1a02 Citations

Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA.

Nature 392 42-8 (1998)
Cited: 230 times
EuropePMC logo PMID: 9510247


The nuclear factor of activated T cells (NFAT) and the AP-1 heterodimer, Fos-Jun, cooperatively bind a composite DNA site and synergistically activate the expression of many immune-response genes. A 2.7-A-resolution crystal structure of the DNA-binding domains of NFAT, Fos and Jun, in a quaternary complex with a DNA fragment containing the distal antigen-receptor response element from the interleukin-2 gene promoter, shows an extended interface between NFAT and AP-1, facilitated by the bending of Fos and DNA. The tight association of the three proteins on DNA creates a continuous groove for the recognition of 15 base pairs.

Reviews - 1a02 mentioned but not cited (1)

  1. An overview of the structures of protein-DNA complexes. Luscombe NM, Austin SE, Berman HM, Thornton JM. Genome Biol. 1 REVIEWS001 (2000)

Articles - 1a02 mentioned but not cited (6)

  1. Energetics of protein-DNA interactions. Donald JE, Chen WW, Shakhnovich EI. Nucleic Acids Res. 35 1039-1047 (2007)
  2. Exploiting a reduced set of weighted average features to improve prediction of DNA-binding residues from 3D structures. Xiong Y, Xia J, Zhang W, Liu J. PLoS ONE 6 e28440 (2011)
  3. PDA: an automatic and comprehensive analysis program for protein-DNA complex structures. Kim R, Guo JT. BMC Genomics 10 Suppl 1 S13 (2009)
  4. DNA-binding residues and binding mode prediction with binding-mechanism concerned models. Huang YF, Huang CC, Liu YC, Oyang YJ, Huang CK. BMC Genomics 10 Suppl 3 S23 (2009)
  5. An Accurate Model for Biomolecular Helices and Its Application to Helix Visualization. Wang L, Qiao H, Cao C, Xu S, Zou S. PLoS ONE 10 e0129653 (2015)
  6. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context. Zhou J, Xu R, He Y, Lu Q, Wang H, Kong B. Sci Rep 6 27653 (2016)

Reviews citing this publication (55)

  1. The role of nuclear factor of activated T cells in pulmonary arterial hypertension. Chen R, Yan J, Liu P, Wang Z, Wang C, Zhong W, Xu L. Cell Cycle 16 508-514 (2017)
  2. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer. Wong CH, Li YJ, Chen YC. World J. Gastroenterol. 22 7046-7057 (2016)
  3. Nuclear factor of activated T cells in cancer development and treatment. Shou J, Jing J, Xie J, You L, Jing Z, Yao J, Han W, Pan H. Cancer Lett. 361 174-184 (2015)
  4. Anomalous diffraction in crystallographic phase evaluation. Hendrickson WA. Q. Rev. Biophys. 47 49-93 (2014)
  5. NFAT as cancer target: mission possible? Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. Biochim. Biophys. Acta 1846 297-311 (2014)
  6. Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks. Murphy TL, Tussiwand R, Murphy KM. Nat. Rev. Immunol. 13 499-509 (2013)
  7. Multiple transcription factor families regulate axon growth and regeneration. Moore DL, Goldberg JL. Dev Neurobiol 71 1186-1211 (2011)
  8. Promiscuous partnerships in Ewing's sarcoma. Sankar S, Lessnick SL. Cancer Genet 204 351-365 (2011)
  9. Mechanisms of intermittent hypoxia induced hypertension. Bosc LV, Resta T, Walker B, Kanagy NL. J. Cell. Mol. Med. 14 3-17 (2010)
  10. [Calcineurin inhibitors and calcineurin-NFAT system]. Amasaki Y. Nihon Rinsho Meneki Gakkai Kaishi 33 249-261 (2010)
  11. Tenuous paths in unexplored territory: From T cell receptor signaling to effector gene expression during thymocyte selection. Wang L, Xiong Y, Bosselut R. Semin. Immunol. 22 294-302 (2010)
  12. Synergistic and combinatorial control of T cell activation and differentiation by transcription factors. Sundrud MS, Nolan MA. Curr. Opin. Immunol. 22 286-292 (2010)
  13. Origins of specificity in protein-DNA recognition. Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Annu. Rev. Biochem. 79 233-269 (2010)
  14. NFAT pulls the strings during CD4+ T helper cell effector functions. Hermann-Kleiter N, Baier G. Blood 115 2989-2997 (2010)
  15. Epigenetic reprogramming and induced pluripotency. Hochedlinger K, Plath K. Development 136 509-523 (2009)
  16. NFAT proteins: emerging roles in cancer progression. Mancini M, Toker A. Nat. Rev. Cancer 9 810-820 (2009)
  17. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Negishi-Koga T, Takayanagi H. Immunol. Rev. 231 241-256 (2009)
  18. Regulation of T-cell tolerance by calcium/NFAT signaling. Baine I, Abe BT, Macian F. Immunol. Rev. 231 225-240 (2009)
  19. Mitochondria and calcium signaling in embryonic development. Cao X, Chen Y. Semin. Cell Dev. Biol. 20 337-345 (2009)
  20. The importance of being flexible: the case of basic region leucine zipper transcriptional regulators. Miller M. Curr. Protein Pept. Sci. 10 244-269 (2009)
  21. Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors involved in T-cell activation. Liu JO. Immunol. Rev. 228 184-198 (2009)
  22. Genomics and the immune system. Pipkin ME, Monticelli S. Immunology 124 23-32 (2008)
  23. [Today in molecular mechanisms of immunosuppressive drugs actions: roles of pharmacist]. Hulin A. Ann Pharm Fr 66 102-114 (2008)
  24. The molecular understanding of osteoclast differentiation. Asagiri M, Takayanagi H. Bone 40 251-264 (2007)
  25. Calcineurin/NFAT signaling in the beta-cell: From diabetes to new therapeutics. Heit JJ. Bioessays 29 1011-1021 (2007)
  26. Novel osteoclast signaling mechanisms. Shinohara M, Takayanagi H. Curr Osteoporos Rep 5 67-72 (2007)
  27. Transcriptional regulation of T cell tolerance. Bandyopadhyay S, Soto-Nieves N, Macián F. Semin. Immunol. 19 180-187 (2007)
  28. Calcium-dependent transcription of cytokine genes in T lymphocytes. Savignac M, Mellström B, Naranjo JR. Pflugers Arch. 454 523-533 (2007)
  29. NFAT proteins: key regulators of T-cell development and function. Macian F. Nat. Rev. Immunol. 5 472-484 (2005)
  30. NFAT and NF-kappaB factors-the distant relatives. Serfling E, Berberich-Siebelt F, Avots A, Chuvpilo S, Klein-Hessling S, Jha MK, Kondo E, Pagel P, Schulze-Luehrmann J, Palmetshofer A. Int. J. Biochem. Cell Biol. 36 1166-1170 (2004)
  31. Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar. Ogata K, Sato K, Tahirov TH. Curr. Opin. Struct. Biol. 13 40-48 (2003)
  32. Regulation of cytokine gene transcription in the immune system. Holloway AF, Rao S, Shannon MF. Mol. Immunol. 38 567-580 (2002)
  33. The role of calcium-binding proteins in the control of transcription: structure to function. Ikura M, Osawa M, Ames JB. Bioessays 24 625-636 (2002)
  34. NFAT signaling: choreographing the social lives of cells. Crabtree GR, Olson EN. Cell 109 Suppl S67-79 (2002)
  35. Nuclear-receptor interactions on DNA-response elements. Khorasanizadeh S, Rastinejad F. Trends Biochem. Sci. 26 384-390 (2001)
  36. Regulated assembly of transcription factors and control of transcription initiation. Beckett D. J. Mol. Biol. 314 335-352 (2001)
  37. New functions for DNA binding domains. Rao A. Sci. STKE 2001 pe1 (2001)
  38. Recognition of specific DNA sequences. Garvie CW, Wolberger C. Mol. Cell 8 937-946 (2001)
  39. Gel-based fluorescence resonance energy transfer (gelFRET) analysis of nucleoprotein complex architecture. Ramirez-Carrozzi V, Kerppola T. Methods 25 31-43 (2001)
  40. NFAT signaling in vertebrate development. Graef IA, Chen F, Crabtree GR. Curr. Opin. Genet. Dev. 11 505-512 (2001)
  41. The advantages of ambiguous orientation. Erlanson DA. Chem. Biol. 7 R81-4 (2000)
  42. The role of NF-AT transcription factors in T cell activation and differentiation. Serfling E, Berberich-Siebelt F, Chuvpilo S, Jankevics E, Klein-Hessling S, Twardzik T, Avots A. Biochim. Biophys. Acta 1498 1-18 (2000)
  43. The role of calcineurin in lymphocyte activation. Baksh S, Burakoff SJ. Semin. Immunol. 12 405-415 (2000)
  44. Signaling and transcription in T helper development. Murphy KM, Ouyang W, Farrar JD, Yang J, Ranganath S, Asnagli H, Afkarian M, Murphy TL. Annu. Rev. Immunol. 18 451-494 (2000)
  45. Manipulating immune responses with immunosuppressive agents that target NFAT. Kiani A, Rao A, Aramburu J. Immunity 12 359-372 (2000)
  46. Combinatorial gene regulation by eukaryotic transcription factors. Chen L. Curr. Opin. Struct. Biol. 9 48-55 (1999)
  47. What sets the TonE during osmotic stress? Kültz D, Csonka L. Proc. Natl. Acad. Sci. U.S.A. 96 1814-1816 (1999)
  48. T-cell activation pathways: a transplantation perspective. Halloran PF. Transplant. Proc. 31 769-771 (1999)
  49. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Crabtree GR. Cell 96 611-614 (1999)
  50. Multiprotein-DNA complexes in transcriptional regulation. Wolberger C. Annu Rev Biophys Biomol Struct 28 29-56 (1999)
  51. AP-1: one switch for many signals. Wisdom R. Exp. Cell Res. 253 180-185 (1999)
  52. Transcriptional cooperativity: bending over backwards and doing the flip. Kerppola TK. Structure 6 549-554 (1998)
  53. Towards a mutant analysis of the tertiary structures of functional DNA-binding motifs. Barker A, Müller-Hill B. FEBS Lett. 432 1-3 (1998)
  54. Transcription: activation by cooperating conformations. Travers A. Curr. Biol. 8 R616-8 (1998)
  55. Combinatorial transcription factors. Wolberger C. Curr. Opin. Genet. Dev. 8 552-559 (1998)

Articles citing this publication (168)

  1. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. Dev. Cell 3 889-901 (2002)
  2. FOXP3 controls regulatory T cell function through cooperation with NFAT. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A. Cell 126 375-387 (2006)
  3. Finding nuclear localization signals. Cokol M, Nair R, Rost B. EMBO Rep. 1 411-415 (2000)
  4. Transcriptional mechanisms underlying lymphocyte tolerance. Macián F, García-Cózar F, Im SH, Horton HF, Byrne MC, Rao A. Cell 109 719-731 (2002)
  5. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Becker S, Groner B, Müller CW. Nature 394 145-151 (1998)
  6. Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. Li XY, MacArthur S, Bourgon R, Nix D, Pollard DA, Iyer VN, Hechmer A, Simirenko L, Stapleton M, Luengo Hendriks CL, Chu HC, Ogawa N, Inwood W, Sementchenko V, Beaton A, Weiszmann R, Celniker SE, Knowles DW, Gingeras T, Speed TP, Eisen MB, Biggin MD. PLoS Biol. 6 e27 (2008)
  7. An atomic model of the interferon-beta enhanceosome. Panne D, Maniatis T, Harrison SC. Cell 129 1111-1123 (2007)
  8. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. Aravind L, Koonin EV. J. Mol. Biol. 287 1023-1040 (1999)
  9. Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Okamura H, Aramburu J, García-Rodríguez C, Viola JP, Raghavan A, Tahiliani M, Zhang X, Qin J, Hogan PG, Rao A. Mol. Cell 6 539-550 (2000)
  10. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shiina M, Sato K, Kumasaka T, Yamamoto M, Ishii S, Ogata K. Cell 104 755-767 (2001)
  11. NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Lopez-Rodríguez C, Aramburu J, Rakeman AS, Rao A. Proc. Natl. Acad. Sci. U.S.A. 96 7214-7219 (1999)
  12. Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. Macián F, García-Rodríguez C, Rao A. EMBO J. 19 4783-4795 (2000)
  13. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? Pabo CO, Nekludova L. J. Mol. Biol. 301 597-624 (2000)
  14. Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. Youn HD, Chatila TA, Liu JO. EMBO J. 19 4323-4331 (2000)
  15. Compensatory dendritic cell development mediated by BATF-IRF interactions. Tussiwand R, Lee WL, Murphy TL, Mashayekhi M, KC W, Albring JC, Satpathy AT, Rotondo JA, Edelson BT, Kretzer NM, Wu X, Weiss LA, Glasmacher E, Li P, Liao W, Behnke M, Lam SS, Aurthur CT, Leonard WJ, Singh H, Stallings CL, Sibley LD, Schreiber RD, Murphy KM. Nature 490 502-507 (2012)
  16. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L. J. Mol. Biol. 360 213-227 (2006)
  17. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G, Gress TM, Ellenrieder V. EMBO J. 25 3714-3724 (2006)
  18. Structural studies of Ets-1/Pax5 complex formation on DNA. Garvie CW, Hagman J, Wolberger C. Mol. Cell 8 1267-1276 (2001)
  19. NFAT signaling and the invention of vertebrates. Wu H, Peisley A, Graef IA, Crabtree GR. Trends Cell Biol. 17 251-260 (2007)
  20. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP, Liphardt J. Proc. Natl. Acad. Sci. U.S.A. 104 2667-2672 (2007)
  21. Structural and thermodynamic strategies for site-specific DNA binding proteins. Jen-Jacobson L, Engler LE, Jacobson LA. Structure 8 1015-1023 (2000)
  22. Crystal structure of ATF-2/c-Jun and IRF-3 bound to the interferon-beta enhancer. Panne D, Maniatis T, Harrison SC. EMBO J. 23 4384-4393 (2004)
  23. Assembly requirements of PU.1-Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers. Brass AL, Zhu AQ, Singh H. EMBO J. 18 977-991 (1999)
  24. Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. Kovall RA, Hendrickson WA. EMBO J. 23 3441-3451 (2004)
  25. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. Choukroun G, Hajjar R, Kyriakis JM, Bonventre JV, Rosenzweig A, Force T. J. Clin. Invest. 102 1311-1320 (1998)
  26. Assembly of a functional beta interferon enhanceosome is dependent on ATF-2-c-jun heterodimer orientation. Falvo JV, Parekh BS, Lin CH, Fraenkel E, Maniatis T. Mol. Cell. Biol. 20 4814-4825 (2000)
  27. Requirement for transcription factor NFAT in interleukin-2 expression. Chow CW, Rincón M, Davis RJ. Mol. Cell. Biol. 19 2300-2307 (1999)
  28. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Salsbury FR, Knutson ST, Poole LB, Fetrow JS. Protein Sci. 17 299-312 (2008)
  29. Structural basis for cooperative RNA binding and export complex assembly by HIV Rev. Daugherty MD, Liu B, Frankel AD. Nat. Struct. Mol. Biol. 17 1337-1342 (2010)
  30. Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH(2)-terminal kinases. Choukroun G, Hajjar R, Fry S, del Monte F, Haq S, Guerrero JL, Picard M, Rosenzweig A, Force T. J. Clin. Invest. 104 391-398 (1999)
  31. Structure of the forkhead domain of FOXP2 bound to DNA. Stroud JC, Wu Y, Bates DL, Han A, Nowick K, Paabo S, Tong H, Chen L. Structure 14 159-166 (2006)
  32. Recognition of NFATp/AP-1 composite elements within genes induced upon the activation of immune cells. Kel A, Kel-Margoulis O, Babenko V, Wingender E. J. Mol. Biol. 288 353-376 (1999)
  33. Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers. Zhu L, Wilken J, Phillips NB, Narendra U, Chan G, Stratton SM, Kent SB, Weiss MA. Genes Dev. 14 1750-1764 (2000)
  34. NFAT1 enhances HIV-1 gene expression in primary human CD4 T cells. Cron RQ, Bartz SR, Clausell A, Bort SJ, Klebanoff SJ, Lewis DB. Clin. Immunol. 94 179-191 (2000)
  35. Visualization of AP-1 NF-kappaB ternary complexes in living cells by using a BiFC-based FRET. Shyu YJ, Suarez CD, Hu CD. Proc. Natl. Acad. Sci. U.S.A. 105 151-156 (2008)
  36. A novel AP-1 site is critical for maximal induction of the follicle-stimulating hormone beta gene by gonadotropin-releasing hormone. Coss D, Jacobs SB, Bender CE, Mellon PL. J. Biol. Chem. 279 152-162 (2004)
  37. Evolutionary relationships among Rel domains indicate functional diversification by recombination. Graef IA, Gastier JM, Francke U, Crabtree GR. Proc. Natl. Acad. Sci. U.S.A. 98 5740-5745 (2001)
  38. Constitutive NF-kappaB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Pham LV, Tamayo AT, Yoshimura LC, Lin-Lee YC, Ford RJ. Blood 106 3940-3947 (2005)
  39. Induction of DC-STAMP by alternative activation and downstream signaling mechanisms. Yagi M, Ninomiya K, Fujita N, Suzuki T, Iwasaki R, Morita K, Hosogane N, Matsuo K, Toyama Y, Suda T, Miyamoto T. J. Bone Miner. Res. 22 992-1001 (2007)
  40. A misexpression screen identifies genes that can modulate RAS1 pathway signaling in Drosophila melanogaster. Huang AM, Rubin GM. Genetics 156 1219-1230 (2000)
  41. TNF activates calcium-nuclear factor of activated T cells (NFAT)c1 signaling pathways in human macrophages. Yarilina A, Xu K, Chen J, Ivashkiv LB. Proc. Natl. Acad. Sci. U.S.A. 108 1573-1578 (2011)
  42. Purification, identification, and characterization of an osmotic response element binding protein. Ko BC, Turck CW, Lee KW, Yang Y, Chung SS. Biochem. Biophys. Res. Commun. 270 52-61 (2000)
  43. Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer. Chen Y, Dey R, Chen L. Structure 18 246-256 (2010)
  44. Crystal structure of an OCA-B peptide bound to an Oct-1 POU domain/octamer DNA complex: specific recognition of a protein-DNA interface. Chasman D, Cepek K, Sharp PA, Pabo CO. Genes Dev. 13 2650-2657 (1999)
  45. Inferring transcription factor complexes from ChIP-seq data. Whitington T, Frith MC, Johnson J, Bailey TL. Nucleic Acids Res. 39 e98 (2011)
  46. Granulocyte-macrophage colony-stimulating factor enhancer activation requires cooperation between NFAT and AP-1 elements and is associated with extensive nucleosome reorganization. Johnson BV, Bert AG, Ryan GR, Condina A, Cockerill PN. Mol. Cell. Biol. 24 7914-7930 (2004)
  47. The transcription factor NFAT promotes exhaustion of activated CD8⁺ T cells. Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F, Pipkin ME, Togher S, Heissmeyer V, Zhang YC, Crotty S, Lamperti ED, Ansel KM, Mempel TR, Lähdesmäki H, Hogan PG, Rao A. Immunity 42 265-278 (2015)
  48. B-ZIP proteins encoded by the Drosophila genome: evaluation of potential dimerization partners. Fassler J, Landsman D, Acharya A, Moll JR, Bonovich M, Vinson C. Genome Res. 12 1190-1200 (2002)
  49. Regulation of transcription factor NFAT by ADP-ribosylation. Olabisi OA, Soto-Nieves N, Nieves E, Yang TT, Yang X, Yu RY, Suk HY, Macian F, Chow CW. Mol. Cell. Biol. 28 2860-2871 (2008)
  50. Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Bandukwala HS, Wu Y, Feuerer M, Chen Y, Barboza B, Ghosh S, Stroud JC, Benoist C, Mathis D, Rao A, Chen L. Immunity 34 479-491 (2011)
  51. Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains. Guo L, Han A, Bates DL, Cao J, Chen L. Proc. Natl. Acad. Sci. U.S.A. 104 4297-4302 (2007)
  52. Inducer-specific enhanceosome formation controls tumor necrosis factor alpha gene expression in T lymphocytes. Tsytsykova AV, Goldfeld AE. Mol. Cell. Biol. 22 2620-2631 (2002)
  53. NFATc1 autoregulation: a crucial step for cell-fate determination. Serfling E, Chuvpilo S, Liu J, Höfer T, Palmetshofer A. Trends Immunol. 27 461-469 (2006)
  54. Transcriptional complexes formed by NFAT dimers regulate the induction of T cell tolerance. Soto-Nieves N, Puga I, Abe BT, Bandyopadhyay S, Baine I, Rao A, Macian F. J. Exp. Med. 206 867-876 (2009)
  55. Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. Bates DL, Chen Y, Kim G, Guo L, Chen L. J. Mol. Biol. 381 1292-1306 (2008)
  56. Structure of the sporulation-specific transcription factor Ndt80 bound to DNA. Lamoureux JS, Stuart D, Tsang R, Wu C, Glover JN. EMBO J. 21 5721-5732 (2002)
  57. The highly conserved beta-hairpin of the paired DNA-binding domain is required for assembly of Pax-Ets ternary complexes. Wheat W, Fitzsimmons D, Lennox H, Krautkramer SR, Gentile LN, McIntosh LP, Hagman J. Mol. Cell. Biol. 19 2231-2241 (1999)
  58. Structures of three distinct activator-TFIID complexes. Liu WL, Coleman RA, Ma E, Grob P, Yang JL, Zhang Y, Dailey G, Nogales E, Tjian R. Genes Dev. 23 1510-1521 (2009)
  59. Zinc finger transcription factors as molecular targets for nitric oxide-mediated immunosuppression: inhibition of IL-2 gene expression in murine lymphocytes. Berendji D, Kolb-Bachofen V, Zipfel PF, Skerka C, Carlberg C, Kröncke KD. Mol. Med. 5 721-730 (1999)
  60. Reciprocal modulatory interaction between human immunodeficiency virus type 1 Tat and transcription factor NFAT1. Macián F, Rao A. Mol. Cell. Biol. 19 3645-3653 (1999)
  61. A specific lysine in c-Jun is required for transcriptional repression by E1A and is acetylated by p300. Vries RG, Prudenziati M, Zwartjes C, Verlaan M, Kalkhoven E, Zantema A. EMBO J. 20 6095-6103 (2001)
  62. Separate domains in E1 and E2 proteins serve architectural and productive roles for cooperative DNA binding. Gillitzer E, Chen G, Stenlund A. EMBO J. 19 3069-3079 (2000)
  63. Regulation of Tcrb recombination ordering by c-Fos-dependent RAG deposition. Wang X, Xiao G, Zhang Y, Wen X, Gao X, Okada S, Liu X. Nat. Immunol. 9 794-801 (2008)
  64. A two-hit mechanism for vitamin D3-mediated transcriptional repression of the granulocyte-macrophage colony-stimulating factor gene: vitamin D receptor competes for DNA binding with NFAT1 and stabilizes c-Jun. Towers TL, Staeva TP, Freedman LP. Mol. Cell. Biol. 19 4191-4199 (1999)
  65. Agonist-selected T cell development requires strong T cell receptor signaling and store-operated calcium entry. Oh-Hora M, Komatsu N, Pishyareh M, Feske S, Hori S, Taniguchi M, Rao A, Takayanagi H. Immunity 38 881-895 (2013)
  66. A comprehensive resource of interacting protein regions for refining human transcription factor networks. Miyamoto-Sato E, Fujimori S, Ishizaka M, Hirai N, Masuoka K, Saito R, Ozawa Y, Hino K, Washio T, Tomita M, Yamashita T, Oshikubo T, Akasaka H, Sugiyama J, Matsumoto Y, Yanagawa H. PLoS ONE 5 e9289 (2010)
  67. Composite Module Analyst: a fitness-based tool for identification of transcription factor binding site combinations. Kel A, Konovalova T, Waleev T, Cheremushkin E, Kel-Margoulis O, Wingender E. Bioinformatics 22 1190-1197 (2006)
  68. Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Yang TT, Xiong Q, Graef IA, Crabtree GR, Chow CW. Mol. Cell. Biol. 25 907-920 (2005)
  69. Cooperative DNA binding with AP-1 proteins is required for transformation by EWS-Ets fusion proteins. Kim S, Denny CT, Wisdom R. Mol. Cell. Biol. 26 2467-2478 (2006)
  70. NF-kappaB p65 (RelA) homodimer uses distinct mechanisms to recognize DNA targets. Chen YQ, Sengchanthalangsy LL, Hackett A, Ghosh G. Structure 8 419-428 (2000)
  71. Structure of the calcineurin-NFAT complex: defining a T cell activation switch using solution NMR and crystal coordinates. Takeuchi K, Roehrl MH, Sun ZY, Wagner G. Structure 15 587-597 (2007)
  72. Characteristics and clustering of human ribosomal protein genes. Ishii K, Washio T, Uechi T, Yoshihama M, Kenmochi N, Tomita M. BMC Genomics 7 37 (2006)
  73. Cardiac glycoside induces cell death via FasL by activating calcineurin and NF-AT, but apoptosis initially proceeds through activation of caspases. Raghavendra PB, Sreenivasan Y, Ramesh GT, Manna SK. Apoptosis 12 307-318 (2007)
  74. How to untwist an alpha-helix: structural principles of an alpha-helical barrel. Calladine CR, Sharff A, Luisi B. J. Mol. Biol. 305 603-618 (2001)
  75. Molecular basis of cooperative DNA bending and oriented heterodimer binding in the NFAT1-Fos-Jun-ARRE2 complex. Diebold RJ, Rajaram N, Leonard DA, Kerppola TK. Proc. Natl. Acad. Sci. U.S.A. 95 7915-7920 (1998)
  76. Amino acid residues required for physical and cooperative transcriptional interaction of STAT3 and AP-1 proteins c-Jun and c-Fos. Ginsberg M, Czeko E, Müller P, Ren Z, Chen X, Darnell JE. Mol. Cell. Biol. 27 6300-6308 (2007)
  77. Importance of accurate DNA structures in solution: the Jun-Fos model. Heddi B, Foloppe N, Oguey C, Hartmann B. J. Mol. Biol. 382 956-970 (2008)
  78. The orientation of the AP-1 heterodimer on DNA strongly affects transcriptional potency. Chytil M, Peterson BR, Erlanson DA, Verdine GL. Proc. Natl. Acad. Sci. U.S.A. 95 14076-14081 (1998)
  79. The Ig fold of the core binding factor alpha Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains. Berardi MJ, Sun C, Zehr M, Abildgaard F, Peng J, Speck NA, Bushweller JH. Structure 7 1247-1256 (1999)
  80. Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Shyu YJ, Suarez CD, Hu CD. Nat Protoc 3 1693-1702 (2008)
  81. Interleukin-4 inhibits RANKL-induced expression of NFATc1 and c-Fos: a possible mechanism for downregulation of osteoclastogenesis. Kamel Mohamed SG, Sugiyama E, Shinoda K, Hounoki H, Taki H, Maruyama M, Miyahara T, Kobayashi M. Biochem. Biophys. Res. Commun. 329 839-845 (2005)
  82. Dynamics of Fos-Jun-NFAT1 complexes. Ramirez-Carrozzi VR, Kerppola TK. Proc. Natl. Acad. Sci. U.S.A. 98 4893-4898 (2001)
  83. DNA bending determines Fos-Jun heterodimer orientation. Leonard DA, Kerppola TK. Nat. Struct. Biol. 5 877-881 (1998)
  84. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Stephen TL, Rutkowski MR, Allegrezza MJ, Perales-Puchalt A, Tesone AJ, Svoronos N, Nguyen JM, Sarmin F, Borowsky ME, Tchou J, Conejo-Garcia JR. Immunity 41 427-439 (2014)
  85. Structure of p53 binding to the BAX response element reveals DNA unwinding and compression to accommodate base-pair insertion. Chen Y, Zhang X, Dantas Machado AC, Ding Y, Chen Z, Qin PZ, Rohs R, Chen L. Nucleic Acids Res. 41 8368-8376 (2013)
  86. Asymmetric recognition of nonconsensus AP-1 sites by Fos-Jun and Jun-Jun influences transcriptional cooperativity with NFAT1. Ramirez-Carrozzi V, Kerppola T. Mol. Cell. Biol. 23 1737-1749 (2003)
  87. D1 dopamine receptor activation of NFAT-mediated striatal gene expression. Groth RD, Weick JP, Bradley KC, Luoma JI, Aravamudan B, Klug JR, Thomas MJ, Mermelstein PG. Eur. J. Neurosci. 27 31-42 (2008)
  88. Crystal structure of NFAT bound to the HIV-1 LTR tandem kappaB enhancer element. Bates DL, Barthel KK, Wu Y, Kalhor R, Stroud JC, Giffin MJ, Chen L. Structure 16 684-694 (2008)
  89. A progesterone receptor co-activator (JDP2) mediates activity through interaction with residues in the carboxyl-terminal extension of the DNA binding domain. Hill KK, Roemer SC, Jones DN, Churchill ME, Edwards DP. J. Biol. Chem. 284 24415-24424 (2009)
  90. Two patches of amino acids on the E2 DNA binding domain define the surface for interaction with E1. Chen G, Stenlund A. J. Virol. 74 1506-1512 (2000)
  91. Structural basis of HIV-1 activation by NF-kappaB--a higher-order complex of p50:RelA bound to the HIV-1 LTR. Stroud JC, Oltman A, Han A, Bates DL, Chen L. J. Mol. Biol. 393 98-112 (2009)
  92. Structure of NFAT bound to DNA as a monomer. Stroud JC, Chen L. J. Mol. Biol. 334 1009-1022 (2003)
  93. Long-range electrostatic interactions influence the orientation of Fos-Jun binding at AP-1 sites. Ramirez-Carrozzi VR, Kerppola TK. J. Mol. Biol. 305 411-427 (2001)
  94. A biophysical characterisation of factors controlling dimerisation and selectivity in the NF-kappaB and NFAT families. de Lumley M, Hart DJ, Cooper MA, Symeonides S, Blackburn JM. J. Mol. Biol. 339 1059-1075 (2004)
  95. NFATc is required for TGFbeta-mediated transcriptional regulation of fibronectin. Cobbs SL, Gooch JL. Biochem. Biophys. Res. Commun. 362 288-294 (2007)
  96. NFAT but not NF-kappaB is critical for transcriptional induction of the prosurvival gene A1 after IgE receptor activation in mast cells. Ullerås E, Karlberg M, Möller Westerberg C, Alfredsson J, Gerondakis S, Strasser A, Nilsson G. Blood 111 3081-3089 (2008)
  97. NFAT regulates pre-synaptic development and activity-dependent plasticity in Drosophila. Freeman A, Franciscovich A, Bowers M, Sandstrom DJ, Sanyal S. Mol. Cell. Neurosci. 46 535-547 (2011)
  98. Inhibition of the function of class IIa HDACs by blocking their interaction with MEF2. Jayathilaka N, Han A, Gaffney KJ, Dey R, Jarusiewicz JA, Noridomi K, Philips MA, Lei X, He J, Ye J, Gao T, Petasis NA, Chen L. Nucleic Acids Res. 40 5378-5388 (2012)
  99. Structure of the specificity domain of the Dorsal homologue Gambif1 bound to DNA. Cramer P, Varrot A, Barillas-Mury C, Kafatos FC, Müller CW. Structure 7 841-852 (1999)
  100. RCAN1 overexpression exacerbates calcium overloading-induced neuronal apoptosis. Sun X, Wu Y, Herculano B, Song W. PLoS ONE 9 e95471 (2014)
  101. Characterization of the transduction pathway involved in c-fos and c-jun expression induced by Aggregatibacter actinomycetemcomitans lipopolysaccharides in human gingival fibroblasts. Gutiérrez-Venegas G, Castillo-Alemán R. Int. Immunopharmacol. 8 1513-1523 (2008)
  102. Comprehensive prediction in 78 human cell lines reveals rigidity and compactness of transcription factor dimers. Jankowski A, Szczurek E, Jauch R, Tiuryn J, Prabhakar S. Genome Res. 23 1307-1318 (2013)
  103. Polyoma virus-induced osteosarcomas in inbred strains of mice: host determinants of metastasis. Velupillai P, Sung CK, Tian Y, Dahl J, Carroll J, Bronson R, Benjamin T. PLoS Pathog. 6 e1000733 (2010)
  104. A dimer-specific function of the transcription factor NFATp. Falvo JV, Lin CH, Tsytsykova AV, Hwang PK, Thanos D, Goldfeld AE, Maniatis T. Proc. Natl. Acad. Sci. U.S.A. 105 19637-19642 (2008)
  105. Differential inducibility of the transcriptional repressor ICER and its role in modulation of Fas ligand expression in T and NK lymphocytes. Bodor J, Bodorova J, Bare C, Hodge DL, Young HA, Gress RE. Eur. J. Immunol. 32 203-212 (2002)
  106. NFAT3 and TGF-β/SMAD3 regulate the expression of miR-140 in osteoarthritis. Tardif G, Pelletier JP, Fahmi H, Hum D, Zhang Y, Kapoor M, Martel-Pelletier J. Arthritis Res. Ther. 15 R197 (2013)
  107. Immunology. Cooperative transcription factor complexes in control. Martinez GJ, Rao A. Science 338 891-892 (2012)
  108. NFAT directly regulates Nkx2-5 transcription during cardiac cell differentiation. Chen Y, Cao X. Biol. Cell 101 335-349 (2009)
  109. Expression and purification of recombinant human c-Fos/c-Jun that is highly active in DNA binding and transcriptional activation in vitro. Ferguson HA, Goodrich JA. Nucleic Acids Res. 29 E98 (2001)
  110. GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Hullmann JE, Grisanti LA, Makarewich CA, Gao E, Gold JI, Chuprun JK, Tilley DG, Houser SR, Koch WJ. Circ. Res. 115 976-985 (2014)
  111. The C-terminal region of human NFATc2 binds cJun to synergistically activate interleukin-2 transcription. Nguyen TN, Kim LJ, Walters RD, Drullinger LF, Lively TN, Kugel JF, Goodrich JA. Mol. Immunol. 47 2314-2322 (2010)
  112. Cyclic AMP-induced chromatin changes support the NFATc-mediated recruitment of GATA-3 to the interleukin 5 promoter. Klein-Hessling S, Bopp T, Jha MK, Schmidt A, Miyatake S, Schmitt E, Serfling E. J. Biol. Chem. 283 31030-31037 (2008)
  113. Topological comparison of methods for predicting transcriptional cooperativity in yeast. Aguilar D, Oliva B. BMC Genomics 9 137 (2008)
  114. Human Taf(II)130 is a coactivator for NFATp. Kim LJ, Seto AG, Nguyen TN, Goodrich JA. Mol. Cell. Biol. 21 3503-3513 (2001)
  115. Inducible chromatin priming is associated with the establishment of immunological memory in T cells. Bevington SL, Cauchy P, Piper J, Bertrand E, Lalli N, Jarvis RC, Gilding LN, Ott S, Bonifer C, Cockerill PN. EMBO J. 35 515-535 (2016)
  116. Deciphering the combinatorial DNA-binding code of the CCAAT-binding complex and the iron-regulatory basic region leucine zipper (bZIP) transcription factor HapX. Hortschansky P, Ando E, Tuppatsch K, Arikawa H, Kobayashi T, Kato M, Haas H, Brakhage AA. J. Biol. Chem. 290 6058-6070 (2015)
  117. Opposing roles of FoxP1 and Nfat3 in transcriptional control of cardiomyocyte hypertrophy. Bai S, Kerppola TK. Mol. Cell. Biol. 31 3068-3080 (2011)
  118. Characterization of DNA binding, transcriptional activation, and regulated nuclear association of recombinant human NFATp. Kim LJ, Ferguson HA, Seto AG, Goodrich JA. BMC Immunol. 1 1 (2000)
  119. Structures of HSF2 reveal mechanisms for differential regulation of human heat-shock factors. Jaeger AM, Pemble CW, Sistonen L, Thiele DJ. Nat. Struct. Mol. Biol. 23 147-154 (2016)
  120. Differential effect of traumatic brain injury on the nuclear factor of activated T Cells C3 and C4 isoforms in the rat hippocampus. Yan HQ, Shin SS, Ma X, Li Y, Dixon CE. Brain Res. 1548 63-72 (2014)
  121. NFATc2 recruits cJun homodimers to an NFAT site to synergistically activate interleukin-2 transcription. Walters RD, Drullinger LF, Kugel JF, Goodrich JA. Mol. Immunol. 56 48-56 (2013)
  122. Role of sequence encoded κB DNA geometry in gene regulation by Dorsal. Mrinal N, Tomar A, Nagaraju J. Nucleic Acids Res. 39 9574-9591 (2011)
  123. Two-step binding of transcription factors causes sequential chromatin structural changes at the activated IL-2 promoter. Ishihara S, Schwartz RH. J. Immunol. 187 3292-3299 (2011)
  124. CREBL2, interacting with CREB, induces adipogenesis in 3T3-L1 adipocytes. Ma X, Zhang H, Yuan L, Jing H, Thacker P, Li D. Biochem. J. 439 27-38 (2011)
  125. Dimer composition and promoter context contribute to functional cooperation between AP-1 and NFAT. Wisniewska MB, Ameyar-Zazoua M, Bakiri L, Kaminska B, Yaniv M, Weitzman JB. J. Mol. Biol. 371 569-576 (2007)
  126. Microfluorimetric analysis of a purinergic receptor (P2X7) in GH4C1 rat pituitary cells: effects of a bioactive substance produced by Pfiesteria piscicida. Melo AC, Moeller PD, Glasgow H, Burkholder JM, Ramsdell JS. Environ. Health Perspect. 109 Suppl 5 731-737 (2001)
  127. NFATz: a novel rel similarity domain containing protein. Pan S, Tsuruta R, Masuda ES, Imamura R, Bazan F, Arai K, Arai N, Miyatake S. Biochem. Biophys. Res. Commun. 272 765-776 (2000)
  128. The calcineurin-nuclear factor of activated T cells signaling pathway mediates the effect of corticotropin releasing factor and urocortins on catecholamine synthesis. Dermitzaki E, Tsatsanis C, Gravanis A, Margioris AN. J. Cell. Physiol. 227 1861-1872 (2012)
  129. Mediator caused induction of a human bradykinin B1 receptor minigene: participation of c-Jun in the process. Yang X, Taylor L, Yu J, Fenton MJ, Polgar P. J. Cell. Biochem. 82 163-170 (2001)
  130. The CD23b promoter is a target for NF-AT transcription factors in B-CLL cells. Kneitz C, Goller M, Tony H, Simon A, Stibbe C, König T, Serfling E, Avots A. Biochim. Biophys. Acta 1588 41-47 (2002)
  131. Peptides containing cyclin/Cdk-nuclear localization signal motifs derived from viral initiator proteins bind to DNA when unphosphorylated. Kim RJ, Moine S, Reese DK, Bullock PA. J. Virol. 76 11785-11792 (2002)
  132. DNA binding by FOXP3 domain-swapped dimer suggests mechanisms of long-range chromosomal interactions. Chen Y, Chen C, Zhang Z, Liu CC, Johnson ME, Espinoza CA, Edsall LE, Ren B, Zhou XJ, Grant SF, Wells AD, Chen L. Nucleic Acids Res. 43 1268-1282 (2015)
  133. The MEKK1 SWIM domain is a novel substrate receptor for c-Jun ubiquitylation. Rieger MA, Duellman T, Hooper C, Ameka M, Bakowska JC, Cuevas BD. Biochem. J. 445 431-439 (2012)
  134. High-yield expression in E. coli and refolding of the bZIP domain of activating transcription factor 5. Ciaccio NA, Moreno ML, Bauer RL, Laurence JS. Protein Expr. Purif. 62 235-243 (2008)
  135. Integration of bioinformatics and computational biology to understand protein-DNA recognition mechanism. Sarai A, Siebers J, Selvaraj S, Gromiha MM, Kono H. J Bioinform Comput Biol 3 169-183 (2005)
  136. Engineered long terminal repeats of retroviral vectors enhance transgene expression in hepatocytes in vitro and in vivo. Yamaguchi K, Itoh K, Ohnishi N, Itoh Y, Baum C, Tsuji T, Nagao T, Higashitsuji H, Okanoue T, Fujita J. Mol. Ther. 8 796-803 (2003)
  137. Control of neuronal apoptosis by reciprocal regulation of NFATc3 and Trim17. Mojsa B, Mora S, Bossowski JP, Lassot I, Desagher S. Cell Death Differ. 22 274-286 (2015)
  138. NF-κB factors control the induction of NFATc1 in B lymphocytes. Muhammad K, Alrefai H, Marienfeld R, Pham DA, Murti K, Patra AK, Avots A, Bukur V, Sahin U, Kondo E, Klein-Hessling S, Serfling E. Eur. J. Immunol. 44 3392-3402 (2014)
  139. Novel caffeic acid ester derivative induces apoptosis by expressing FasL and downregulating NF-KappaB: Potentiation of cell death mediated by chemotherapeutic agents. Bose JS, Gangan V, Jain SK, Manna SK. J. Cell. Physiol. 218 653-662 (2009)
  140. Regulation of IL-2 expression by transcription factor BACH2 in umbilical cord blood CD4+ T cells. Lesniewski ML, Haviernik P, Weitzel RP, Kadereit S, Kozik MM, Fanning LR, Yang YC, Hegerfeldt Y, Finney MR, Ratajczak MZ, Greco N, Paul P, Maciejewski J, Laughlin MJ. Leukemia 22 2201-2207 (2008)
  141. Structural aspects of the FOXP3 regulatory complex as an immunopharmacological target. Zhou Z, Song X, Berezov A, Li B, Greene MI. Int. Immunopharmacol. 9 518-520 (2009)
  142. The AP-1 transcription factor homolog Pf-AP-1 activates transcription of multiple biomineral proteins and potentially participates in Pinctada fucata biomineralization. Zheng X, Cheng M, Xiang L, Liang J, Xie L, Zhang R. Sci Rep 5 14408 (2015)
  143. NFATc1 activity regulates the expression of myocilin induced by dexamethasone. Faralli JA, Clark RW, Filla MS, Peters DM. Exp. Eye Res. 130 9-16 (2015)
  144. Effects of side chains on DNA binding, cell permeability, nuclear localization and cytotoxicity of 4-aminonaphthalimides. Zhou J, Chang A, Wang L, Liu Y, Liu X, Shangguan D. Org. Biomol. Chem. 12 9207-9215 (2014)
  145. The LxVP and PxIxIT NFAT motifs bind jointly to overlapping epitopes on calcineurin's catalytic domain distant to the regulatory domain. Gal M, Li S, Luna RE, Takeuchi K, Wagner G. Structure 22 1016-1027 (2014)
  146. Opposite orientations of a transcription factor heterodimer bind DNA cooperatively with interaction partners but have different effects on interferon-β gene transcription. Burns V, Kerppola TK. J. Biol. Chem. 287 31833-31844 (2012)
  147. The co-regulation mechanism of transcription factors in the human gene regulatory network. Kim J, Choi M, Kim JR, Jin H, Kim VN, Cho KH. Nucleic Acids Res. 40 8849-8861 (2012)
  148. Dimeric calixarenes: a new family of major-groove binders. Hu W, Blecking C, Kralj M, Šuman L, Piantanida I, Schrader T. Chemistry 18 3589-3597 (2012)
  149. Antitumor effect of non-steroid glucocorticoid receptor ligand CpdA on leukemia cell lines CEM and K562. Lesovaya EA, Yemelyanov AY, Kirsanov KI, Yakubovskaya MG, Budunova IV. Biochemistry Mosc. 76 1242-1252 (2011)
  150. Expression of nuclear factor of activated T cells mRNA in maternal peripheral blood cells. Kojima H, Tamura T, Okuda T, Kato C, Kinoshita Y, Honjo H. Am. J. Reprod. Immunol. 49 139-148 (2003)
  151. 'Zipbody' leucine zipper-fused Fab in E. coli in vitro and in vivo expression systems. Ojima-Kato T, Fukui K, Yamamoto H, Hashimura D, Miyake S, Hirakawa Y, Yamasaki T, Kojima T, Nakano H. Protein Eng. Des. Sel. 29 149-157 (2016)
  152. Nuclear factor of activated T cells (NFAT) in pearl oyster Pinctada fucata: molecular cloning and functional characterization. Huang XD, Wei GJ, Zhang H, He MX. Fish Shellfish Immunol. 42 108-113 (2015)
  153. The newly characterized Pl-jun is specifically expressed in skeletogenic cells of the Paracentrotus lividus sea urchin embryo. Russo R, Pinsino A, Costa C, Bonaventura R, Matranga V, Zito F. FEBS J. 281 3828-3843 (2014)
  154. Domain separation and characterization of PriC, a replication restart primosome factor in Escherichia coli. Aramaki T, Abe Y, Ohkuri T, Mishima T, Yamashita S, Katayama T, Ueda T. Genes Cells 18 723-732 (2013)
  155. Expression, localisation and functional activation of NFAT-2 in normal human skin, psoriasis, and cultured keratocytes. Al-Daraji WI, Malak TT, Prescott RJ, Abdellaoui A, Ali MM, Dabash T, Zelger BG, Zelger B. Int J Clin Exp Med 2 176-192 (2009)
  156. FIZ1 is expressed during photoreceptor maturation, and synergizes with NRL and CRX at rod-specific promoters in vitro. Mali RS, Zhang X, Hoerauf W, Doyle D, Devitt J, Loffreda-Wren J, Mitton KP. Exp. Eye Res. 84 349-360 (2007)
  157. Expression of IL-4, IL-8 and IL-18 messenger RNAs in maternal peripheral blood and relationships with the HbF-gamma chain mRNA in it. Kato C, Tamura T, Okuda T, Kojima H, Kinoshita Y, Honjo H. Am. J. Reprod. Immunol. 51 71-80 (2004)
  158. Quantitative Expression and Co-Localization of Wnt Signalling Related Proteins in Feline Squamous Cell Carcinoma. Giuliano A, Swift R, Arthurs C, Marote G, Abramo F, McKay J, Thomson C, Beltran M, Millar M, Priestnall S, Dobson J, Costantino-Casas F, Petrou T, McGonnell IM, Davies AJ, Weetman M, Garden OA, Masters JR, Thrasivoulou C, Ahmed A. PLoS ONE 11 e0161103 (2016)
  159. Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection. Kogut MH, Swaggerty CL, Byrd JA, Selvaraj R, Arsenault RJ. Int J Mol Sci 17 (2016)
  160. Cutting Edge: NFAT Transcription Factors Promote the Generation of Follicular Helper T Cells in Response to Acute Viral Infection. Martinez GJ, Hu JK, Pereira RM, Crampton JS, Togher S, Bild N, Crotty S, Rao A. J. Immunol. 196 2015-2019 (2016)
  161. Nuclear proton dynamics and interactions with calcium signaling. Hulikova A, Swietach P. J. Mol. Cell. Cardiol. 96 26-37 (2016)
  162. c-Jun interacts with phospholipids and c-Fos at the interface. Del Boca M, Caputto BL, Maggio B, Borioli GA. J Colloid Interface Sci 287 80-84 (2005)
  163. NFAT3 is required for EGF-induced COX-2 transcription, but neither iNOS transcription nor cell transformation in Cl 41 cells. Li J, Lu H, Huang C. Mol. Cell. Biochem. 289 73-82 (2006)
  164. Cooperation of calcineurin and ERK for UTP-induced IL-6 production in HaCaT keratinocytes. Kobayashi D, Ohkubo S, Nakahata N. Eur. J. Pharmacol. 573 249-252 (2007)
  165. Functional and topological characterization of transcriptional cooperativity in yeast. Aguilar D, Oliva B. BMC Res Notes 5 227 (2012)
  166. PTD-mediated intracellular delivery of mutant NFAT minimum DNA binding domain inhibited the proliferation of T cells. Liu X, Zhao Q, Peng X, Xia S, Shen W, Zong Y, Cheng J, Wu W, Zhang M, Du F, Xu W, Qian H, Shao Q. Int. Immunopharmacol. 19 110-118 (2014)
  167. Basic and aromatic residues in the C-terminal domain of PriC are involved in ssDNA and SSB binding. Aramaki T, Abe Y, Furutani K, Katayama T, Ueda T. J. Biochem. 157 529-537 (2015)
  168. Cooperative binding of AP-1 and TEAD4 modulates the balance between vascular smooth muscle and hemogenic cell fate. Obier N, Cauchy P, Assi SA, Gilmour J, Lie-A-Ling M, Lichtinger M, Hoogenkamp M, Noailles L, Cockerill PN, Lacaud G, Kouskoff V, Bonifer C. Development 143 4324-4340 (2016)