4cms Citations

X-ray analyses of aspartic proteinases. IV. Structure and refinement at 2.2 A resolution of bovine chymosin.

J Mol Biol 221 1295-309 (1991)
Cited: 39 times
EuropePMC logo PMID: 1942052

Abstract

The structure of calf chymosin (EC 3.4.23.3), the aspartic proteinase from the gastric mucosa, was solved using the technique of molecular replacement. We describe the use of different search models based on distantly related fungal aspartic proteinases and investigate the effect of using only structurally conserved regions. The structure has been refined to a crystallographic R-factor of 17% at 2.2 A resolution with an estimated co-ordinate error of 0.21 A. In all, 136 water molecules have been located of which eight are internal. The structure of chymosin resembles that of pepsin and other aspartic proteinases. However, there is a considerable rearrangement of the active-site "flap" and, in particular, Tyr75 (pepsin numbering), which forms part of the specificity pockets S1 and S1'. This is probably a consequence of crystal packing. Electrostatic interactions on the edge of the substrate binding cleft appear to account for the restricted proteolysis of the natural substrate kappa-casein by chymosin. The local environment of invariant residues is examined, showing that structural constraints and side-chain hydrogen bonding can play an important role in the conservation of particular amino acids.

Articles - 4cms mentioned but not cited (2)

  1. Rationally selected basis proteins: a new approach to selecting proteins for spectroscopic secondary structure analysis. Oberg KA, Ruysschaert JM, Goormaghtigh E. Protein Sci 12 2015-2031 (2003)
  2. MARTINI bead form factors for the analysis of time-resolved X-ray scattering of proteins. Niebling S, Björling A, Westenhoff S. J Appl Crystallogr 47 1190-1198 (2014)


Reviews citing this publication (3)

  1. The structure and function of Saccharomyces cerevisiae proteinase A. Parr CL, Keates RA, Bryksa BC, Ogawa M, Yada RY. Yeast 24 467-480 (2007)
  2. Chymosin and other milk coagulants: sources and biotechnological interventions. Kumar A, Grover S, Sharma J, Batish VK. Crit. Rev. Biotechnol. 30 243-258 (2010)
  3. Inhibitors of aspartyl proteinases. Abdel-Meguid SS. Med Res Rev 13 731-778 (1993)

Articles citing this publication (34)

  1. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Cuff JA, Barton GJ. Proteins 34 508-519 (1999)
  2. Identification, classification, and analysis of beta-bulges in proteins. Chan AW, Hutchinson EG, Harris D, Thornton JM. Protein Sci. 2 1574-1590 (1993)
  3. Deviations from planarity of the peptide bond in peptides and proteins. MacArthur MW, Thornton JM. J. Mol. Biol. 264 1180-1195 (1996)
  4. Functional sites in protein families uncovered via an objective and automated graph theoretic approach. Wangikar PP, Tendulkar AV, Ramya S, Mali DN, Sarawagi S. J. Mol. Biol. 326 955-978 (2003)
  5. Functional plasticity in the substrate binding site of beta-secretase. Gorfe AA, Caflisch A. Structure 13 1487-1498 (2005)
  6. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Scarborough PE, Guruprasad K, Topham C, Richo GR, Conner GE, Blundell TL, Dunn BM. Protein Sci. 2 264-276 (1993)
  7. Cockroach allergen Bla g 2: structure, function, and implications for allergic sensitization. Pomés A, Chapman MD, Vailes LD, Blundell TL, Dhanaraj V. Am. J. Respir. Crit. Care Med. 165 391-397 (2002)
  8. Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Andreeva NS, Rumsh LD. Protein Sci. 10 2439-2450 (2001)
  9. Comparative modelling of barley-grain aspartic proteinase: a structural rationale for observed hydrolytic specificity. Guruprasad K, Törmäkangas K, Kervinen J, Blundell TL. FEBS Lett. 352 131-136 (1994)
  10. Crystal structure of cardosin A, a glycosylated and Arg-Gly-Asp-containing aspartic proteinase from the flowers of Cynara cardunculus L. Frazão C, Bento I, Costa J, Soares CM, Veríssimo P, Faro C, Pires E, Cooper J, Carrondo MA. J. Biol. Chem. 274 27694-27701 (1999)
  11. Crystal structures of Toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic basis of pyrimidine discrimination and prodrug binding. Schumacher MA, Carter D, Scott DM, Roos DS, Ullman B, Brennan RG. EMBO J. 17 3219-3232 (1998)
  12. Structure-based identification and clustering of protein families and superfamilies. Rufino SD, Blundell TL. J. Comput. Aided Mol. Des. 8 5-27 (1994)
  13. Rabbit procathepsin E and cathepsin E. Nucleotide sequence of cDNA, hydrolytic specificity for biologically active peptides and gene expression during development. Kageyama T. Eur. J. Biochem. 216 717-728 (1993)
  14. Expression of soluble cloned porcine pepsinogen A in Escherichia coli. Tanaka T, Yada RY. Biochem. J. 315 ( Pt 2) 443-446 (1996)
  15. X-ray-crystallographic studies of complexes of pepstatin A and a statine-containing human renin inhibitor with endothiapepsin. Bailey D, Cooper JB, Veerapandian B, Blundell TL, Atrash B, Jones DM, Szelke M. Biochem. J. 289 ( Pt 2) 363-371 (1993)
  16. Human liver cathepsin D. Purification, crystallization and preliminary X-ray diffraction analysis of a lysosomal enzyme. Gulnik S, Baldwin ET, Tarasova N, Erickson J. J. Mol. Biol. 227 265-270 (1992)
  17. The three-dimensional structure at 2.4 A resolution of glycosylated proteinase A from the lysosome-like vacuole of Saccharomyces cerevisiae. Aguilar CF, Cronin NB, Badasso M, Dreyer T, Newman MP, Cooper JB, Hoover DJ, Wood SP, Johnson MS, Blundell TL. J. Mol. Biol. 267 899-915 (1997)
  18. An unusual orientation for Tyr75 in the active site of the aspartic proteinase from Saccharomyces cerevisiae. Gustchina A, Li M, Phylip LH, Lees WE, Kay J, Wlodawer A. Biochem. Biophys. Res. Commun. 295 1020-1026 (2002)
  19. Can enzymes adopt a self-inhibited form? Results of x-ray crystallographic studies of chymosin. Andreeva N, Dill J, Gilliland GL. Biochem. Biophys. Res. Commun. 184 1074-1081 (1992)
  20. High recovery of prochymosin from inclusion bodies using controlled air oxidation. Menzella HG, Gramajo HC, Ceccarelli EA. Protein Expr. Purif. 25 248-255 (2002)
  21. Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin. Fujimoto Z, Fujii Y, Kaneko S, Kobayashi H, Mizuno H. J. Mol. Biol. 341 1227-1235 (2004)
  22. Restrained molecular dynamics study of the interaction between bovine kappa-casein peptide 98-111 and bovine chymosin and porcine pepsin. Plowman JE, Creamer LK. J Dairy Res 62 451-467 (1995)
  23. The role of tyrosine 71 in modulating the flap conformations of BACE1. Spronk SA, Carlson HA. Proteins 79 2247-2259 (2011)
  24. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin. Galea CA, Dalrymple BP, Kuypers R, Blakeley R. Protein Sci. 9 1947-1959 (2000)
  25. Differences in the P1' substrate specificities of pepsin A and chymosin. Kageyama H, Ueda H, Tezuka T, Ogasawara A, Narita Y, Kageyama T, Ichinose M. J. Biochem. 147 167-174 (2010)
  26. Structural aspects of the Mucor bacilliformis proteinase, a new member of the aspartyl-proteinase family. Machalinski C, Pirpignani ML, Marino C, Mantegazza A, de Jiménez Bonino MB. J. Biotechnol. 123 443-452 (2006)
  27. Post X-ray crystallographic studies of chymosin: the existence of two structural forms and the regulation of activity by the interaction with the histidine-proline cluster of kappa-casein. Gustchina E, Rumsh L, Ginodman L, Majer P, Andreeva N. FEBS Lett. 379 60-62 (1996)
  28. Analysis of the disulfide bonding pattern between domain sequences of recombinant prochymosin solubilized from inclusion bodies. Wei C, Chen H, Zhang Y, Yang K. J Protein Chem 19 277-284 (2000)
  29. Crystallization and preliminary X-ray analysis of complexes of peptide inhibitors with human recombinant and mouse submandibular renins. Badasso M, Frazao C, Sibanda BL, Dhanaraj V, DeAlwis C, Cooper JB, Wood SP, Blundell TL, Murakami K, Miyazaki H. J. Mol. Biol. 223 447-453 (1992)
  30. Expression and characterisation of chymosin pH optima mutants produced in Trichoderma reesei. Pitts JE, Uusitalo JM, Mantafounis D, Nugent PG, Quinn DD, Orprayoon P, Penttilä ME. J. Biotechnol. 28 69-83 (1993)
  31. Crystallization and preliminary X-ray diffraction studies of aspartic proteinase from Irpex lacteus. Kobayashi H, Kasamo K, Mizuno H, Kim H, Kusakabe I, Murakami K. J. Mol. Biol. 226 1291-1293 (1992)
  32. Ion Specificity and Nonmonotonic Protein Solubility from Salt Entropy. Dahal YR, Schmit JD. Biophys. J. 114 76-87 (2018)
  33. Aspartic proteinases: Fourier transform infrared spectroscopic studies of a model of the active side. Iliadis G, Brzezinski B, Zundel G. Biophys. J. 71 2840-2847 (1996)
  34. The function of the milk-clotting enzymes bovine and camel chymosin studied by a fluorescence resonance energy transfer assay. Jensen JL, Jacobsen J, Moss ML, Rasmussen F, Qvist KB, Larsen S, van den Brink JM. J Dairy Sci 98 2853-2860 (2015)


Related citations provided by authors (1)

  1. Engineering Enzyme Sub-Site Specificity: Preparation, Kinetic Characterization and X-Ray Analysis at 2.0-Angstroms Resolution of Val111Phe Site-Mutated Calf Chymosin. Strop P, Sedlacek J, Stys J, Kaderabkova Z, Blaha I, Pavlickova L, Pohl J, Fabry M, Kostka V, Newman M, Frazao C, Shearer A, Tickle IJ, Blundell TL Biochemistry 29 9863- (1990)