff EF, Muretta JM, Thompson AR, Lake EW, Cyphers S, Albanese SK, Hanson SM, Behr JM, Thomas DD, Chodera JD, Levinson NM. Elife 7 (2018)
  365. An unexpected role for the clock protein timeless in developmental apoptosis. O'Reilly LP, Watkins SC, Smithgall TE. PLoS ONE 6 e17157 (2011)
  366. Hydrophobic Core Variations Provide a Structural Framework for Tyrosine Kinase Evolution and Functional Specialization. Mohanty S, Oruganty K, Kwon A, Byrne DP, Ferries S, Ruan Z, Hanold LE, Katiyar S, Kennedy EJ, Eyers PA, Kannan N. PLoS Genet. 12 e1005885 (2016)
  367. Identification of residues involved in v-Src substrate recognition by site-directed mutagenesis. Yokoyama N, Miller WT. FEBS Lett. 456 403-408 (1999)
  368. Interaction between Btk TH and SH3 domain. Okoh MP, Vihinen M. Biopolymers 63 325-334 (2002)
  369. Mechanistic basis of Nek7 activation through Nek9 binding and induced dimerization. Haq T, Richards MW, Burgess SG, Gallego P, Yeoh S, O'Regan L, Reverter D, Roig J, Fry AM, Bayliss R. Nat Commun 6 8771 (2015)
  370. Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6. Kim HIe, Jung J, Lee ES, Kim YC, Lee W, Lee ST. Biochem. Biophys. Res. Commun. 362 829-834 (2007)
  371. Organization of cell-regulatory systems through modular-protein-interaction domains. Pawson T. Philos Trans A Math Phys Eng Sci 361 1251-1262 (2003)
  372. Congresses Phosphatases and kinases in lymphocyte signaling. Yakura H. Immunol. Today 19 198-201 (1998)
  373. Role of the Bsk/Iyk non-receptor tyrosine kinase for the control of growth and hormone production in RINm5F cells. Annerén C, Welsh M. Growth Factors 17 233-247 (2000)
  374. Src: more than the sum of its parts. D S, S J T. Trends Cell Biol. 7 215-217 (1997)
  375. Structural dynamic analysis of apo and ATP-bound IRAK4 kinase. Gosu V, Choi S. Sci Rep 4 5748 (2014)
  376. Structural framework of c-Src activation by integrin β3. Xiao R, Xi XD, Chen Z, Chen SJ, Meng G. Blood 121 700-706 (2013)
  377. Synthesis and structure-activity relationships of linear and conformationally constrained peptide analogues of CIYKYY as Src tyrosine kinase inhibitors. Kumar A, Ye G, Wang Y, Lin X, Sun G, Parang K. J. Med. Chem. 49 3395-3401 (2006)
  378. A different function for a critical tryptophan in c-Raf and Hck. McPherson RA, Taylor MM, Hershey ED, Sturgill TW. Oncogene 19 3616-3622 (2000)
  379. A hexylchloride-based catch-and-release system for chemical proteomic applications. Brigham JL, Perera BG, Maly DJ. ACS Chem. Biol. 8 691-699 (2013)
  380. Ack1: activation and regulation by allostery. Gajiwala KS, Maegley K, Ferre R, He YA, Yu X. PLoS ONE 8 e53994 (2013)
  381. Coevolution of the domains of cytoplasmic tyrosine kinases. Nars M, Vihinen M. Mol. Biol. Evol. 18 312-321 (2001)
  382. Cyclic peptides containing tryptophan and arginine as Src kinase inhibitors. Nasrolahi Shirazi A, Tiwari RK, Brown A, Mandal D, Sun G, Parang K. Bioorg. Med. Chem. Lett. 23 3230-3234 (2013)
  383. Integrin-mediated tyrosine phosphorylation of Shc in T cells is regulated by protein kinase C-dependent phosphorylations of Lck. Niu S, Xie H, Marcantonio EE. Mol. Biol. Cell 14 349-360 (2003)
  384. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64. Strong TC, Kaur G, Thomas JH. PLoS ONE 6 e28100 (2011)
  385. Optimization of a homogeneous assay for kinase inhibitors in plant extracts. Dufau I, Lazzari A, Samson A, Pouny I, Ausseil F. Assay Drug Dev Technol 6 673-682 (2008)
  386. Probing the 3-D structure, dynamics, and stability of bacterial collagenase collagen binding domain (apo- versus holo-) by limited proteolysis MALDI-TOF MS. Sides CR, Liyanage R, Lay JO, Philominathan ST, Matsushita O, Sakon J. J. Am. Soc. Mass Spectrom. 23 505-519 (2012)
  387. Sensitive FRET Biosensor Reveals Fyn Kinase Regulation by Submembrane Localization. Ouyang M, Wan R, Qin Q, Peng Q, Wang P, Wu J, Allen M, Shi Y, Laub S, Deng L, Lu S, Wang Y. ACS Sens 4 76-86 (2019)
  388. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape. Fajer M, Meng Y, Roux B. J Phys Chem B 121 3352-3363 (2017)
  389. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion. Dölker N, Górna MW, Sutto L, Torralba AS, Superti-Furga G, Gervasio FL. PLoS Comput. Biol. 10 e1003863 (2014)
  390. The activation loop in Lck regulates oncogenic potential by inhibiting basal kinase activity and restricting substrate specificity. Laham LE, Mukhopadhyay N, Roberts TM. Oncogene 19 3961-3970 (2000)
  391. The cysteine-cluster motif of c-Src: its role for the heavy metal-mediated activation of kinase. Senga T, Hasegawa H, Tanaka M, Rahman MA, Ito S, Hamaguchi M. Cancer Sci. 99 571-575 (2008)
  392. Three dimensional atomic model and experimental validation for the ATP-Regulated Module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK. Mol. Cell. Biochem. 214 7-14 (2000)
  393. A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45. Courtney AH, Amacher JF, Kadlecek TA, Mollenauer MN, Au-Yeung BB, Kuriyan J, Weiss A. Mol. Cell 67 498-511.e6 (2017)
  394. Backbone dynamics in an intramolecular prolylpeptide-SH3 complex from the diphtheria toxin repressor, DtxR. Bhattacharya N, Yi M, Zhou HX, Logan TM. J. Mol. Biol. 374 977-992 (2007)
  395. Co-conserved features associated with cis regulation of ErbB tyrosine kinases. Mirza A, Mustafa M, Talevich E, Kannan N. PLoS ONE 5 e14310 (2010)
  396. Critical amino acid substitutions in the Src SH3 domain that convert c-Src to be oncogenic. Miyazaki K, Senga T, Matsuda S, Tanaka M, Machida K, Takenouchi Y, Nimura Y, Hamaguchi M. Biochem. Biophys. Res. Commun. 263 759-764 (1999)
  397. Hypothalamic Ahi1 mediates feeding behavior through interaction with 5-HT2C receptor. Wang H, Huang Z, Huang L, Niu S, Rao X, Xu J, Kong H, Yang J, Yang C, Wu D, Li S, Li XJ, Liu T, Sheng G. J. Biol. Chem. 287 2237-2246 (2012)
  398. Interaction between Wiskott-Aldrich Syndrome protein (WASP) and the Fyn protein-tyrosine kinase. Banin S, Gout I, Brickell P. Mol. Biol. Rep. 26 173-177 (1999)
  399. MAGUK SH3 domains--swapped and stranded by their kinases? Yaffe MB. Structure 10 3-5 (2002)
  400. Mercuric chloride activates the Src-family protein tyrosine kinase, Hck in myelomonocytic cells. Robbins SM, Quintrell NA, Bishop JM. Eur. J. Biochem. 267 7201-7208 (2000)
  401. Purification, crystallization, small-angle X-ray scattering and preliminary X-ray diffraction analysis of the SH2 domain of the Csk-homologous kinase. Gunn NJ, Gorman MA, Dobson RC, Parker MW, Mulhern TD. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 336-339 (2011)
  402. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family. Register AC, Leonard SE, Maly DJ. Biochemistry 53 6910-6923 (2014)
  403. SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl. Patel HV, Tzeng SR, Liao CY, Chen SH, Cheng JW. Proteins 29 545-552 (1997)
  404. The HIV-1 Nef protein as a target for antiretroviral therapy. Coleman SH, Day JR, Guatelli JC. Expert Opin. Ther. Targets 5 1-22 (2001)
  405. The Tyrosine Kinase c-Src Specifically Binds to the Active Integrin αIIbβ3 to Initiate Outside-in Signaling in Platelets. Wu Y, Span LM, Nygren P, Zhu H, Moore DT, Cheng H, Roder H, DeGrado WF, Bennett JS. J. Biol. Chem. 290 15825-15834 (2015)
  406. The v-Src and c-Src tyrosine kinases immunoprecipitated from Rous sarcoma virus-transformed cells display different peptide substrate specificities. Vojtechová M, Tuhácková Z, Hlavácek J, Velek J, Sovová V. Arch. Biochem. Biophys. 421 277-282 (2004)
  407. A functional Jak2 tyrosine kinase domain is essential for mouse development. Frenzel K, Wallace TA, McDoom I, Xiao HD, Capecchi MR, Bernstein KE, Sayeski PP. Exp. Cell Res. 312 2735-2744 (2006)
  408. An essential role of ubiquitination in Cbl-mediated negative regulation of the Src-family kinase Fyn. Rao N, Ghosh AK, Douillard P, Andoniou CE, Zhou P, Band H. Signal Transduct 2 29-39 (2002)
  409. Anti-CD45 isoform antibodies enhance phagocytosis and gene expression of IL-8 and TNF-alpha in human neutrophils by differential suppression on protein tyrosine phosphorylation and p56lck tyrosine kinase. Yu C, Yu HS, Sun KH, Hsieh SC, Tsai CY. Clin. Exp. Immunol. 129 78-85 (2002)
  410. Clickable 5'-γ-ferrocenyl adenosine triphosphate bioconjugates in kinase-catalyzed phosphorylations. Wang N, She Z, Lin YC, Martić S, Mann DJ, Kraatz HB. Chemistry 21 4988-4999 (2015)
  411. Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation. Wybenga-Groot LE, McGlade CJ. Cell. Signal. 25 2702-2708 (2013)
  412. Distal loop flexibility of a regulatory domain modulates dynamics and activity of C-terminal SRC kinase (csk). Barkho S, Pierce LC, McGlone ML, Li S, Woods VL, Walker RC, Adams JA, Jennings PA. PLoS Comput. Biol. 9 e1003188 (2013)
  413. Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain 3 and ALG-2-interacting protein X. Shi X, Opi S, Lugari A, Restouin A, Coursindel T, Parrot I, Perez J, Madore E, Zimmermann P, Corbeil J, Huang M, Arold ST, Collette Y, Morelli X. Biochem. J. 431 93-102 (2010)
  414. Identification of Hck inhibitors as hits for the development of antileukemia and anti-HIV agents. Tintori C, Laurenzana I, La Rocca F, Falchi F, Carraro F, Ruiz A, Esté JA, Kissova M, Crespan E, Maga G, Biava M, Brullo C, Schenone S, Botta M. ChemMedChem 8 1353-1360 (2013)
  415. Inositol phosphate-induced stabilization of inositol 1,3,4,5,6-pentakisphosphate 2-kinase and its role in substrate specificity. Gosein V, Leung TF, Krajden O, Miller GJ. Protein Sci. 21 737-742 (2012)
  416. Mass spectrometry guided in situ proteolysis to obtain crystals for X-ray structure determination. Gheyi T, Rodgers L, Romero R, Sauder JM, Burley SK. J. Am. Soc. Mass Spectrom. 21 1795-1801 (2010)
  417. Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation. Bachman AB, Keramisanou D, Xu W, Beebe K, Moses MA, Vasantha Kumar MV, Gray G, Noor RE, van der Vaart A, Neckers L, Gelis I. Nat Commun 9 265 (2018)
  418. Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase. Ahmad Z, Okafor F, Laughlin TF. J Amino Acids 2011 785741 (2011)
  419. The Macrophage Galactose-Type C-Type Lectin (MGL) Modulates Regulatory T Cell Functions. Zizzari IG, Martufi P, Battisti F, Rahimi H, Caponnetto S, Bellati F, Nuti M, Rughetti A, Napoletano C. PLoS ONE 10 e0132617 (2015)
  420. Adding 'splice' to protein engineering. Holford M, Muir TW. Structure 6 951-956 (1998)
  421. Editorial Arm-domain interactions in proteins: a review. Schleif R. Proteins 34 1-3 (1999)
  422. Both proline-rich sequences in the TH region of Bruton's tyrosine kinase stabilize intermolecular interactions with the SH3 domain. Hansson H, Smith CI, Härd T. FEBS Lett. 508 11-15 (2001)
  423. Computational study of the W260A activating mutant of Src tyrosine kinase. Meng Y, Roux B. Protein Sci. 25 219-230 (2016)
  424. Divergent modulation of Src-family kinase regulatory interactions with ATP-competitive inhibitors. Leonard SE, Register AC, Krishnamurty R, Brighty GJ, Maly DJ. ACS Chem. Biol. 9 1894-1905 (2014)
  425. Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen. Shah NH, Löbel M, Weiss A, Kuriyan J. Elife 7 (2018)
  426. Flavonoids as CDK1 Inhibitors: Insights in Their Binding Orientations and Structure-Activity Relationship. Navarro-Retamal C, Caballero J. PLoS ONE 11 e0161111 (2016)
  427. Functional analysis of the catalytic subunit of Dictyostelium PKA in vivo. Dammann H, Traincard F, Anjard C, van Bemmelen MX, Reymond C, Véron M. Mech. Dev. 72 149-157 (1998)
  428. GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity. Wright B, Watson KA, McGuffin LJ, Lovegrove JA, Gibbins JM. J. Nutr. Biochem. 26 1156-1165 (2015)
  429. High-affinity Src-SH2 ligands which do not activate Tyr(527)-phosphorylated Src in an experimental in vivo system. Mandine E, Jean-Baptiste V, Vayssière B, Gofflo D, Bénard D, Sarubbi E, Deprez P, Baron R, Superti-Furga G, Lesuisse D. Biochem. Biophys. Res. Commun. 298 185-192 (2002)
  430. PAG/Cbp suppression reveals a contribution of CTLA-4 to setting the activation threshold in T cells. Smida M, Cammann C, Gurbiel S, Kerstin N, Lingel H, Lindquist S, Simeoni L, Brunner-Weinzierl MC, Suchanek M, Schraven B, Lindquist JA. Cell Commun. Signal 11 28 (2013)
  431. Roles of phosphate recognition in inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) substrate binding and activation. Gosein V, Miller GJ. J. Biol. Chem. 288 26908-26913 (2013)
  432. A full-length 3D structure for MAPK/ERK kinase 2 (MEK2). Liang H, Liu T, Chen F, Liu Z, Liu S. Sci China Life Sci 54 336-341 (2011)
  433. Achieving a Graded Immune Response: BTK Adopts a Range of Active/Inactive Conformations Dictated by Multiple Interdomain Contacts. Joseph RE, Wales TE, Fulton DB, Engen JR, Andreotti AH. Structure 25 1481-1494.e4 (2017)
  434. Activation loop tyrosines allow the JAK2(V617F) mutant to attain hyperactivation. Kundrapu K, Colenberg L, Duhé RJ. Cell Biochem. Biophys. 52 103-112 (2008)
  435. CD45 functions as a signaling gatekeeper in T cells. Courtney AH, Shvets AA, Lu W, Griffante G, Mollenauer M, Horkova V, Lo WL, Yu S, Stepanek O, Chakraborty AK, Weiss A. Sci Signal 12 (2019)
  436. Generation of a novel system for studying spleen tyrosine kinase function in macrophages and B cells. Miller AL, Zhang C, Shokat KM, Lowell CA. J. Immunol. 182 988-998 (2009)
  437. Identification of CENP-V as a novel microtubule-associating molecule that activates Src family kinases through SH3 domain interaction. Honda Z, Suzuki T, Honda H. Genes Cells 14 1383-1394 (2009)
  438. Interactions between SH2 and SH3 domains. Vihinen M, Smith CI. Biochem. Biophys. Res. Commun. 242 351-356 (1998)
  439. Selective Targeting of SH2 Domain-Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies. Kükenshöner T, Schmit NE, Bouda E, Sha F, Pojer F, Koide A, Seeliger M, Koide S, Hantschel O. J. Mol. Biol. 429 1364-1380 (2017)
  440. Tyrosine phosphorylation of the GARU E3 ubiquitin ligase promotes gibberellin signalling by preventing GID1 degradation. Nemoto K, Ramadan A, Arimura GI, Imai K, Tomii K, Shinozaki K, Sawasaki T. Nat Commun 8 1004 (2017)
  441. An efficient method for protein phosphorylation using the artificially introduced of cognate-binding modules into kinases and substrates. Kobashigawa Y, Naito M, Inagaki F. J. Biotechnol. 131 458-465 (2007)
  442. Interaction with simian Hck tyrosine kinase reveals convergent evolution of the Nef protein from simian and human immunodeficiency viruses despite differential molecular surface usage. Picard C, Greenway A, Holloway G, Olive D, Collette Y. Virology 295 320-327 (2002)
  443. Involvement of the SH3 domain in Ca2+-mediated regulation of Src family kinases. Monteiro AN. Biochimie 88 905-911 (2006)
  444. Metal-binding properties of a dicysteine-containing motif in protein tyrosine kinases. Ahmadibeni Y, Hanley M, White M, Ayrapetov M, Lin X, Sun G, Parang K. Chembiochem 8 1592-1605 (2007)
  445. Phosphorylation and ATP-binding induced conformational changes in the PrkC, Ser/Thr kinase from B. subtilis. Gruszczyński P, Obuchowski M, Kaźmierkiewicz R. J. Comput. Aided Mol. Des. 24 733-747 (2010)
  446. Spectroscopic characterization of the SH2- and active site-directed peptide sequences of a bivalent Src kinase inhibitor. Desamero RZ, Kang J, Dol C, Chinwong J, Walters K, Sivarajah T, Profit AA. Appl Spectrosc 63 767-774 (2009)
  447. Subtle Dynamic Changes Accompany Hck Activation by HIV-1 Nef and are Reversed by an Antiretroviral Kinase Inhibitor. Wales TE, Hochrein JM, Morgan CR, Emert-Sedlak LA, Smithgall TE, Engen JR. Biochemistry 54 6382-6391 (2015)
  448. Systematic characterization of the specificity of the SH2 domains of cytoplasmic tyrosine kinases. Zhao B, Tan PH, Li SS, Pei D. J Proteomics 81 56-69 (2013)
  449. Two kinase family dramas. Leonard TA, Hurley JH. Cell 129 1037-1038 (2007)
  450. A one-step synthesis of 2-Alkyl-5-hydroxychromones and 3-Alkoyl-2-alkyl-5-hydroxychromones. Okombi S, Schmidt J, Mariotte AM, Perrier E, Boumendjel A. Chem. Pharm. Bull. 53 1460-1462 (2005)
  451. Alkylation of 2-phenyl-4-quinolones: synthetic and structural studies. Hadjeri M, Mariotte AM, Boumendjel A. Chem. Pharm. Bull. 49 1352-1355 (2001)
  452. Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin. Yang F, Xiao P, Qu CX, Liu Q, Wang LY, Liu ZX, He QT, Liu C, Xu JY, Li RR, Li MJ, Li Q, Guo XZ, Yang ZY, He DF, Yi F, Ruan K, Shen YM, Yu X, Sun JP, Wang J. Nat. Chem. Biol. 14 876-886 (2018)
  453. Bacterial expression and purification of active hematopoietic cell kinase. Kristelly R, Qiu TW, Gunn NJ, Scanlon DB, Mulhern TD. Protein Expr. Purif. 78 14-21 (2011)
  454. Bimolecular fluorescence complementation demonstrates that the c-Fes protein-tyrosine kinase forms constitutive oligomers in living cells. Shaffer JM, Hellwig S, Smithgall TE. Biochemistry 48 4780-4788 (2009)
  455. Conformational stability of inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) dictates its substrate selectivity. Gosein V, Miller GJ. J. Biol. Chem. 288 36788-36795 (2013)
  456. Control of genetically prescribed protein tyrosine kinase activities by environment-linked redox reactions. Nakashima I, Kawamoto Y, Takeda K, Kato M. Enzyme Res 2011 896567 (2011)
  457. Dynamic, structural and thermodynamic basis of insulin-like growth factor 1 kinase allostery mediated by activation loop phosphorylation. Li Y, Nam K. Chem Sci 8 3453-3464 (2017)
  458. Expression changes of hypothalamic Ahi1 in mice brain: implication in sensing insulin signaling. Niu S, Wang H, Huang Z, Rao X, Cai X, Liang T, Xu J, Xu X, Sheng G. Mol. Biol. Rep. 39 9697-9705 (2012)
  459. Ligand-based pharmacophore modeling and Bayesian approaches to identify c-Src inhibitors. Sakkiah S, Arullaperumal V, Hwang S, Lee KW. J Enzyme Inhib Med Chem 29 69-80 (2014)
  460. Ligands Binding to Cell Surface Ganglioside GD2 Cause Src-Dependent Activation of N-Methyl-D-Aspartate Receptor Signaling and Changes in Cellular Morphology. Tong W, Maira M, Gagnon M, Saragovi HU. PLoS ONE 10 e0134255 (2015)
  461. Membrane Anchoring of Hck Kinase via the Intrinsically Disordered SH4-U and Length Scale Associated with Subcellular Localization. Pond MP, Eells R, Treece BW, Heinrich F, Lösche M, Roux B. J Mol Biol 432 2985-2997 (2020)
  462. Multiple steps to activate FAK's kinase domain: adaptation to confined environments? Herzog FA, Vogel V. Biophys. J. 104 2521-2529 (2013)
  463. Novel virtual lead identification in the discovery of hematopoietic cell kinase (HCK) inhibitors: application of 3D QSAR and molecular dynamics simulation. Bavi R, Kumar R, Rampogu S, Kim Y, Kwon YJ, Park SJ, Lee KW. J. Recept. Signal Transduct. Res. 37 224-238 (2017)
  464. Synthesis, antiproliferative activity, and structure-activity relationships of 3-aryl-1H-quinolin-4-ones. Xiao ZP, Li HQ, Shi L, Lv PC, Song ZC, Zhu HL. ChemMedChem 3 1077-1082 (2008)
  465. The residue at position 5 of the N-terminal region of Src and Fyn modulates their myristoylation, palmitoylation, and membrane interactions. Gottlieb-Abraham E, Gutman O, Pai GM, Rubio I, Henis YI. Mol. Biol. Cell 27 3926-3936 (2016)
  466. A Model for the Signal Initiation Complex Between Arrestin-3 and the Src Family Kinase Fgr. Perez I, Berndt S, Agarwal R, Castro MA, Vishnivetskiy SA, Smith JC, Sanders CR, Gurevich VV, Iverson TM. J Mol Biol 434 167400 (2022)
  467. A switch in nucleotide affinity governs activation of the Src and Tec family kinases. von Raußendorf F, de Ruiter A, Leonard TA. Sci Rep 7 17405 (2017)
  468. Cleavage Alters the Molecular Determinants of Protein Kinase C-δ Catalytic Activity. Gong J, Park M, Steinberg SF. Mol. Cell. Biol. 37 (2017)
  469. Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Advani G, Lim YC, Catimel B, Lio DSS, Ng NLY, Chüeh AC, Tran M, Anasir MI, Verkade H, Zhu HJ, Turk BE, Smithgall TE, Ang CS, Griffin M, Cheng HC. Cell Commun. Signal 15 29 (2017)
  470. Differential Impact of Flavonoids on Redox Modulation, Bioenergetics, and Cell Signaling in Normal and Tumor Cells: A Comprehensive Review. Kerimi A, Williamson G. Antioxid. Redox Signal. 29 1633-1659 (2018)
  471. Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase. Yamada E, Bastie CC. PLoS ONE 9 e89604 (2014)
  472. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase. Meiselbach H, Sticht H. J Mol Model 17 1927-1934 (2011)
  473. Expression and purification of Src-family kinases for solution NMR studies. Piserchio A, Cowburn D, Ghose R. Methods Mol. Biol. 831 111-131 (2012)
  474. Inhibition of src family kinases by a combinatorial action of 5'-AMP and small heat shock proteins, identified from the adult heart. Kasi VS, Kuppuswamy D. Mol. Cell. Biol. 19 6858-6871 (1999)
  475. Multidomain Control Over TEC Kinase Activation State Tunes the T Cell Response. Andreotti AH, Joseph RE, Conley JM, Iwasa J, Berg LJ. Annu. Rev. Immunol. 36 549-578 (2018)
  476. Protein Flexibility and Dissociation Pathway Differentiation Can Explain Onset of Resistance Mutations in Kinases. Shekhar M, Smith Z, Seeliger MA, Tiwary P. Angew Chem Int Ed Engl 61 e202200983 (2022)
  477. Reciprocally coupled residues crucial for protein kinase Pak2 activity calculated by statistical coupling analysis. Hsu YH, Traugh JA. PLoS ONE 5 e9455 (2010)
  478. Structural basis for the activity of pp60(c-src) protein tyrosine kinase inhibitors. Prabhu NV, Siddiqui SA, McMurray JS, Pettitt BM. Biopolymers 59 167-179 (2001)
  479. Switch-like activation of Bruton's tyrosine kinase by membrane-mediated dimerization. Chung JK, Nocka LM, Decker A, Wang Q, Kadlecek TA, Weiss A, Kuriyan J, Groves JT. Proc. Natl. Acad. Sci. U.S.A. 116 10798-10803 (2019)
  480. Theoretical Insights Reveal Novel Motions in Csk's SH3 Domain That Control Kinase Activation. Barkho S, Pierce LC, Li S, Adams JA, Jennings PA. PLoS ONE 10 e0127724 (2015)
  481. -NOD Mice Having a Lyn Tyrosine Kinase Mutation Exhibit Abnormal Neutrophil Chemotaxis. Wu Y, Hannigan M, Zhan L, Madri JA, Huang CK. J. Cell. Physiol. 232 1689-1695 (2017)
  482. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. Reinhardt R, Leonard TA. Elife 12 e88210 (2023)
  483. ATP-site inhibitors induce unique conformations of the acute myeloid leukemia-associated Src-family kinase, Fgr. Du S, Alvarado JJ, Wales TE, Moroco JA, Engen JR, Smithgall TE. Structure 30 1508-1517.e3 (2022)
  484. CSK-homologous kinase (CHK/MATK) is a potential colorectal cancer tumour suppressor gene epigenetically silenced by promoter methylation. Chüeh AC, Advani G, Foroutan M, Smith J, Ng N, Nandurkar H, Lio DS, Zhu HJ, Chong YP, Verkade H, Fujita DJ, Bjorge J, Basheer F, Lim JP, Luk I, Dhillon A, Sakthianandeswaren A, Mouradov D, Sieber O, Hollande F, Mariadason JM, Cheng HC. Oncogene 40 3015-3029 (2021)
  485. Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound. Alqahtani FM, Arivett BA, Taylor ZE, Handy ST, Farone AL, Farone MB. PLoS ONE 14 e0226068 (2019)
  486. Environmentally Friendly Approach to Knoevenagel Condensation of Rhodanine in Choline Chloride: Urea Deep Eutectic Solvent and QSAR Studies on Their Antioxidant Activity. Molnar M, Brahmbhatt H, Rastija V, Pavić V, Komar M, Karnaš M, Babić J. Molecules 23 (2018)
  487. Identification of Druggable Kinase Target Conformations Using Markov Model Metastable States Analysis of apo-Abl. Paul F, Meng Y, Roux B. J Chem Theory Comput 16 1896-1912 (2020)
  488. Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure-Activity Analysis. Gu C, Stashko MA, Puhl-Rubio AC, Chakraborty M, Chakraborty A, Frye SV, Pearce KH, Wang X, Shears SB, Wang H. J. Med. Chem. 62 1443-1454 (2019)
  489. Insight into the mechanism of chemical modification of antibacterial agents by antibiotic resistance enzyme O-phosphotransferase-IIIA. Power BH, Smith N, Downer B, Alisaraie L. Chem Biol Drug Des 89 84-97 (2017)
  490. Interactions of quercetin with receptor tyrosine kinases associated with human lung carcinoma. Baby B, Antony P, Vijayan R. Nat. Prod. Res. 32 2928-2931 (2018)
  491. Investigating Phosphorylation-Induced Conformational Changes in WNK1 Kinase by Molecular Dynamics Simulations. Jonniya NA, Sk MF, Kar P. ACS Omega 4 17404-17416 (2019)
  492. Lipid-targeting pleckstrin homology domain turns its autoinhibitory face toward the TEC kinases. Amatya N, Wales TE, Kwon A, Yeung W, Joseph RE, Fulton DB, Kannan N, Engen JR, Andreotti AH. Proc. Natl. Acad. Sci. U.S.A. 116 21539-21544 (2019)
  493. Lysophosphatidic acid inhibits ghrelin secretion in the human gastric adenocarcinoma AGS cell line: role of mitogenic activated protein kinase signaling pathway. Pazos Y, Alvarez CJ, Camiña JP, Casanueva FF. FEBS J. 274 5714-5726 (2007)
  494. Mechanisms controlling membrane recruitment and activation of the autoinhibited SHIP1 inositol 5-phosphatase. Waddell GL, Drew EE, Rupp HP, Hansen SD. J Biol Chem 299 105022 (2023)
  495. NMR studies of the RRsrc peptide, a tyrosine kinase substrate. Brockbank RL, Vogel HJ. Biochem. Cell Biol. 75 163-169 (1997)
  496. Phosphorylation control of the ubiquitin ligase Cbl is conserved in choanoflagellates. Amacher JF, Hobbs HT, Cantor AC, Shah L, Rivero MJ, Mulchand SA, Kuriyan J. Protein Sci. 27 923-932 (2018)
  497. Protein kinase D displays intrinsic Tyr autophosphorylation activity: insights into mechanism and regulation. Cobbaut M, Derua R, Parker PJ, Waelkens E, Janssens V, Van Lint J. FEBS Lett. 592 2432-2443 (2018)
  498. SKAP2 Modular Organization Differently Recognizes SRC Kinases Depending on Their Activation Status and Localization. Levillayer L, Cassonnet P, Declercq M, Santos MD, Lebreton L, Danezi K, Demeret C, Sakuntabhai A, Jacob Y, Bureau JF. Mol Cell Proteomics 22 100451 (2022)
  499. Src family kinases engage differential pathways for encapsulation into extracellular vesicles. Ye C, Gosser C, Runyon ED, Zha J, Cai J, Beharry Z, Rickman CB, Klingeborn M, Liu Y, Xie J, Cai H. J Extracell Biol 2 e96 (2023)
  500. Structural mechanism for Bruton's tyrosine kinase activation at the cell membrane. Wang Q, Pechersky Y, Sagawa S, Pan AC, Shaw DE. Proc. Natl. Acad. Sci. U.S.A. 116 9390-9399 (2019)
  501. TYROSINE KINASES: COMPLEX MOLECULAR SYSTEMS CHALLENGING COMPUTATIONAL METHODOLOGIES. Thomas T, Roux B. Eur Phys J B 94 203 (2021)
  502. Teaching resources. Protein domains that interact with receptor tyrosine kinases: structural aspects. Zhou MM. Sci. STKE 2005 tr9 (2005)
  503. Teaching resources. Protein kinases. Caplan A. Sci. STKE 2005 tr7 (2005)
  504. The HIV-1 protein Nef activates the Tec family kinase Btk by stabilizing an intermolecular SH3-SH2 domain interaction. Aryal M, Lin D, Regan K, Du S, Shi H, Alvarado JJ, Ilina TV, Andreotti AH, Smithgall TE. Sci Signal 15 eabn8359 (2022)
  505. The SRC-family tyrosine kinase HCK shapes the landscape of SKAP2 interactome. Bureau JF, Cassonnet P, Grange L, Dessapt J, Jones L, Demeret C, Sakuntabhai A, Jacob Y. Oncotarget 9 13102-13115 (2018)
  506. The Src family kinase Fgr is a transforming oncoprotein that functions independently of SH3-SH2 domain regulation. Shen K, Moroco JA, Patel RK, Shi H, Engen JR, Dorman HR, Smithgall TE. Sci Signal 11 (2018)
  507. The impact of oncogenic mutations of the viral Src kinase on the structure and stability of the SH3 domain. Salinas-Garcia MC, Plaza-Garrido M, Camara-Artigas A. Acta Crystallogr D Struct Biol 77 854-866 (2021)
  508. Ursodeoxycholic Acid Binds PERK and Ameliorates Neurite Atrophy in a Cellular Model of GM2 Gangliosidosis. Morales C, Fernandez M, Ferrer R, Raimunda D, Carrer DC, Bollo M. Int J Mol Sci 24 7209 (2023)
  509. Veritas per structuram. Harrison SC. Annu. Rev. Biochem. 84 37-60 (2015)