1a69 Citations

Crystal structure of the ternary complex of E. coli purine nucleoside phosphorylase with formycin B, a structural analogue of the substrate inosine, and phosphate (Sulphate) at 2.1 A resolution.

J Mol Biol 280 153-66 (1998)
Cited: 47 times
EuropePMC logo PMID: 9653038

Abstract

The ternary complex of purine nucleoside phosphorylase from E. coli with formycin B and a sulphate or phosphate ion crystallized in the hexagonal space group P6122 with unit cell dimensions a=123.11, c=241.22 A and three monomers per asymmetric unit. The biologically active hexamer is formed through 2-fold crystallographic symmetry, constituting a trimer of dimers. High-resolution X-ray diffraction data were collected using synchrotron radiation (Daresbury, England). The crystal structure was determined by molecular replacement and refined at 2.1 A resolution to an R-value of 0.196. There is one active centre per monomer, composed of residues belonging to two subunits of one dimer. The phosphate binding site is strongly positively charged and consists of three arginine residues (Arg24, Arg87 and Arg43 from a neighbouring subunit), Ser90 and Gly20. It is occupied by a sulphate or phosphate anion, each oxygen atom of which accepts at least two hydrogen bonds or salt-bridges. The sulphate or phosphate anion is also in direct contact with the ribose moiety of formycin B. The ribose binding site is composed of Ser90, Met180, Glu181 and His4, the latter belonging to the neighbouring subunit. The base binding site is exposed to solvent, and the base is unspecifically bound through a chain of water molecules and aromatic-aromatic interactions. In all monomers the nucleosides are in the high syn conformation about the glycosidic bonds with chi in the range 100 to 130 degrees. The architecture of the active centre is in line with the known broad specificity and the kinetic properties of E. coli PNP.

Articles - 1a69 mentioned but not cited (9)

  1. BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Yang J, Roy A, Zhang Y. Nucleic Acids Res 41 D1096-103 (2013)
  2. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Rider MA, Hurwitz SN, Meckes DG. Sci Rep 6 23978 (2016)
  3. Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis. Park C, Zhou S, Gilmore J, Marqusee S. J Mol Biol 368 1426-1437 (2007)
  4. Mapping of ligand-binding cavities in proteins. Andersson CD, Chen BY, Linusson A. Proteins 78 1408-1422 (2010)
  5. A new method for detection of tumor driver-dependent changes of protein sialylation in a colon cancer cell line reveals nectin-3 as TGFBR2 target. Lee J, Warnken U, Schnölzer M, Gebert J, Kopitz J. Protein Sci 24 1686-1694 (2015)
  6. Crystal Structure of the Regulatory Domain of MexT, a Transcriptional Activator of the MexEFOprN Efflux Pump in Pseudomonas aeruginosa. Kim S, Kim SH, Ahn J, Jo I, Lee ZW, Choi SH, Ha N. Mol Cells 42 850-857 (2019)
  7. BioLiP2: an updated structure database for biologically relevant ligand-protein interactions. Zhang C, Zhang X, Freddolino PL, Zhang Y. Nucleic Acids Res 52 D404-D412 (2024)
  8. How soluble misfolded proteins bypass chaperones at the molecular level. Halder R, Nissley DA, Sitarik I, Jiang Y, Rao Y, Vu QV, Li MS, Pritchard J, O'Brien EP. Nat Commun 14 3689 (2023)
  9. Structural Basis of Sequential and Concerted Cooperativity. Morea V, Angelucci F, Tame JRH, Di Cera E, Bellelli A. Biomolecules 12 1651 (2022)


Reviews citing this publication (4)

Articles citing this publication (34)

  1. Open and closed conformation of the E. coli purine nucleoside phosphorylase active center and implications for the catalytic mechanism. Koellner G, Bzowska A, Wielgus-Kutrowska B, Luić M, Steiner T, Saenger W, Stepiński J. J Mol Biol 315 351-371 (2002)
  2. Crystal structure of the purine nucleoside phosphorylase (PNP) from Cellulomonas sp. and its implication for the mechanism of trimeric PNPs. Tebbe J, Bzowska A, Wielgus-Kutrowska B, Schröder W, Kazimierczuk Z, Shugar D, Saenger W, Koellner G. J Mol Biol 294 1239-1255 (1999)
  3. Three-dimensional structure of a hyperthermophilic 5'-deoxy-5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus. Appleby TC, Mathews II, Porcelli M, Cacciapuoti G, Ealick SE. J Biol Chem 276 39232-39242 (2001)
  4. X-ray structure of pyrrolidone carboxyl peptidase from the hyperthermophilic archaeon Thermococcus litoralis. Singleton M, Isupov M, Littlechild J. Structure 7 237-244 (1999)
  5. Crystal structures of Escherichia coli uridine phosphorylase in two native and three complexed forms reveal basis of substrate specificity, induced conformational changes and influence of potassium. Caradoc-Davies TT, Cutfield SM, Lamont IL, Cutfield JF. J Mol Biol 337 337-354 (2004)
  6. Crystal structure of purine nucleoside phosphorylase from Thermus thermophilus. Tahirov TH, Inagaki E, Ohshima N, Kitao T, Kuroishi C, Ukita Y, Takio K, Kobayashi M, Kuramitsu S, Yokoyama S, Miyano M. J Mol Biol 337 1149-1160 (2004)
  7. Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase (Mtd) from Methanopyrus kandleri: a methanogenic enzyme with an unusual quarternary structure. Hagemeier CH, Shima S, Thauer RK, Bourenkov G, Bartunik HD, Ermler U. J Mol Biol 332 1047-1057 (2003)
  8. A novel hyperthermostable 5'-deoxy-5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Cacciapuoti G, Forte S, Moretti MA, Brio A, Zappia V, Porcelli M. FEBS J 272 1886-1899 (2005)
  9. Xanthosine and xanthine. Substrate properties with purine nucleoside phosphorylases, and relevance to other enzyme systems. Stoychev G, Kierdaszuk B, Shugar D. Eur J Biochem 269 4048-4057 (2002)
  10. Methylthioadenosine phosphorylase from the archaeon Pyrococcus furiosus. Mechanism of the reaction and assignment of disulfide bonds. Cacciapuoti G, Moretti MA, Forte S, Brio A, Camardella L, Zappia V, Porcelli M. Eur J Biochem 271 4834-4844 (2004)
  11. Structure-based design, synthesis, and antimicrobial activity of purine derived SAH/MTA nucleosidase inhibitors. Tedder ME, Nie Z, Margosiak S, Chu S, Feher VA, Almassy R, Appelt K, Yager KM. Bioorg Med Chem Lett 14 3165-3168 (2004)
  12. Identification of a subversive substrate of Trichomonas vaginalis purine nucleoside phosphorylase and the crystal structure of the enzyme-substrate complex. Zang Y, Wang WH, Wu SW, Ealick SE, Wang CC. J Biol Chem 280 22318-22325 (2005)
  13. Escherichia coli purine nucleoside phosphorylase II, the product of the xapA gene. Dandanell G, Szczepanowski RH, Kierdaszuk B, Shugar D, Bochtler M. J Mol Biol 348 113-125 (2005)
  14. Helicobacter pylori purine nucleoside phosphorylase shows new distribution patterns of open and closed active site conformations and unusual biochemical features. Narczyk M, Bertoša B, Papa L, Vuković V, Leščić Ašler I, Wielgus-Kutrowska B, Bzowska A, Luić M, Štefanić Z. FEBS J 285 1305-1325 (2018)
  15. Biochemical and structural characterization of mammalian-like purine nucleoside phosphorylase from the Archaeon Pyrococcus furiosus. Cacciapuoti G, Gorassini S, Mazzeo MF, Siciliano RA, Carbone V, Zappia V, Porcelli M. FEBS J 274 2482-2495 (2007)
  16. Enhancement of nucleoside phosphorylation activity in an acid phosphatase. Ishikawa K, Mihara Y, Shimba N, Ohtsu N, Kawasaki H, Suzuki E, Asano Y. Protein Eng 15 539-543 (2002)
  17. Identification of the tautomeric form of formycin A in its complex with Escherichia coli purine nucleoside phosphorylase based on the effect of enzyme-ligand binding on fluorescence and phosphorescence. Włodarczyk J, Stoychev Galitonov G, Kierdaszuk B. Eur Biophys J 33 377-385 (2004)
  18. Molecular architecture of E. coli purine nucleoside phosphorylase studied by analytical ultracentrifugation and CD spectroscopy. Modrak-Wójcik A, Stepniak K, Akoev V, Zółkiewski M, Bzowska A. Protein Sci 15 1794-1800 (2006)
  19. Recognition of Artificial Nucleobases by E. coli Purine Nucleoside Phosphorylase versus its Ser90Ala Mutant in the Synthesis of Base-Modified Nucleosides. Fateev IV, Kharitonova MI, Antonov KV, Konstantinova ID, Stepanenko VN, Esipov RS, Seela F, Temburnikar KW, Seley-Radtke KL, Stepchenko VA, Sokolov YA, Miroshnikov AI, Mikhailopulo IA. Chemistry 21 13401-13419 (2015)
  20. Homooligomerization is needed for stability: a molecular modelling and solution study of Escherichia coli purine nucleoside phosphorylase. Bertoša B, Mikleušević G, Wielgus-Kutrowska B, Narczyk M, Hajnić M, Leščić Ašler I, Tomić S, Luić M, Bzowska A. FEBS J 281 1860-1871 (2014)
  21. New phosphate binding sites in the crystal structure of Escherichia coli purine nucleoside phosphorylase complexed with phosphate and formycin A. Štefanić Z, Narczyk M, Mikleušević G, Wielgus-Kutrowska B, Bzowska A, Luić M. FEBS Lett 586 967-971 (2012)
  22. Role of ionization of the phosphate cosubstrate on phosphorolysis by purine nucleoside phosphorylase (PNP) of bacterial (E. coli) and mammalian (human) origin. Modrak-Wójcik A, Kirilenko A, Shugar D, Kierdaszuk B. Eur Biophys J 37 153-164 (2008)
  23. Structural characterization of purine nucleoside phosphorylase from human pathogen Helicobacter pylori. Štefanić Z, Mikleušević G, Luić M, Bzowska A, Leščić Ašler I. Int J Biol Macromol 101 518-526 (2017)
  24. A new approach to interpretation of heterogeneity of fluorescence decay: effect of induced tautomeric shift and enzyme-->ligand fluorescence resonance energy transfer. Wlodarczyk J, Kierdaszuk B. Biophys Chem 123 146-153 (2006)
  25. Crystallographic snapshots of ligand binding to hexameric purine nucleoside phosphorylase and kinetic studies give insight into the mechanism of catalysis. Štefanić Z, Narczyk M, Mikleušević G, Kazazić S, Bzowska A, Luić M. Sci Rep 8 15427 (2018)
  26. New Insights into Active Site Conformation Dynamics of E. coli PNP Revealed by Combined H/D Exchange Approach and Molecular Dynamics Simulations. Kazazić S, Bertoša B, Luić M, Mikleušević G, Tarnowski K, Dadlez M, Narczyk M, Bzowska A. J Am Soc Mass Spectrom 27 73-82 (2016)
  27. An interaction between S*tag and S*protein derived from human ribonuclease 1 allows site-specific conjugation of an enzyme to an antibody for targeted drug delivery. Asai T, Wims LA, Morrison SL. J Immunol Methods 299 63-76 (2005)
  28. Efficient Fludarabine-Activating PNP From Archaea as a Guidance for Redesign the Active Site of E. Coli PNP. Cacciapuoti G, Bagarolo ML, Martino E, Scafuri B, Marabotti A, Porcelli M. J Cell Biochem 117 1126-1135 (2016)
  29. Single tryptophan Y160W mutant of homooligomeric E. coli purine nucleoside phosphorylase implies that dimers forming the hexamer are functionally not equivalent. Narczyk M, Mioduszewski Ł, Oksiejuk A, Winiewska-Szajewska M, Wielgus-Kutrowska B, Gojdź A, Cieśla J, Bzowska A. Sci Rep 11 11144 (2021)
  30. Crystal structure of Escherichia coli purine nucleoside phosphorylase in complex with 7-deazahypoxanthine. Timofeev VI, Zhukhlistova NE, Abramchik YA, Fateev II, Kostromina MA, Muravieva TI, Esipov RS, Kuranova IP. Acta Crystallogr F Struct Biol Commun 74 355-362 (2018)
  31. A QM-MD simulation approach to the analysis of FRET processes in (bio)molecular systems. A case study: complexes of E. coli purine nucleoside phosphorylase and its mutants with formycin A. Sobieraj M, Krzyśko KA, Jarmuła A, Kalinowski MW, Lesyng B, Prokopowicz M, Cieśla J, Gojdź A, Kierdaszuk B. J Mol Model 21 75 (2015)
  32. SAXS Analysis and Characterization of Anticancer Activity of PNP-UDP Family Protein from Putranjiva roxburghii. Verma P, Varshney R, Yadav SPS, Kar B, Roy P, Sharma AK. Protein J 41 381-393 (2022)
  33. Interactions of 2,6-substituted purines with purine nucleoside phosphorylase from Helicobacter pylori in solution and in the crystal, and the effects of these compounds on cell cultures of this bacterium. Narczyk M, Wojtyś MI, Leščić Ašler I, Žinić B, Luić M, Jagusztyn-Krynicka EK, Štefanić Z, Bzowska A. J Enzyme Inhib Med Chem 37 1083-1097 (2022)
  34. Trimeric Architecture Ensures the Stability and Biological Activity of the Calf Purine Nucleoside Phosphorylase: In Silico and In Vitro Studies of Monomeric and Trimeric Forms of the Enzyme. Dyzma A, Wielgus-Kutrowska B, Girstun A, Matošević ZJ, Staroń K, Bertoša B, Trylska J, Bzowska A. Int J Mol Sci 24 2157 (2023)