1a1o Citations

Bound water structure and polymorphic amino acids act together to allow the binding of different peptides to MHC class I HLA-B53.

Immunity 4 215-28 (1996)
Cited: 116 times
EuropePMC logo PMID: 8624812

Abstract

The structure of the human MHC class I molecule HLA-B53 complexed to two nonameric peptide epitopes (from the malaria parasite P. falciparum and the HIV2 gag protein) has been determined by X-ray crystallography at 2.3 angstrom resolution. The structures reveal the architecture of a Pro-specific B pocket common to many HLA-B alleles. Relative to other alleles, the B53 peptide-binding groove is widened by a significant (up to 1.25 angstrom) shift in the position of the alpha 1 helix. Within this groove, bound water molecules, acting in concert with the side chains of polymorphic residues, provide the functional malleability of the MHC, which enables the high affinity/low specificity binding of multiple peptide epitopes.

Articles - 1a1o mentioned but not cited (12)

  1. Statistical coil model of the unfolded state: resolving the reconciliation problem. Jha AK, Colubri A, Freed KF, Sosnick TR. Proc Natl Acad Sci U S A 102 13099-13104 (2005)
  2. Conformational flexibility of the MHC class I alpha1-alpha2 domain in peptide bound and free states: a molecular dynamics simulation study. Zacharias M, Springer S. Biophys J 87 2203-2214 (2004)
  3. Modeling the structure of bound peptide ligands to major histocompatibility complex. Tong JC, Tan TW, Ranganathan S. Protein Sci 13 2523-2532 (2004)
  4. Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2. Lin L, Ting S, Yufei H, Wendong L, Yubo F, Jing Z. Virus Res 288 198082 (2020)
  5. Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions. Luo H, Du T, Zhou P, Yang L, Mei H, Ng H, Zhang W, Shu M, Tong W, Shi L, Mendrick DL, Hong H. Comb Chem High Throughput Screen 18 296-304 (2015)
  6. Prediction and identification of T cell epitopes in the H5N1 influenza virus nucleoprotein in chicken. Hou Y, Guo Y, Wu C, Shen N, Jiang Y, Wang J. PLoS One 7 e39344 (2012)
  7. T-cell tolerance for variability in an HLA class I-presented influenza A virus epitope. Wahl A, McCoy WH, Schafer F, Bardet W, Buchli R, Fremont DH, Hildebrand WH. J Virol 83 9206-9214 (2009)
  8. Although divergent in residues of the peptide binding site, conserved chimpanzee Patr-AL and polymorphic human HLA-A*02 have overlapping peptide-binding repertoires. Gleimer M, Wahl AR, Hickman HD, Abi-Rached L, Norman PJ, Guethlein LA, Hammond JA, Draghi M, Adams EJ, Juo S, Jalili R, Gharizadeh B, Ronaghi M, Garcia KC, Hildebrand WH, Parham P. J Immunol 186 1575-1588 (2011)
  9. Structural Comparison Between MHC Classes I and II; in Evolution, a Class-II-Like Molecule Probably Came First. Wu Y, Zhang N, Hashimoto K, Xia C, Dijkstra JM. Front Immunol 12 621153 (2021)
  10. The Structure of a Peptide-Loaded Shark MHC Class I Molecule Reveals Features of the Binding between β2-Microglobulin and H Chain Conserved in Evolution. Wu Y, Zhang N, Wei X, Lu S, Li S, Hashimoto K, Dijkstra JM, Xia C. J Immunol 207 308-321 (2021)
  11. Types of inter-atomic interactions at the MHC-peptide interface: identifying commonality from accumulated data. Adrian PE, Rajaseger G, Mathura VS, Sakharkar MK, Kangueane P. BMC Struct Biol 2 2 (2002)
  12. Prediction of an Epitope-based Computational Vaccine Strategy for Gaining Concurrent Immunization Against the Venom Proteins of Australian Box Jellyfish. Alam MJ, Ashraf KU. Toxicol Int 20 235-253 (2013)


Reviews citing this publication (16)

  1. Genetics of susceptibility to human infectious disease. Cooke GS, Hill AV. Nat Rev Genet 2 967-977 (2001)
  2. Present Yourself! By MHC Class I and MHC Class II Molecules. Rock KL, Reits E, Neefjes J. Trends Immunol 37 724-737 (2016)
  3. The role of water in protein-DNA interactions. Schwabe JW. Curr Opin Struct Biol 7 126-134 (1997)
  4. Class I MHC molecules: assembly and antigen presentation. Solheim JC. Immunol Rev 172 11-19 (1999)
  5. MHC class I and class II structures. Jones EY. Curr Opin Immunol 9 75-79 (1997)
  6. Description and prediction of peptide-MHC binding: the 'human MHC project'. Buus S. Curr Opin Immunol 11 209-213 (1999)
  7. T-cell allorecognition: a case of mistaken identity or déjà vu? Archbold JK, Macdonald WA, Burrows SR, Rossjohn J, McCluskey J. Trends Immunol 29 220-226 (2008)
  8. Peptide binding by class I and class II MHC molecules. Batalia MA, Collins EJ. Biopolymers 43 281-302 (1997)
  9. Structural features of MHC class I molecules that might facilitate alternative pathways of presentation. Hansen T, Balendiran G, Solheim J, Ostrov D, Nathenson S. Immunol Today 21 83-88 (2000)
  10. Alloreactivity, antigen recognition and T-cell selection: three diverse T-cell recognition problems with a common solution. Joyce S, Nathenson SG. Immunol Rev 154 59-103 (1996)
  11. Antigen recognition. Cresswell P, Howard JC. Curr Opin Immunol 9 71-74 (1997)
  12. Altered peptide ligand design: altering immune responses to class I MHC/peptide complexes. Collins EJ, Frelinger JA. Immunol Rev 163 151-160 (1998)
  13. Conformational changes in MHC class I molecules. Antibody, T-cell receptor, and NK cell recognition in an HLA-B7 model system. Smith KD, Kurago ZB, Lutz CT. Immunol Res 16 243-259 (1997)
  14. The role of peptide specificity in MHC class I-restricted allogeneic responses. Frelinger JA, McMillan M. Immunol Rev 154 45-58 (1996)
  15. Rational design of peptide-based tumor vaccines. Meng WS, Butterfield LH. Pharm Res 19 926-932 (2002)
  16. Presentation of antigenic peptides by products of the major histocompatibility complex. Fairchild PJ. J Pept Sci 4 182-194 (1998)

Articles citing this publication (88)

  1. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Ding YH, Smith KJ, Garboczi DN, Utz U, Biddison WE, Wiley DC. Immunity 8 403-411 (1998)
  2. Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Gao GF, Tormo J, Gerth UC, Wyer JR, McMichael AJ, Stuart DI, Bell JI, Jones EY, Jakobsen BK. Nature 387 630-634 (1997)
  3. The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Braud V, Jones EY, McMichael A. Eur J Immunol 27 1164-1169 (1997)
  4. HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Sette A, Sidney J. Curr Opin Immunol 10 478-482 (1998)
  5. A naturally selected dimorphism within the HLA-B44 supertype alters class I structure, peptide repertoire, and T cell recognition. Macdonald WA, Purcell AW, Mifsud NA, Ely LK, Williams DS, Chang L, Gorman JJ, Clements CS, Kjer-Nielsen L, Koelle DM, Burrows SR, Tait BD, Holdsworth R, Brooks AG, Lovrecz GO, Lu L, Rossjohn J, McCluskey J. J Exp Med 198 679-691 (2003)
  6. The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals. Addo MM, Altfeld M, Rosenberg ES, Eldridge RL, Philips MN, Habeeb K, Khatri A, Brander C, Robbins GK, Mazzara GP, Goulder PJ, Walker BD, HIV Controller Study Collaboration. Proc Natl Acad Sci U S A 98 1781-1786 (2001)
  7. Structural features impose tight peptide binding specificity in the nonclassical MHC molecule HLA-E. O'Callaghan CA, Tormo J, Willcox BE, Braud VM, Jakobsen BK, Stuart DI, McMichael AJ, Bell JI, Jones EY. Mol Cell 1 531-541 (1998)
  8. An altered position of the alpha 2 helix of MHC class I is revealed by the crystal structure of HLA-B*3501. Smith KJ, Reid SW, Stuart DI, McMichael AJ, Jones EY, Bell JI. Immunity 4 203-213 (1996)
  9. Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Koch M, Camp S, Collen T, Avila D, Salomonsen J, Wallny HJ, van Hateren A, Hunt L, Jacob JP, Johnston F, Marston DA, Shaw I, Dunbar PR, Cerundolo V, Jones EY, Kaufman J. Immunity 27 885-899 (2007)
  10. Antagonist HIV-1 Gag peptides induce structural changes in HLA B8. Reid SW, McAdam S, Smith KJ, Klenerman P, O'Callaghan CA, Harlos K, Jakobsen BK, McMichael AJ, Bell JI, Stuart DI, Jones EY. J Exp Med 184 2279-2286 (1996)
  11. Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Schueler-Furman O, Altuvia Y, Sette A, Margalit H. Protein Sci 9 1838-1846 (2000)
  12. EpiJen: a server for multistep T cell epitope prediction. Doytchinova IA, Guan P, Flower DR. BMC Bioinformatics 7 131 (2006)
  13. Structural and functional consequences of altering a peptide MHC anchor residue. Kersh GJ, Miley MJ, Nelson CA, Grakoui A, Horvath S, Donermeyer DL, Kappler J, Allen PM, Fremont DH. J Immunol 166 3345-3354 (2001)
  14. Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity. Glithero A, Tormo J, Haurum JS, Arsequell G, Valencia G, Edwards J, Springer S, Townsend A, Pao YL, Wormald M, Dwek RA, Jones EY, Elliott T. Immunity 10 63-74 (1999)
  15. Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate-specific CTL. Speir JA, Abdel-Motal UM, Jondal M, Wilson IA. Immunity 10 51-61 (1999)
  16. Identifiying human MHC supertypes using bioinformatic methods. Doytchinova IA, Guan P, Flower DR. J Immunol 172 4314-4323 (2004)
  17. Structural principles that govern the peptide-binding motifs of class I MHC molecules. Zhang C, Anderson A, DeLisi C. J Mol Biol 281 929-947 (1998)
  18. The three-dimensional structure of an H-2Ld-peptide complex explains the unique interaction of Ld with beta-2 microglobulin and peptide. Balendiran GK, Solheim JC, Young AC, Hansen TH, Nathenson SG, Sacchettini JC. Proc Natl Acad Sci U S A 94 6880-6885 (1997)
  19. Nonstandard peptide binding revealed by crystal structures of HLA-B*5101 complexed with HIV immunodominant epitopes. Maenaka K, Maenaka T, Tomiyama H, Takiguchi M, Stuart DI, Jones EY. J Immunol 165 3260-3267 (2000)
  20. Self and viral peptides can initiate lysis by autologous natural killer cells. Mandelboim O, Wilson SB, Valés-Gómez M, Reyburn HT, Strominger JL. Proc Natl Acad Sci U S A 94 4604-4609 (1997)
  21. MHC-peptide binding is assisted by bound water molecules. Petrone PM, Garcia AE. J Mol Biol 338 419-435 (2004)
  22. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. Bordner AJ, Abagyan R. Proteins 63 512-526 (2006)
  23. Polymorphic sites away from the Bw4 epitope that affect interaction of Bw4+ HLA-B with KIR3DL1. Sanjanwala B, Draghi M, Norman PJ, Guethlein LA, Parham P. J Immunol 181 6293-6300 (2008)
  24. Three-dimensional structure of H-2Dd complexed with an immunodominant peptide from human immunodeficiency virus envelope glycoprotein 120. Li H, Natarajan K, Malchiodi EL, Margulies DH, Mariuzza RA. J Mol Biol 283 179-191 (1998)
  25. Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system. Sainudiin R, Wong WS, Yogeeswaran K, Nasrallah JB, Yang Z, Nielsen R. J Mol Evol 60 315-326 (2005)
  26. Lack of carboxyl-terminal tyrosine distinguishes the B*2706-bound peptide repertoire from those of B*2704 and other HLA-B27 subtypes associated with ankylosing spondylitis. García F, Marina A, López de Castro JA. Tissue Antigens 49 215-221 (1997)
  27. Crystal structure of swine major histocompatibility complex class I SLA-1 0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides. Zhang N, Qi J, Feng S, Gao F, Liu J, Pan X, Chen R, Li Q, Chen Z, Li X, Xia C, Gao GF. J Virol 85 11709-11724 (2011)
  28. Conserved water molecules in MHC class-I molecules and their putative structural and functional roles. Ogata K, Wodak SJ. Protein Eng 15 697-705 (2002)
  29. Structure of human histocompatibility leukocyte antigen (HLA)-Cw4, a ligand for the KIR2D natural killer cell inhibitory receptor. Fan QR, Wiley DC. J Exp Med 190 113-123 (1999)
  30. Narrow groove and restricted anchors of MHC class I molecule BF2*0401 plus peptide transporter restriction can explain disease susceptibility of B4 chickens. Zhang J, Chen Y, Qi J, Gao F, Liu Y, Liu J, Zhou X, Kaufman J, Xia C, Gao GF. J Immunol 189 4478-4487 (2012)
  31. Crystal structure of a non-canonical low-affinity peptide complexed with MHC class I: a new approach for vaccine design. Apostolopoulos V, Yu M, Corper AL, Teyton L, Pietersz GA, McKenzie IF, Wilson IA, Plebanski M. J Mol Biol 318 1293-1305 (2002)
  32. A roadmap for HLA-DR peptide binding specificities. Chelvanayagam G. Hum Immunol 58 61-69 (1997)
  33. Structural prediction of peptides binding to MHC class I molecules. Bui HH, Schiewe AJ, von Grafenstein H, Haworth IS. Proteins 63 43-52 (2006)
  34. Crystal structure of HLA-A*2402 complexed with a telomerase peptide. Cole DK, Rizkallah PJ, Gao F, Watson NI, Boulter JM, Bell JI, Sami M, Gao GF, Jakobsen BK. Eur J Immunol 36 170-179 (2006)
  35. Decamer-like conformation of a nona-peptide bound to HLA-B*3501 due to non-standard positioning of the C terminus. Menssen R, Orth P, Ziegler A, Saenger W. J Mol Biol 285 645-653 (1999)
  36. Cytotoxic T lymphocytes recognize structurally diverse, clade-specific and cross-reactive peptides in human immunodeficiency virus type-1 gag through HLA-B53. Dorrell L, Willcox BE, Jones EY, Gillespie G, Njai H, Sabally S, Jaye A, DeGleria K, Rostron T, Lepin E, McMichael A, Whittle H, Rowland-Jones S. Eur J Immunol 31 1747-1756 (2001)
  37. Mother-to-child transmission of HIV-1: strong association with certain maternal HLA-B alleles independent of viral load implicates innate immune mechanisms. Winchester R, Pitt J, Charurat M, Magder LS, Göring HH, Landay A, Read JS, Shearer W, Handelsman E, Luzuriaga K, Hillyer GV, Blattner W. J Acquir Immune Defic Syndr 36 659-670 (2004)
  38. Structural prediction of peptides bound to MHC class I. Fagerberg T, Cerottini JC, Michielin O. J Mol Biol 356 521-546 (2006)
  39. Amyloidogenic synthetic peptides of beta2-microglobulin--a role of the disulfide bond. Hasegawa K, Ohhashi Y, Yamaguchi I, Takahashi N, Tsutsumi S, Goto Y, Gejyo F, Naiki H. Biochem Biophys Res Commun 304 101-106 (2003)
  40. Crystal structures of HLA-A*0201 complexed with antigenic peptides with either the amino- or carboxyl-terminal group substituted by a methyl group. Bouvier M, Guo HC, Smith KJ, Wiley DC. Proteins 33 97-106 (1998)
  41. Class I molecules with similar peptide-binding specificities are the result of both common ancestry and convergent evolution. Sette A, Sidney J, Livingston BD, Dzuris JL, Crimi C, Walker CM, Southwood S, Collins EJ, Hughes AL. Immunogenetics 54 830-841 (2003)
  42. HLAMatchmaker-defined triplet matching is not associated with better survival rates of patients with class I HLA allele mismatched hematopoietic cell transplants from unrelated donors. Duquesnoy R, Spellman S, Haagenson M, Wang T, Horowitz MM, Oudshoorn M. Biol Blood Marrow Transplant 14 1064-1071 (2008)
  43. Knowledge-based structure prediction of MHC class I bound peptides: a study of 23 complexes. Schueler-Furman O, Elber R, Margalit H. Fold Des 3 549-564 (1998)
  44. Peptide mimics of a tumor antigen induce functional cytotoxic T cells. Apostolopoulos V, Lofthouse SA, Popovski V, Chelvanayagam G, Sandrin MS, McKenzie IF. Nat Biotechnol 16 276-280 (1998)
  45. Combined structural and immunological refinement of HIV-1 HLA-B8-restricted cytotoxic T lymphocyte epitopes. Goulder PJ, Reid SW, Price DA, O'Callaghan CA, McMichael AJ, Phillips RE, Jones EY. Eur J Immunol 27 1515-1521 (1997)
  46. Design of an epitope-based peptide vaccine against the SARS-CoV-2: a vaccine-informatics approach. Alam A, Khan A, Imam N, Siddiqui MF, Waseem M, Malik MZ, Ishrat R. Brief Bioinform 22 1309-1323 (2021)
  47. Preferential binding of unusually long peptides to MHC class I and its influence on the selection of target peptides for T cell recognition. Burrows JM, Bell MJ, Brennan R, Miles JJ, Khanna R, Burrows SR. Mol Immunol 45 1818-1824 (2008)
  48. Conservation of sequence motifs suggests that the nonclassical MHC class I lineages CD1/PROCR and UT were established before the emergence of tetrapod species. Dijkstra JM, Yamaguchi T, Grimholt U. Immunogenetics 70 459-476 (2018)
  49. Genetics. First-class control of HIV-1. McMichael AJ, Jones EY. Science 330 1488-1490 (2010)
  50. Single T cell receptor-mediated recognition of an identical HIV-derived peptide presented by multiple HLA class I molecules. Ueno T, Tomiyama H, Takiguchi M. J Immunol 169 4961-4969 (2002)
  51. Structural features underlying T-cell receptor sensitivity to concealed MHC class I micropolymorphisms. Stewart-Jones GB, Simpson P, van der Merwe PA, Easterbrook P, McMichael AJ, Rowland-Jones SL, Jones EY, Gillespie GM. Proc Natl Acad Sci U S A 109 E3483-92 (2012)
  52. Anchor profiles of HLA-specific peptides: analysis by a novel affinity scoring method and experimental validation. Desmet J, Meersseman G, Boutonnet N, Pletinckx J, De Clercq K, Debulpaep M, Braeckman T, Lasters I. Proteins 58 53-69 (2005)
  53. Peptide presentation by bat MHC class I provides new insight into the antiviral immunity of bats. Lu D, Liu K, Zhang D, Yue C, Lu Q, Cheng H, Wang L, Chai Y, Qi J, Wang LF, Gao GF, Liu WJ. PLoS Biol 17 e3000436 (2019)
  54. Structure, dynamics and hydration of the nogalamycin-d(ATGCAT)2Complex determined by NMR and molecular dynamics simulations in solution. Williams HE, Searle MS. J Mol Biol 290 699-716 (1999)
  55. Crystal structure of a bony fish beta2-microglobulin: insights into the evolutionary origin of immunoglobulin superfamily constant molecules. Chen W, Gao F, Chu F, Zhang J, Gao GF, Xia C. J Biol Chem 285 22505-22512 (2010)
  56. HLA-B*35: 05 is a protective allele with a unique structure among HIV-1 CRF01_AE-infected Thais, in whom the B*57 frequency is low. Mori M, Wichukchinda N, Miyahara R, Rojanawiwat A, Pathipvanich P, Maekawa T, Miura T, Goulder P, Yasunami M, Ariyoshi K, Sawanpanyalert P. AIDS 28 959-967 (2014)
  57. A single amino acid change makes the peptide specificity of B*3910 unrelated to B*3901 and closer to a group of HLA-B proteins including the malaria-protecting allotype HLA-B53. Yagüe J, Vázquez J, López de Castro JA. Tissue Antigens 52 416-421 (1998)
  58. Cytotoxic T cell recognition of allelic variants of HLA B35 bound to an Epstein-Barr virus epitope: influence of peptide conformation and TCR-peptide interaction. Khanna R, Silins SL, Weng Z, Gatchell D, Burrows SR, Cooper L. Eur J Immunol 29 1587-1597 (1999)
  59. Mapping of a protective helper T cell epitope of human influenza A virus hemagglutinin. Gogolák P, Simon A, Horváth A, Réthi B, Simon I, Berkics K, Rajnavölgyi E, Tóth GK. Biochem Biophys Res Commun 270 190-198 (2000)
  60. A novel MHCp binding prediction model. Zhao B, Mathura VS, Rajaseger G, Moochhala S, Sakharkar MK, Kangueane P. Hum Immunol 64 1123-1143 (2003)
  61. Function-related regulation of the stability of MHC proteins. Simon A, Dosztányi Zs, Rajnavölgyi E, Simon I. Biophys J 79 2305-2313 (2000)
  62. Modeling the interactions of a peptide-major histocompatibility class I ligand with its receptors. I. Recognition by two alpha beta T cell receptors. Rognan D, Stryhn A, Fugger L, Lyngbaek S, Engberg J, Andersen PS, Buus S. J Comput Aided Mol Des 14 53-69 (2000)
  63. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design. Schiewe AJ, Haworth IS. J Mol Graph Model 26 667-675 (2007)
  64. WATGEN: an algorithm for modeling water networks at protein-protein interfaces. Bui HH, Schiewe AJ, Haworth IS. J Comput Chem 28 2241-2251 (2007)
  65. Predicting sequences and structures of MHC-binding peptides: a computational combinatorial approach. Zen J, Treutlein HR, Rudy GB. J Comput Aided Mol Des 15 573-586 (2001)
  66. Peptide length variants p2Ca and QL9 present distinct conformations to L(d)-specific T cells. Hornell TM, Martin SM, Myers NB, Connolly JM. J Immunol 167 4207-4214 (2001)
  67. Towards the MHC-peptide combinatorics. Kangueane P, Sakharkar MK, Kolatkar PR, Ren EC. Hum Immunol 62 539-556 (2001)
  68. T cell recognition of an engineered MHC class I molecule: implications for peptide-independent alloreactivity. Janković V, Remus K, Molano A, Nikolich-Zugich J. J Immunol 169 1887-1892 (2002)
  69. Crystal structures of two rat MHC class Ia (RT1-A) molecules that are associated differentially with peptide transporter alleles TAP-A and TAP-B. Rudolph MG, Stevens J, Speir JA, Trowsdale J, Butcher GW, Joly E, Wilson IA. J Mol Biol 324 975-990 (2002)
  70. Interaction between bound water molecules and local protein structures: A statistical analysis of the hydrogen bond structures around bound water molecules. Hong S, Kim D. Proteins 84 43-51 (2016)
  71. Long-range effects in protein--ligand interactions mediate peptide specificity in the human major histocompatibilty antigen HLA-B27 (B*2701). Krebs S, Rognan D, López de Castro JA. Protein Sci 8 1393-1399 (1999)
  72. Specificity of two anti-class I HLA monoclonal antibodies that block class I recognition by the NKB1 killer cell inhibitory receptor. Gumperz JE, Paterson JC, Litwin V, Valiante N, Lanier LL, Parham P, Little AM. Tissue Antigens 48 278-284 (1996)
  73. A geometric and algebraic view of MHC-peptide complexes and their binding properties. Cano P, Fan B. BMC Struct Biol 1 2 (2001)
  74. Complex assembly, crystallization and preliminary X-ray crystallographic studies of rhesus macaque MHC Mamu-A*01 complexed with an immunodominant SIV-Gag nonapeptide. Chu F, Lou Z, Gao B, Bell JI, Rao Z, Gao GF. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 614-616 (2005)
  75. HLA-B*3531, a hybrid of B35 and B61, implications for diagnostic approaches to alleles with complex ancestral compositions. Elsner HA, Himmel A, Steitz M, Hammer P, Schmitz G, Ballas M, Blasczyk R. Tissue Antigens 60 95-97 (2002)
  76. Patient-specific cytotoxic T-lymphocyte cross-recognition of naturally occurring variants of a human immunodeficiency virus type 1 (HIV-1) p24gag epitope by HIV-1-infected children. Buseyne F, Chaix ML, Rouzioux C, Blanche S, Rivière Y. J Virol 75 4941-4946 (2001)
  77. Secondary anchor substitutions in an HLA-A*0201-restricted T-cell epitope derived from Her-2/neu. Joseph MA, Mitchell ML, Evanseck JD, Kovacs JR, Jia L, Shen H, Meng WS. Mol Immunol 44 322-331 (2007)
  78. Specificity Characterization of SLA Class I Molecules Binding to Swine-Origin Viral Cytotoxic T Lymphocyte Epitope Peptides in Vitro. Gao C, He X, Quan J, Jiang Q, Lin H, Chen H, Qu L. Front Microbiol 8 2524 (2017)
  79. Cell surface detection of HLA-E gene products with a specific monoclonal antibody. Pacasova R, Martinozzi S, Boulouis HJ, Szpak Y, Ulbrecht M, Sigaux F, Weiss EH, Pla M. J Reprod Immunol 43 195-201 (1999)
  80. Identification of CD8+ T-cell epitopes specific for immediate-early transactivator Rta of Epstein-Barr virus. Yu H, Srinivasan N, Ren E, Chan S. Hum Immunol 66 483-493 (2005)
  81. Nucleotide sequence of HLA-B*5505, which expresses a unique HLA class I polymorphism. Szmania S, Seurynck K, Baxter-Lowe LA. Tissue Antigens 49 537-539 (1997)
  82. Correlating sequence variation with HLA-A allelic families: implications for T cell receptor binding specificities. Jakobsen IB, Gao X, Easteal S, Chelvanayagam G. Immunol Cell Biol 76 135-142 (1998)
  83. Molecular insights into the inhibitory mechanism of rifamycin SV against β2-microglobulin aggregation: A molecular dynamics simulation study. Narang SS, Shuaib S, Goyal B. Int J Biol Macromol 102 1025-1034 (2017)
  84. Experimental evidence for the presence of a water network at the peptide-MHC interface. Gurlo T, Meng WS, Bui HH, Haworth IS, von Grafenstein H. Immunol Lett 70 139-141 (1999)
  85. Outliers in SAR and QSAR: 3. Importance of considering the role of water molecules in protein-ligand interactions and quantitative structure-activity relationship studies. Kim KH. J Comput Aided Mol Des 35 371-396 (2021)
  86. Homology models for the PERB11 multigene family. Chelvanayagam G, Monaco A, Lalonde JP, Tay GK, Dawkins RL. Fold Des 3 27-37 (1998)
  87. Increased diversity within the HLA-B*07 group: identification of the two novel alleles B*0709 and B*0710. Elsner HA, Blasczyk R. Tissue Antigens 56 371-375 (2000)
  88. A unique murine monoclonal antibody recognizing HLA-B53, B37, B51, B52, +/-B44. Etessami S, Tarsitani C, Lias M, Broadous M, Conger N, Randol G, Delory M, Bahrami S, Lee JH. Hum Immunol 62 732-738 (2001)