4bl0 Citations

Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling.

Abstract

Regulation of macromolecular interactions by phosphorylation is crucial in signaling networks. In the spindle assembly checkpoint (SAC), which enables errorless chromosome segregation, phosphorylation promotes recruitment of SAC proteins to tensionless kinetochores. The SAC kinase Mps1 phosphorylates multiple Met-Glu-Leu-Thr (MELT) motifs on the kinetochore subunit Spc105/Knl1. The phosphorylated MELT motifs (MELT(P)) then promote recruitment of downstream signaling components. How MELT(P) motifs are recognized is unclear. In this study, we report that Bub3, a 7-bladed β-propeller, is the MELT(P) reader. It contains an exceptionally well-conserved interface that docks the MELT(P) sequence on the side of the β-propeller in a previously unknown binding mode. Mutations targeting the Bub3 interface prevent kinetochore recruitment of the SAC kinase Bub1. Crucially, they also cause a checkpoint defect, showing that recognition of phosphorylated targets by Bub3 is required for checkpoint signaling. Our data provide the first detailed mechanistic insight into how phosphorylation promotes recruitment of checkpoint proteins to kinetochores. DOI:http://dx.doi.org/10.7554/eLife.01030.001.

Reviews - 4bl0 mentioned but not cited (1)

Articles - 4bl0 mentioned but not cited (4)

  1. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. Primorac I, Weir JR, Chiroli E, Gross F, Hoffmann I, van Gerwen S, Ciliberto A, Musacchio A. Elife 2 e01030 (2013)
  2. Functional and Structural Characterization of Bub3·BubR1 Interactions Required for Spindle Assembly Checkpoint Signaling in Human Cells. Prinz F, Puetter V, Holton SJ, Andres D, Stegmann CM, Kwiatkowski D, Prechtl S, Petersen K, Beckmann G, Kreft B, Mumberg D, Fernández-Montalván A. J. Biol. Chem. 291 11252-11267 (2016)
  3. Structural basis for Sarbecovirus ORF6 mediated blockage of nucleocytoplasmic transport. Gao X, Tian H, Zhu K, Li Q, Hao W, Wang L, Qin B, Deng H, Cui S. Nat Commun 13 4782 (2022)
  4. The copy-number and varied strengths of MELT motifs in Spc105 balance the strength and responsiveness of the spindle assembly checkpoint. Roy B, Han SJ, Fontan AN, Joglekar AP. Elife 9 (2020)


Reviews citing this publication (30)

  1. The Molecular Biology of Spindle Assembly Checkpoint Signaling Dynamics. Musacchio A. Curr. Biol. 25 R1002-18 (2015)
  2. Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Sacristan C, Kops GJ. Trends Cell Biol. 25 21-28 (2015)
  3. The Aurora B Kinase in Chromosome Bi-Orientation and Spindle Checkpoint Signaling. Krenn V, Musacchio A. Front Oncol 5 225 (2015)
  4. The current view for the silencing of the spindle assembly checkpoint. Wang Y, Jin F, Higgins R, McKnight K. Cell Cycle 13 1694-1701 (2014)
  5. KNL1: bringing order to the kinetochore. Caldas GV, DeLuca JG. Chromosoma 123 169-181 (2014)
  6. BubR1 kinase: protection against aneuploidy and premature aging. Kapanidou M, Lee S, Bolanos-Garcia VM. Trends Mol Med 21 364-372 (2015)
  7. Connecting the microtubule attachment status of each kinetochore to cell cycle arrest through the spindle assembly checkpoint. Stukenberg PT, Burke DJ. Chromosoma 124 463-480 (2015)
  8. Playing polo during mitosis: PLK1 takes the lead. Combes G, Alharbi I, Braga LG, Elowe S. Oncogene 36 4819-4827 (2017)
  9. Regulation of mitotic progression by the spindle assembly checkpoint. Lischetti T, Nilsson J. Mol Cell Oncol 2 e970484 (2015)
  10. Sharpening the anaphase switch. Meadows JC, Millar JB. Biochem. Soc. Trans. 43 19-22 (2015)
  11. A Cell Biological Perspective on Past, Present and Future Investigations of the Spindle Assembly Checkpoint. Joglekar AP. Biology (Basel) 5 (2016)
  12. The Ins and Outs of Aurora B Inner Centromere Localization. Hindriksen S, Lens SMA, Hadders MA. Front Cell Dev Biol 5 112 (2017)
  13. "Uno, nessuno e centomila": the different faces of the budding yeast kinetochore. Malvezzi F, Westermann S. Chromosoma 123 447-457 (2014)
  14. Kinase and Phosphatase Cross-Talk at the Kinetochore. Saurin AT. Front Cell Dev Biol 6 62 (2018)
  15. Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis. Pachis ST, Kops GJPL. Open Biol 8 (2018)
  16. Spindle assembly checkpoint activation and silencing at kinetochores. Lara-Gonzalez P, Pines J, Desai A. Semin Cell Dev Biol 117 86-98 (2021)
  17. Recent advances in understanding the role of Cdk1 in the Spindle Assembly Checkpoint. Serpico AF, Grieco D. F1000Res 9 (2020)
  18. Bub1 kinase in the regulation of mitosis. Kim T, Gartner A. Anim Cells Syst (Seoul) 25 1-10 (2021)
  19. BUB3, beyond the Simple Role of Partner. Silva PMA, Bousbaa H. Pharmaceutics 14 1084 (2022)
  20. The whole is greater than the sum of its parts: at the intersection of order, disorder, and kinetochore function. Audett MR, Maresca TJ. Essays Biochem 64 349-358 (2020)
  21. MAD1: Kinetochore Receptors and Catalytic Mechanisms. Luo Y, Ahmad E, Liu ST. Front Cell Dev Biol 6 51 (2018)
  22. Phosphatases in Mitosis: Roles and Regulation. Moura M, Conde C. Biomolecules 9 (2019)
  23. Recent Progress on the Localization of the Spindle Assembly Checkpoint Machinery to Kinetochores. Dou Z, Prifti DK, Gui P, Liu X, Elowe S, Yao X. Cells 8 (2019)
  24. Research progress of Bub3 gene in malignant tumors. Wang C, Cheng D, Pan C, Wang C, Nie Z. Cell Biol Int 46 673-682 (2022)
  25. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. J Exp Clin Cancer Res 41 159 (2022)
  26. How the SAC gets the axe: Integrating kinetochore microtubule attachments with spindle assembly checkpoint signaling. Agarwal S, Varma D. Bioarchitecture 5 1-12 (2015)
  27. Mapping Mitotic Death: Functional Integration of Mitochondria, Spindle Assembly Checkpoint and Apoptosis. Ruan W, Lim HH, Surana U. Front Cell Dev Biol 6 177 (2018)
  28. Principles and dynamics of spindle assembly checkpoint signalling. McAinsh AD, Kops GJPL. Nat Rev Mol Cell Biol 24 543-559 (2023)
  29. The Opposing Functions of Protein Kinases and Phosphatases in Chromosome Bipolar Attachment. Sherwin D, Wang Y. Int J Mol Sci 20 (2019)
  30. Zombies Never Die: The Double Life Bub1 Lives in Mitosis. Zhang Y, Song C, Wang L, Jiang H, Zhai Y, Wang Y, Fang J, Zhang G. Front Cell Dev Biol 10 870745 (2022)

Articles citing this publication (98)

  1. PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Jiang Y, Li X, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape K, Wei C, Guo F, Chen Y, Lu Z. Mol. Cell 53 75-87 (2014)
  2. Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint. London N, Biggins S. Genes Dev. 28 140-152 (2014)
  3. CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Ji Z, Gao H, Yu H. Science 348 1260-1264 (2015)
  4. Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nijenhuis W, Vallardi G, Teixeira A, Kops GJ, Saurin AT. Nat. Cell Biol. 16 1257-1264 (2014)
  5. A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached kinetochores to initiate the spindle checkpoint. Moyle MW, Kim T, Hattersley N, Espeut J, Cheerambathur DK, Oegema K, Desai A. J. Cell Biol. 204 647-657 (2014)
  6. PP2A-B56 opposes Mps1 phosphorylation of Knl1 and thereby promotes spindle assembly checkpoint silencing. Espert A, Uluocak P, Bastos RN, Mangat D, Graab P, Gruneberg U. J. Cell Biol. 206 833-842 (2014)
  7. A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint. Overlack K, Primorac I, Vleugel M, Krenn V, Maffini S, Hoffmann I, Kops GJ, Musacchio A. Elife 4 e05269 (2015)
  8. Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation. Vleugel M, Tromer E, Omerzu M, Groenewold V, Nijenhuis W, Snel B, Kops GJ. J. Cell Biol. 203 943-955 (2013)
  9. The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling. Aravamudhan P, Goldfarb AA, Joglekar AP. Nat. Cell Biol. 17 868-879 (2015)
  10. KI motifs of human Knl1 enhance assembly of comprehensive spindle checkpoint complexes around MELT repeats. Krenn V, Overlack K, Primorac I, van Gerwen S, Musacchio A. Curr. Biol. 24 29-39 (2014)
  11. Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. Kim S, Yu H. J. Cell Biol. 208 181-196 (2015)
  12. Plk1 and Mps1 Cooperatively Regulate the Spindle Assembly Checkpoint in Human Cells. von Schubert C, Cubizolles F, Bracher JM, Sliedrecht T, Kops GJPL, Nigg EA. Cell Rep 12 66-78 (2015)
  13. A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. Hornung P, Troc P, Malvezzi F, Maier M, Demianova Z, Zimniak T, Litos G, Lampert F, Schleiffer A, Brunner M, Mechtler K, Herzog F, Marlovits TC, Westermann S. J. Cell Biol. 206 509-524 (2014)
  14. A microtubule-associated zinc finger protein, BuGZ, regulates mitotic chromosome alignment by ensuring Bub3 stability and kinetochore targeting. Jiang H, He X, Wang S, Jia J, Wan Y, Wang Y, Zeng R, Yates J, Zhu X, Zheng Y. Dev. Cell 28 268-281 (2014)
  15. Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint. Zhang G, Lischetti T, Hayward DG, Nilsson J. Nat Commun 6 7162 (2015)
  16. KNL1-Bubs and RZZ Provide Two Separable Pathways for Checkpoint Activation at Human Kinetochores. Silió V, McAinsh AD, Millar JB. Dev. Cell 35 600-613 (2015)
  17. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling. Ji Z, Gao H, Jia L, Li B, Yu H. Elife 6 (2017)
  18. BuGZ is required for Bub3 stability, Bub1 kinetochore function, and chromosome alignment. Toledo CM, Herman JA, Olsen JB, Ding Y, Corrin P, Girard EJ, Olson JM, Emili A, DeLuca JG, Paddison PJ. Dev. Cell 28 282-294 (2014)
  19. Structure of the MIS12 Complex and Molecular Basis of Its Interaction with CENP-C at Human Kinetochores. Petrovic A, Keller J, Liu Y, Overlack K, John J, Dimitrova YN, Jenni S, van Gerwen S, Stege P, Wohlgemuth S, Rombaut P, Herzog F, Harrison SC, Vetter IR, Musacchio A. Cell 167 1028-1040.e15 (2016)
  20. The human SKA complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores. Sivakumar S, Janczyk PŁ, Qu Q, Brautigam CA, Stukenberg PT, Yu H, Gorbsky GJ. Elife 5 (2016)
  21. Dynamic localization of Mps1 kinase to kinetochores is essential for accurate spindle microtubule attachment. Dou Z, Liu X, Wang W, Zhu T, Wang X, Xu L, Abrieu A, Fu C, Hill DL, Yao X. Proc. Natl. Acad. Sci. U.S.A. 112 E4546-55 (2015)
  22. Bimodal activation of BubR1 by Bub3 sustains mitotic checkpoint signaling. Han JS, Vitre B, Fachinetti D, Cleveland DW. Proc. Natl. Acad. Sci. U.S.A. 111 E4185-93 (2014)
  23. Efficient mitotic checkpoint signaling depends on integrated activities of Bub1 and the RZZ complex. Zhang G, Kruse T, Guasch Boldú C, Garvanska DH, Coscia F, Mann M, Barisic M, Nilsson J. EMBO J 38 (2019)
  24. Substrate-specific activation of the mitotic kinase Bub1 through intramolecular autophosphorylation and kinetochore targeting. Lin Z, Jia L, Tomchick DR, Luo X, Yu H. Structure 22 1616-1627 (2014)
  25. The Caenorhabditis elegans pericentriolar material components SPD-2 and SPD-5 are monomeric in the cytoplasm before incorporation into the PCM matrix. Wueseke O, Bunkenborg J, Hein MY, Zinke A, Viscardi V, Woodruff JB, Oegema K, Mann M, Andersen JS, Hyman AA. Mol. Biol. Cell 25 2984-2992 (2014)
  26. Bub1 positions Mad1 close to KNL1 MELT repeats to promote checkpoint signalling. Zhang G, Kruse T, López-Méndez B, Sylvestersen KB, Garvanska DH, Schopper S, Nielsen ML, Nilsson J. Nat Commun 8 15822 (2017)
  27. Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation. Asghar A, Lajeunesse A, Dulla K, Combes G, Thebault P, Nigg EA, Elowe S. Nat Commun 6 8364 (2015)
  28. Kinetochore-localized BUB-1/BUB-3 complex promotes anaphase onset in C. elegans. Kim T, Moyle MW, Lara-Gonzalez P, De Groot C, Oegema K, Desai A. J. Cell Biol. 209 507-517 (2015)
  29. Widespread Recurrent Patterns of Rapid Repeat Evolution in the Kinetochore Scaffold KNL1. Tromer E, Snel B, Kops GJ. Genome Biol Evol 7 2383-2393 (2015)
  30. Kinetochore phosphatases suppress autonomous Polo-like kinase 1 activity to control the mitotic checkpoint. Cordeiro MH, Smith RJ, Saurin AT. J Cell Biol 219 e202002020 (2020)
  31. Kinetochores accelerate or delay APC/C activation by directing Cdc20 to opposing fates. Kim T, Lara-Gonzalez P, Prevo B, Meitinger F, Cheerambathur DK, Oegema K, Desai A. Genes Dev. 31 1089-1094 (2017)
  32. Loss of Centromere Cohesion in Aneuploid Human Oocytes Correlates with Decreased Kinetochore Localization of the Sac Proteins Bub1 and Bubr1. Lagirand-Cantaloube J, Ciabrini C, Charrasse S, Ferrieres A, Castro A, Anahory T, Lorca T. Sci Rep 7 44001 (2017)
  33. Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing. Moura M, Osswald M, Leça N, Barbosa J, Pereira AJ, Maiato H, Sunkel CE, Conde C. Elife 6 (2017)
  34. Bub3 promotes Cdc20-dependent activation of the APC/C in S. cerevisiae. Yang Y, Tsuchiya D, Lacefield S. J. Cell Biol. 209 519-527 (2015)
  35. Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Brulotte ML, Jeong BC, Li F, Li B, Yu EB, Wu Q, Brautigam CA, Yu H, Luo X. Nat Commun 8 1956 (2017)
  36. The mitotic checkpoint complex (MCC): looking back and forth after 15 years. Liu ST, Zhang H. AIMS Mol Sci 3 597-634 (2016)
  37. Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells. Broad AJ, DeLuca KF, DeLuca JG. J Cell Biol 219 (2020)
  38. Dual recognition of chromatin and microtubules by INCENP is important for mitotic progression. Wheelock MS, Wynne DJ, Tseng BS, Funabiki H. J. Cell Biol. 216 925-941 (2017)
  39. Mps1Mph1 Kinase Phosphorylates Mad3 to Inhibit Cdc20Slp1-APC/C and Maintain Spindle Checkpoint Arrests. Zich J, May K, Paraskevopoulos K, Sen O, Syred HM, van der Sar S, Patel H, Moresco JJ, Sarkeshik A, Yates JR, Rappsilber J, Hardwick KG. PLoS Genet. 12 e1005834 (2016)
  40. A common molecular mechanism underlies the role of Mps1 in chromosome biorientation and the spindle assembly checkpoint. Benzi G, Camasses A, Atsunori Y, Katou Y, Shirahige K, Piatti S. EMBO Rep 21 e50257 (2020)
  41. KNL1 Binding to PP1 and Microtubules Is Mutually Exclusive. Bajaj R, Bollen M, Peti W, Page R. Structure 26 1327-1336.e4 (2018)
  42. Plk1 bound to Bub1 contributes to spindle assembly checkpoint activity during mitosis. Ikeda M, Tanaka K. Sci Rep 7 8794 (2017)
  43. Premature Silencing of the Spindle Assembly Checkpoint Is Prevented by the Bub1-H2A-Sgo1-PP2A Axis in Saccharomyces cerevisiae. Jin F, Bokros M, Wang Y. Genetics 205 1169-1178 (2017)
  44. Role of Intrinsic and Extrinsic Factors in the Regulation of the Mitotic Checkpoint Kinase Bub1. Breit C, Bange T, Petrovic A, Weir JR, Müller F, Vogt D, Musacchio A. PLoS ONE 10 e0144673 (2015)
  45. Spindle checkpoint silencing at kinetochores with submaximal microtubule occupancy. Etemad B, Vertesy A, Kuijt TEF, Sacristan C, van Oudenaarden A, Kops GJPL. J Cell Sci 132 (2019)
  46. Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation. Zhang G, Mendez BL, Sedgwick GG, Nilsson J. Nat Commun 7 12256 (2016)
  47. Understanding inhibitor resistance in Mps1 kinase through novel biophysical assays and structures. Hiruma Y, Koch A, Hazraty N, Tsakou F, Medema RH, Joosten RP, Perrakis A. J. Biol. Chem. 292 14496-14504 (2017)
  48. Untangling the contribution of Haspin and Bub1 to Aurora B function during mitosis. Hadders MA, Hindriksen S, Truong MA, Mhaskar AN, Wopken JP, Vromans MJM, Lens SMA. J Cell Biol 219 (2020)
  49. Control of the spindle checkpoint by lateral kinetochore attachment and limited Mad1 recruitment. Krefman NI, Drubin DG, Barnes G. Mol. Biol. Cell 26 2620-2639 (2015)
  50. Mps1 Phosphorylates Its N-Terminal Extension to Relieve Autoinhibition and Activate the Spindle Assembly Checkpoint. Combes G, Barysz H, Garand C, Gama Braga L, Alharbi I, Thebault P, Murakami L, Bryne DP, Stankovic S, Eyers PA, Bolanos-Garcia VM, Earnshaw WC, Maciejowski J, Jallepalli PV, Elowe S. Curr. Biol. 28 872-883.e5 (2018)
  51. The kinetochore proteins CENP-E and CENP-F directly and specifically interact with distinct BUB mitotic checkpoint Ser/Thr kinases. Ciossani G, Overlack K, Petrovic A, Huis In 't Veld PJ, Koerner C, Wohlgemuth S, Maffini S, Musacchio A. J. Biol. Chem. 293 10084-10101 (2018)
  52. A motif from Lys216 to Lys222 in human BUB3 protein is a nuclear localization signal and critical for BUB3 function in mitotic checkpoint. Zhu S, Jing R, Yang Y, Huang Y, Wang X, Leng Y, Xi J, Wang G, Jia W, Kang J. J. Biol. Chem. 290 11282-11292 (2015)
  53. A protective chaperone for the kinetochore adaptor Bub3. Ji Z, Yu H. Dev. Cell 28 223-224 (2014)
  54. Differential requirement for Bub1 and Bub3 in regulation of meiotic versus mitotic chromosome segregation. Cairo G, MacKenzie AM, Lacefield S. J Cell Biol 219 e201909136 (2020)
  55. Dual mechanisms regulate the recruitment of spindle assembly checkpoint proteins to the budding yeast kinetochore. Aravamudhan P, Chen R, Roy B, Sim J, Joglekar AP. Mol. Biol. Cell 27 3405-3417 (2016)
  56. Dynamic location changes of Bub1-phosphorylated-H2AThr133 with CENH3 nucleosome in maize centromeric regions. Su H, Liu Y, Dong Q, Feng C, Zhang J, Liu Y, Birchler JA, Han F. New Phytol. 214 682-694 (2017)
  57. Mitotic kinase anchoring proteins: the navigators of cell division. Fulcher LJ, Sapkota GP. Cell Cycle 19 505-524 (2020)
  58. Molecular mechanism of Mad1 kinetochore targeting by phosphorylated Bub1. Fischer ES, Yu CWH, Bellini D, McLaughlin SH, Orr CM, Wagner A, Freund SMV, Barford D. EMBO Rep 22 e52242 (2021)
  59. BubR1 Promotes Bub3-Dependent APC/C Inhibition during Spindle Assembly Checkpoint Signaling. Overlack K, Bange T, Weissmann F, Faesen AC, Maffini S, Primorac I, Müller F, Peters JM, Musacchio A. Curr. Biol. 27 2915-2927.e7 (2017)
  60. CDK1-CCNB1 creates a spindle checkpoint-permissive state by enabling MPS1 kinetochore localization. Hayward D, Alfonso-Pérez T, Cundell MJ, Hopkins M, Holder J, Bancroft J, Hutter LH, Novak B, Barr FA, Gruneberg U. J. Cell Biol. 218 1182-1199 (2019)
  61. Centromere-localized Aurora B kinase is required for the fidelity of chromosome segregation. Liang C, Zhang Z, Chen Q, Yan H, Zhang M, Zhou L, Xu J, Lu W, Wang F. J Cell Biol 219 (2020)
  62. Kinetochore-catalyzed MCC formation: A structural perspective. Fischer ES. IUBMB Life 75 289-310 (2023)
  63. Mps1-mediated release of Mad1 from nuclear pores ensures the fidelity of chromosome segregation. Cunha-Silva S, Osswald M, Goemann J, Barbosa J, Santos LM, Resende P, Bange T, Ferrás C, Sunkel CE, Conde C. J Cell Biol 219 (2020)
  64. Synthetic Physical Interactions Map Kinetochore-Checkpoint Activation Regions. Ólafsson G, Thorpe PH. G3 (Bethesda) 6 2531-2542 (2016)
  65. A bifunctional kinase-phosphatase module balances mitotic checkpoint strength and kinetochore-microtubule attachment stability. Corno A, Cordeiro MH, Allan LA, Lim QW, Harrington E, Smith RJ, Saurin AT. EMBO J 42 e112630 (2023)
  66. A role for the mitotic proteins Bub3 and BuGZ in transcriptional regulation of catalase-3 expression. Zhou Y, Shen S, Du C, Wang Y, Liu Y, He Q. PLoS Genet 18 e1010254 (2022)
  67. Division of labour between PP2A-B56 isoforms at the centromere and kinetochore. Vallardi G, Allan LA, Crozier L, Saurin AT. Elife 8 (2019)
  68. Ectopic Activation of the Spindle Assembly Checkpoint Signaling Cascade Reveals Its Biochemical Design. Chen C, Whitney IP, Banerjee A, Sacristan C, Sekhri P, Kern DM, Fontan A, Kops GJPL, Tyson JJ, Cheeseman IM, Joglekar AP. Curr. Biol. 29 104-119.e10 (2019)
  69. Histone H2A phosphorylation recruits topoisomerase IIα to centromeres to safeguard genomic stability. Zhang M, Liang C, Chen Q, Yan H, Xu J, Zhao H, Yuan X, Liu J, Lin S, Lu W, Wang F. EMBO J 39 e101863 (2020)
  70. Kinetochore signalling: the KIss that MELTs Knl1. Bollen M. Curr. Biol. 24 R68-70 (2014)
  71. PP1 promotes cyclin B destruction and the metaphase-anaphase transition by dephosphorylating CDC20. Bancroft J, Holder J, Geraghty Z, Alfonso-Pérez T, Murphy D, Barr FA, Gruneberg U. Mol Biol Cell 31 2315-2330 (2020)
  72. RZZ-Spindly and CENP-E form an integrated platform to recruit dynein to the kinetochore corona. Cmentowski V, Ciossani G, d'Amico E, Wohlgemuth S, Owa M, Dynlacht B, Musacchio A. EMBO J 42 e114838 (2023)
  73. Ska1 cooperates with DDA3 for spindle dynamics and spindle attachment to kinetochore. Park JE, Song H, Kwon HJ, Jang CY. Biochem. Biophys. Res. Commun. 470 586-592 (2016)
  74. The microtubule- and PP1-binding activities of Drosophila melanogaster Spc105 control the kinetics of SAC satisfaction. Audett MR, Johnson EL, McGory JM, Barcelos DM, Szalai EO, Przewloka MR, Maresca TJ. Mol Biol Cell 33 ar1 (2022)
  75. Aurora B kinase activity-dependent and -independent functions of the chromosomal passenger complex in regulating sister chromatid cohesion. Yi Q, Chen Q, Yan H, Zhang M, Liang C, Xiang X, Pan X, Wang F. J. Biol. Chem. 294 2021-2035 (2019)
  76. Aurora B phosphorylates Bub1 to promote spindle assembly checkpoint signaling. Roy B, Han SJY, Fontan AN, Jema S, Joglekar AP. Curr Biol 32 237-247.e6 (2022)
  77. BuGZ facilitates loading of spindle assembly checkpoint proteins to kinetochores in early mitosis. Shirnekhi HK, Herman JA, Paddison PJ, DeLuca JG. J Biol Chem 295 14666-14677 (2020)
  78. BubR1 recruitment to the kinetochore via Bub1 enhances spindle assembly checkpoint signaling. Banerjee A, Chen C, Humphrey L, Tyson JJ, Joglekar AP. Mol Biol Cell 33 br16 (2022)
  79. Checkpoint proteins come under scrutiny. Mora-Santos M, Millar JB. Elife 2 e01494 (2013)
  80. Connecting GCN5's centromeric SAGA to the mitotic tension-sensing checkpoint. Petty EL, Evpak M, Pillus L. Mol. Biol. Cell 29 2201-2212 (2018)
  81. Delineating the contribution of Spc105-bound PP1 to spindle checkpoint silencing and kinetochore microtubule attachment regulation. Roy B, Verma V, Sim J, Fontan A, Joglekar AP. J. Cell Biol. 218 3926-3942 (2019)
  82. Drosophila Nnf1 paralogs are partially redundant for somatic and germ line kinetochore function. Blattner AC, Aguilar-Rodríguez J, Kränzlin M, Wagner A, Lehner CF. Chromosoma 126 145-163 (2017)
  83. Kinetochore component function in C. elegans oocytes revealed by 4D tracking of holocentric chromosomes. Pitayu-Nugroho L, Aubry M, Laband K, Geoffroy H, Ganeswaran T, Primadhanty A, Canman JC, Dumont J. Nat Commun 14 4032 (2023)
  84. Knl1 participates in spindle assembly checkpoint signaling in maize. Su H, Liu Y, Wang C, Liu Y, Feng C, Sun Y, Yuan J, Birchler JA, Han F. Proc Natl Acad Sci U S A 118 e2022357118 (2021)
  85. Kre28-Spc105 interaction is essential for Spc105 loading at the kinetochore. Roy B, Sim J, Han SJY, Joglekar AP. Open Biol 12 210274 (2022)
  86. LUBAC controls chromosome alignment by targeting CENP-E to attached kinetochores. Wu M, Chang Y, Hu H, Mu R, Zhang Y, Qin X, Duan X, Li W, Tu H, Zhang W, Wang G, Han Q, Li A, Zhou T, Iwai K, Zhang X, Li H. Nat Commun 10 273 (2019)
  87. Meiotic cells escape prolonged spindle checkpoint activity through kinetochore silencing and slippage. MacKenzie A, Vicory V, Lacefield S. PLoS Genet 19 e1010707 (2023)
  88. Mph1/MPS1 checks in at the kinetochore. Hervas-Aguilar A, Millar JB. Cell Cycle 15 1313-1314 (2016)
  89. Multimerization of a disordered kinetochore protein promotes accurate chromosome segregation by localizing a core dynein module. McGory JM, Verma V, Barcelos DM, Maresca TJ. J Cell Biol 223 e202211122 (2024)
  90. On the Regulation of Mitosis by the Kinetochore, a Macromolecular Complex and Organising Hub of Eukaryotic Organisms. Bolanos-Garcia VM. Subcell Biochem 99 235-267 (2022)
  91. PP1 and PP2A Use Opposite Phospho-dependencies to Control Distinct Processes at the Kinetochore. Smith RJ, Cordeiro MH, Davey NE, Vallardi G, Ciliberto A, Gross F, Saurin AT. Cell Rep 28 2206-2219.e8 (2019)
  92. Role of Kinetochore Scaffold 1 (KNL1) in Tumorigenesis and Tumor Immune Microenvironment in Pan-Cancer: Bioinformatics Analyses and Validation of Expression. Ding Y, Wang K, Zhao S, Li Y, Qiu W, Zhu C, Wang Y, Dong C, Liu J, Lu Y, Qi W. Int J Gen Med 16 4883-4906 (2023)
  93. Signaling protein abundance modulates the strength of the spindle assembly checkpoint. Jema S, Chen C, Humphrey L, Karmarkar S, Ferrari F, Joglekar AP. Curr Biol 33 4505-4515.e4 (2023)
  94. Synergistic stabilization of microtubules by BUB-1, HCP-1, and CLS-2 controls microtubule pausing and meiotic spindle assembly. Macaisne N, Bellutti L, Laband K, Edwards F, Pitayu-Nugroho L, Gervais A, Ganeswaran T, Geoffroy H, Maton G, Canman JC, Lacroix B, Dumont J. Elife 12 e82579 (2023)
  95. The Bub1-TPR Domain Interacts Directly with Mad3 to Generate Robust Spindle Checkpoint Arrest. Leontiou I, London N, May KM, Ma Y, Grzesiak L, Medina-Pritchard B, Amin P, Jeyaprakash AA, Biggins S, Hardwick KG. Curr. Biol. 29 2407-2414.e7 (2019)
  96. The role of kinetochore dynein in checkpoint silencing is restricted to disassembly of the corona. Ide AH, DeLuca KF, Wiggan O, Markus SM, DeLuca JG. Mol Biol Cell 34 ar76 (2023)
  97. ULK1 phosphorylates Mad1 to regulate spindle assembly checkpoint. Yuan F, Jin X, Li D, Song Y, Zhang N, Yang X, Wang L, Zhu WG, Tian C, Zhao Y. Nucleic Acids Res. 47 8096-8110 (2019)
  98. Yeast Fin1-PP1 dephosphorylates an Ipl1 substrate, Ndc80, to remove Bub1-Bub3 checkpoint proteins from the kinetochore during anaphase. Bokros M, Sherwin D, Kabbaj MH, Wang Y. PLoS Genet 17 e1009592 (2021)