3uon Citations

Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist.

Abstract

The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

Reviews - 3uon mentioned but not cited (30)

  1. The Molecular Basis of G Protein-Coupled Receptor Activation. Weis WI, Kobilka BK. Annu Rev Biochem 87 897-919 (2018)
  2. The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen H, Wüthrich K. Nat Rev Drug Discov 12 25-34 (2013)
  3. Nanobodies to Study G Protein-Coupled Receptor Structure and Function. Manglik A, Kobilka BK, Steyaert J. Annu Rev Pharmacol Toxicol 57 19-37 (2017)
  4. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Caffrey M. Acta Crystallogr F Struct Biol Commun 71 3-18 (2015)
  5. G protein-coupled receptors: structure- and function-based drug discovery. Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. Signal Transduct Target Ther 6 7 (2021)
  6. Structural Basis for G Protein-Coupled Receptor Activation. Manglik A, Kruse AC. Biochemistry 56 5628-5634 (2017)
  7. What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands? Michino M, Beuming T, Donthamsetti P, Newman AH, Javitch JA, Shi L. Pharmacol Rev 67 198-213 (2015)
  8. The recombinant expression systems for structure determination of eukaryotic membrane proteins. He Y, Wang K, Yan N. Protein Cell 5 658-672 (2014)
  9. New insights for drug design from the X-ray crystallographic structures of G-protein-coupled receptors. Jacobson KA, Costanzi S. Mol Pharmacol 82 361-371 (2012)
  10. Structural Studies of G Protein-Coupled Receptors. Zhang D, Zhao Q, Wu B. Mol Cells 38 836-842 (2015)
  11. G Protein-Coupled Receptors (GPCRs) in Alzheimer's Disease: A Focus on BACE1 Related GPCRs. Zhao J, Deng Y, Jiang Z, Qing H. Front Aging Neurosci 8 58 (2016)
  12. Opioid receptors: Structural and mechanistic insights into pharmacology and signaling. Shang Y, Filizola M. Eur J Pharmacol 763 206-213 (2015)
  13. G Protein-Coupled Receptors in Asthma Therapy: Pharmacology and Drug Action. Wendell SG, Fan H, Zhang C. Pharmacol Rev 72 1-49 (2020)
  14. Insights into the molecular evolution of oxytocin receptor ligand binding. Koehbach J, Stockner T, Bergmayr C, Muttenthaler M, Gruber CW. Biochem Soc Trans 41 197-204 (2013)
  15. Identifying ligands at orphan GPCRs: current status using structure-based approaches. Ngo T, Kufareva I, Coleman JLj, Graham RM, Abagyan R, Smith NJ. Br J Pharmacol 173 2934-2951 (2016)
  16. From atomic structures to neuronal functions of g protein-coupled receptors. Palczewski K, Orban T. Annu Rev Neurosci 36 139-164 (2013)
  17. Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P, Krause G. Front Endocrinol (Lausanne) 8 86 (2017)
  18. New paradigms in adenosine receptor pharmacology: allostery, oligomerization and biased agonism. Vecchio EA, Baltos JA, Nguyen ATN, Christopoulos A, White PJ, May LT. Br J Pharmacol 175 4036-4046 (2018)
  19. Receptor-Arrestin Interactions: The GPCR Perspective. Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Biomolecules 11 218 (2021)
  20. Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs. Lee SM, Booe JM, Pioszak AA. Eur J Pharmacol 763 196-205 (2015)
  21. Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes. Tesmer JJ. Nat Rev Mol Cell Biol 17 439-450 (2016)
  22. G-protein-coupled receptor-based sensors for imaging neurochemicals with high sensitivity and specificity. Jing M, Zhang Y, Wang H, Li Y. J Neurochem 151 279-288 (2019)
  23. Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. Burger WAC, Sexton PM, Christopoulos A, Thal DM. J Gen Physiol 150 1360-1372 (2018)
  24. Structural basis of GPCR coupling to distinct signal transducers: implications for biased signaling. Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Trends Biochem Sci 47 570-581 (2022)
  25. Modeling of mammalian olfactory receptors and docking of odorants. Launay G, Sanz G, Pajot-Augy E, Gibrat JF. Biophys Rev 4 255-269 (2012)
  26. Molecular Modeling of Histamine Receptors-Recent Advances in Drug Discovery. Mehta P, Miszta P, Filipek S. Molecules 26 1778 (2021)
  27. Structural approaches to understanding retinal proteins needed for vision. Orban T, Jastrzebska B, Palczewski K. Curr Opin Cell Biol 27 32-43 (2014)
  28. Recent Trends and Applications of Molecular Modeling in GPCR⁻Ligand Recognition and Structure-Based Drug Design. Yuan X, Xu Y. Int J Mol Sci 19 E2105 (2018)
  29. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. Signal Transduct Target Ther 8 177 (2023)
  30. Mind the Gap-Deciphering GPCR Pharmacology Using 3D Pharmacophores and Artificial Intelligence. Noonan T, Denzinger K, Talagayev V, Chen Y, Puls K, Wolf CA, Liu S, Nguyen TN, Wolber G. Pharmaceuticals (Basel) 15 1304 (2022)

Articles - 3uon mentioned but not cited (134)

  1. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hübner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK. Nature 504 101-106 (2013)
  2. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T. Nature 482 547-551 (2012)
  3. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC. Science 344 58-64 (2014)
  4. Structure of the human smoothened receptor bound to an antitumour agent. Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC. Nature 497 338-343 (2013)
  5. Structure of the human glucagon class B G-protein-coupled receptor. Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang MW, Stevens RC. Nature 499 444-449 (2013)
  6. Crystal structures of agonist-bound human cannabinoid receptor CB1. Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho JH, Han GW, Ding K, Li X, Liu H, Hanson MA, Zhao S, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ. Nature 547 468-471 (2017)
  7. Common activation mechanism of class A GPCRs. Zhou Q, Yang D, Wu M, Guo Y, Guo W, Zhong L, Cai X, Dai A, Jang W, Shakhnovich EI, Liu ZJ, Stevens RC, Lambert NA, Babu MM, Wang MW, Zhao S. Elife 8 e50279 (2019)
  8. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL. Nature 555 269-273 (2018)
  9. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC, Bures MG, Evans DA, Weis WI, Bachhawat P, Kobilka TS, Sexton PM, Kobilka BK, Christopoulos A. Nature 531 335-340 (2016)
  10. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. DeVree BT, Mahoney JP, Vélez-Ruiz GA, Rasmussen SG, Kuszak AJ, Edwald E, Fung JJ, Manglik A, Masureel M, Du Y, Matt RA, Pardon E, Steyaert J, Kobilka BK, Sunahara RK. Nature 535 182-186 (2016)
  11. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, Balaji S, Bouvier M, Veprintsev DB, Tate CG, Schertler GF, Babu MM. Nature 536 484-487 (2016)
  12. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Zheng Y, Qin L, Zacarías NV, de Vries H, Han GW, Gustavsson M, Dabros M, Zhao C, Cherney RJ, Carter P, Stamos D, Abagyan R, Cherezov V, Stevens RC, IJzerman AP, Heitman LH, Tebben A, Kufareva I, Handel TM. Nature 540 458-461 (2016)
  13. Activation and dynamic network of the M2 muscarinic receptor. Miao Y, Nichols SE, Gasper PM, Metzger VT, McCammon JA. Proc Natl Acad Sci U S A 110 10982-10987 (2013)
  14. A new era of GPCR structural and chemical biology. Granier S, Kobilka B. Nat Chem Biol 8 670-673 (2012)
  15. Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Foster SR, Hauser AS, Vedel L, Strachan RT, Huang XP, Gavin AC, Shah SD, Nayak AP, Haugaard-Kedström LM, Penn RB, Roth BL, Bräuner-Osborne H, Gloriam DE. Cell 179 895-908.e21 (2019)
  16. Structural Basis of Smoothened Activation in Hedgehog Signaling. Huang P, Zheng S, Wierbowski BM, Kim Y, Nedelcu D, Aravena L, Liu J, Kruse AC, Salic A. Cell 174 312-324.e16 (2018)
  17. Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled Receptor Crystallogenesis. Thorsen TS, Matt R, Weis WI, Kobilka BK. Structure 22 1657-1664 (2014)
  18. Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor. Miao Y, McCammon JA. Proc Natl Acad Sci U S A 113 12162-12167 (2016)
  19. Differences in allosteric communication pipelines in the inactive and active states of a GPCR. Bhattacharya S, Vaidehi N. Biophys J 107 422-434 (2014)
  20. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. Miao Y, McCammon JA. Proc Natl Acad Sci U S A 115 3036-3041 (2018)
  21. Allosteric effects of sodium ion binding on activation of the m3 muscarinic g-protein-coupled receptor. Miao Y, Caliman AD, McCammon JA. Biophys J 108 1796-1806 (2015)
  22. Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Caffrey M, Li D, Dukkipati A. Biochemistry 51 6266-6288 (2012)
  23. Modeling, molecular dynamics simulation, and mutation validation for structure of cannabinoid receptor 2 based on known crystal structures of GPCRs. Feng Z, Alqarni MH, Yang P, Tong Q, Chowdhury A, Wang L, Xie XQ. J Chem Inf Model 54 2483-2499 (2014)
  24. Intracellular Transfer of Na+ in an Active-State G-Protein-Coupled Receptor. Vickery ON, Carvalheda CA, Zaidi SA, Pisliakov AV, Katritch V, Zachariae U. Structure 26 171-180.e2 (2018)
  25. Structures of metabotropic GABAB receptor. Papasergi-Scott MM, Robertson MJ, Seven AB, Panova O, Mathiesen JM, Skiniotis G. Nature 584 310-314 (2020)
  26. Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics. Miao Y, Nichols SE, McCammon JA. Phys Chem Chem Phys 16 6398-6406 (2014)
  27. GOMoDo: A GPCRs online modeling and docking webserver. Sandal M, Duy TP, Cona M, Zung H, Carloni P, Musiani F, Giorgetti A. PLoS One 8 e74092 (2013)
  28. Structural and functional characterization of G protein-coupled receptors with deep mutational scanning. Jones EM, Lubock NB, Venkatakrishnan AJ, Wang J, Tseng AM, Paggi JM, Latorraca NR, Cancilla D, Satyadi M, Davis JE, Babu MM, Dror RO, Kosuri S. Elife 9 e54895 (2020)
  29. A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design. Kooistra AJ, Kuhne S, de Esch IJ, Leurs R, de Graaf C. Br J Pharmacol 170 101-126 (2013)
  30. Structural insights into the subtype-selective antagonist binding to the M2 muscarinic receptor. Suno R, Lee S, Maeda S, Yasuda S, Yamashita K, Hirata K, Horita S, Tawaramoto MS, Tsujimoto H, Murata T, Kinoshita M, Yamamoto M, Kobilka BK, Vaidehi N, Iwata S, Kobayashi T. Nat Chem Biol 14 1150-1158 (2018)
  31. Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists. Liu H, Hofmann J, Fish I, Schaake B, Eitel K, Bartuschat A, Kaindl J, Rampp H, Banerjee A, Hübner H, Clark MJ, Vincent SG, Fisher JT, Heinrich MR, Hirata K, Liu X, Sunahara RK, Shoichet BK, Kobilka BK, Gmeiner P. Proc Natl Acad Sci U S A 115 12046-12050 (2018)
  32. Mechanistic insights into allosteric structure-function relationships at the M1 muscarinic acetylcholine receptor. Abdul-Ridha A, Lane JR, Mistry SN, López L, Sexton PM, Scammells PJ, Christopoulos A, Canals M. J Biol Chem 289 33701-33711 (2014)
  33. Structural Mechanisms of Voltage Sensing in G Protein-Coupled Receptors. Vickery ON, Machtens JP, Tamburrino G, Seeliger D, Zachariae U. Structure 24 997-1007 (2016)
  34. Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor. Abdul-Ridha A, López L, Keov P, Thal DM, Mistry SN, Sexton PM, Lane JR, Canals M, Christopoulos A. J Biol Chem 289 6067-6079 (2014)
  35. Structure-based discovery of selective positive allosteric modulators of antagonists for the M2 muscarinic acetylcholine receptor. Korczynska M, Clark MJ, Valant C, Xu J, Moo EV, Albold S, Weiss DR, Torosyan H, Huang W, Kruse AC, Lyda BR, May LT, Baltos JA, Sexton PM, Kobilka BK, Christopoulos A, Shoichet BK, Sunahara RK. Proc Natl Acad Sci U S A 115 E2419-E2428 (2018)
  36. β2-Adrenergic Receptor Conformational Response to Fusion Protein in the Third Intracellular Loop. Eddy MT, Didenko T, Stevens RC, Wüthrich K. Structure 24 2190-2197 (2016)
  37. G protein-coupled receptors: the evolution of structural insight. Gacasan SB, Baker DL, Parrill AL. AIMS Biophys 4 491-527 (2017)
  38. Mapping of allosteric druggable sites in activation-associated conformers of the M2 muscarinic receptor. Miao Y, Nichols SE, McCammon JA. Chem Biol Drug Des 83 237-246 (2014)
  39. Responsiveness of G protein-coupled odorant receptors is partially attributed to the activation mechanism. Yu Y, de March CA, Ni MJ, Adipietro KA, Golebiowski J, Matsunami H, Ma M. Proc Natl Acad Sci U S A 112 14966-14971 (2015)
  40. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor. Bock A, Bermudez M, Krebs F, Matera C, Chirinda B, Sydow D, Dallanoce C, Holzgrabe U, De Amici M, Lohse MJ, Wolber G, Mohr K. J Biol Chem 291 16375-16389 (2016)
  41. Sequence, structure and ligand binding evolution of rhodopsin-like G protein-coupled receptors: a crystal structure-based phylogenetic analysis. Wolf S, Grünewald S. PLoS One 10 e0123533 (2015)
  42. Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic GPCRs. Hollingsworth SA, Kelly B, Valant C, Michaelis JA, Mastromihalis O, Thompson G, Venkatakrishnan AJ, Hertig S, Scammells PJ, Sexton PM, Felder CC, Christopoulos A, Dror RO. Nat Commun 10 3289 (2019)
  43. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). MacKerell AD, Jo S, Lakkaraju SK, Lind C, Yu W. Biochim Biophys Acta Gen Subj 1864 129519 (2020)
  44. Assessment and challenges of ligand docking into comparative models of G-protein coupled receptors. Nguyen ED, Norn C, Frimurer TM, Meiler J. PLoS One 8 e67302 (2013)
  45. Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist. Yin W, Zhou XE, Yang D, de Waal PW, Wang M, Dai A, Cai X, Huang CY, Liu P, Wang X, Yin Y, Liu B, Zhou Y, Wang J, Liu H, Caffrey M, Melcher K, Xu Y, Wang MW, Xu HE, Jiang Y. Cell Discov 4 12 (2018)
  46. Quantifying conformational changes in GPCRs: glimpse of a common functional mechanism. Dalton JA, Lans I, Giraldo J. BMC Bioinformatics 16 124 (2015)
  47. Alpha-bulges in G protein-coupled receptors. van der Kant R, Vriend G. Int J Mol Sci 15 7841-7864 (2014)
  48. Exploring a new ligand binding site of G protein-coupled receptors. Chan HCS, Wang J, Palczewski K, Filipek S, Vogel H, Liu ZJ, Yuan S. Chem Sci 9 6480-6489 (2018)
  49. Olfactory receptor 10J5 responding to α-cedrene regulates hepatic steatosis via the cAMP-PKA pathway. Tong T, Ryu SE, Min Y, de March CA, Bushdid C, Golebiowski J, Moon C, Park T. Sci Rep 7 9471 (2017)
  50. Computational design of ligand-binding membrane receptors with high selectivity. Feng X, Ambia J, Chen KM, Young M, Barth P. Nat Chem Biol 13 715-723 (2017)
  51. Performance of virtual screening against GPCR homology models: Impact of template selection and treatment of binding site plasticity. Jaiteh M, Rodríguez-Espigares I, Selent J, Carlsson J. PLoS Comput Biol 16 e1007680 (2020)
  52. Structure and selectivity engineering of the M1 muscarinic receptor toxin complex. Maeda S, Xu J, N Kadji FM, Clark MJ, Zhao J, Tsutsumi N, Aoki J, Sunahara RK, Inoue A, Garcia KC, Kobilka BK. Science 369 161-167 (2020)
  53. Free fatty acid receptors: structural models and elucidation of ligand binding interactions. Tikhonova IG, Poerio E. BMC Struct Biol 15 16 (2015)
  54. Structure prediction of the second extracellular loop in G-protein-coupled receptors. Kmiecik S, Jamroz M, Kolinski M. Biophys J 106 2408-2416 (2014)
  55. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Fierro F, Suku E, Alfonso-Prieto M, Giorgetti A, Cichon S, Carloni P. Front Mol Biosci 4 63 (2017)
  56. Membrane environment imposes unique selection pressures on transmembrane domains of G protein-coupled receptors. Spielman SJ, Wilke CO. J Mol Evol 76 172-182 (2013)
  57. Conopeptide ρ-TIA defines a new allosteric site on the extracellular surface of the α1B-adrenoceptor. Ragnarsson L, Wang CI, Andersson Å, Fajarningsih D, Monks T, Brust A, Rosengren KJ, Lewis RJ. J Biol Chem 288 1814-1827 (2013)
  58. Conserved Mechanism of Conformational Stability and Dynamics in G-Protein-Coupled Receptors. Bhattacharya S, Salomon-Ferrer R, Lee S, Vaidehi N. J Chem Theory Comput 12 5575-5584 (2016)
  59. GPCR-SSFE 2.0-a fragment-based molecular modeling web tool for Class A G-protein coupled receptors. Worth CL, Kreuchwig F, Tiemann JKS, Kreuchwig A, Ritschel M, Kleinau G, Hildebrand PW, Krause G. Nucleic Acids Res 45 W408-W415 (2017)
  60. A spatial simulation approach to account for protein structure when identifying non-random somatic mutations. Ryslik GA, Cheng Y, Cheung KH, Bjornson RD, Zelterman D, Modis Y, Zhao H. BMC Bioinformatics 15 231 (2014)
  61. Heterogeneous Dielectric Implicit Membrane Model for the Calculation of MMPBSA Binding Free Energies. Greene D, Qi R, Nguyen R, Qiu T, Luo R. J Chem Inf Model 59 3041-3056 (2019)
  62. Ligand binding modes from low resolution GPCR models and mutagenesis: chicken bitter taste receptor as a test-case. Di Pizio A, Kruetzfeldt LM, Cheled-Shoval S, Meyerhof W, Behrens M, Niv MY. Sci Rep 7 8223 (2017)
  63. Pancreatic polypeptide is recognized by two hydrophobic domains of the human Y4 receptor binding pocket. Pedragosa-Badia X, Sliwoski GR, Dong Nguyen E, Lindner D, Stichel J, Kaufmann KW, Meiler J, Beck-Sickinger AG. J Biol Chem 289 5846-5859 (2014)
  64. Structural basis for constitutive activity and agonist-induced activation of the enteroendocrine fat sensor GPR119. Engelstoft MS, Norn C, Hauge M, Holliday ND, Elster L, Lehmann J, Jones RM, Frimurer TM, Schwartz TW. Br J Pharmacol 171 5774-5789 (2014)
  65. Chemogenomics knowledgebase and systems pharmacology for hallucinogen target identification-Salvinorin A as a case study. Xu X, Ma S, Feng Z, Hu G, Wang L, Xie XQ. J Mol Graph Model 70 284-295 (2016)
  66. Identification of C-terminal phosphorylation sites of N-formyl peptide receptor-1 (FPR1) in human blood neutrophils. Maaty WS, Lord CI, Gripentrog JM, Riesselman M, Keren-Aviram G, Liu T, Dratz EA, Bothner B, Jesaitis AJ. J Biol Chem 288 27042-27058 (2013)
  67. Structure and activation of the TSH receptor transmembrane domain. Núñez Miguel R, Sanders J, Furmaniak J, Smith BR. Auto Immun Highlights 8 2 (2017)
  68. G Protein-Coupled Receptors Contain Two Conserved Packing Clusters. Sanchez-Reyes OB, Cooke ALG, Tranter DB, Rashid D, Eilers M, Reeves PJ, Smith SO. Biophys J 112 2315-2326 (2017)
  69. On homology modeling of the M₂ muscarinic acetylcholine receptor subtype. Jakubík J, Randáková A, Doležal V. J Comput Aided Mol Des 27 525-538 (2013)
  70. Allosteric modulation in monomers and oligomers of a G protein-coupled receptor. Shivnaraine RV, Kelly B, Sankar KS, Redka DS, Han YR, Huang F, Elmslie G, Pinto D, Li Y, Rocheleau JV, Gradinaru CC, Ellis J, Wells JW. Elife 5 e11685 (2016)
  71. Flexibility and extracellular opening determine the interaction between ligands and insect sulfakinin receptors. Yu N, Zotti MJ, Scheys F, Braz AS, Penna PH, Nachman RJ, Smagghe G. Sci Rep 5 12627 (2015)
  72. In silico modeling of human α2C-adrenoreceptor interaction with filamin-2. Pawlowski M, Saraswathi S, Motawea HK, Chotani MA, Kloczkowski A. PLoS One 9 e103099 (2014)
  73. Rearrangement of the Extracellular Domain/Extracellular Loop 1 Interface Is Critical for Thyrotropin Receptor Activation. Schaarschmidt J, Nagel MBM, Huth S, Jaeschke H, Moretti R, Hintze V, von Bergen M, Kalkhof S, Meiler J, Paschke R. J Biol Chem 291 14095-14108 (2016)
  74. The Model Structures of the Complement Component 5a Receptor (C5aR) Bound to the Native and Engineered hC5a. Sahoo AR, Mishra R, Rana S. Sci Rep 8 2955 (2018)
  75. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors. Jakubík J, Randáková A, Zimčík P, El-Fakahany EE, Doležal V. Sci Rep 7 40381 (2017)
  76. Determining the molecular basis of voltage sensitivity in membrane proteins. Kasimova MA, Lindahl E, Delemotte L. J Gen Physiol 150 1444-1458 (2018)
  77. The ligand-bound state of a G protein-coupled receptor stabilizes the interaction of functional cholesterol molecules. Lemel L, Nieścierowicz K, García-Fernández MD, Darré L, Durroux T, Busnelli M, Pezet M, Rébeillé F, Jouhet J, Mouillac B, Domene C, Chini B, Cherezov V, Moreau CJ. J Lipid Res 62 100059 (2021)
  78. Coevolutionary data-based interaction networks approach highlighting key residues across protein families: The case of the G-protein coupled receptors. Baldessari F, Capelli R, Carloni P, Giorgetti A. Comput Struct Biotechnol J 18 1153-1159 (2020)
  79. In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson's Disease. Lemos A, Melo R, Preto AJ, Almeida JG, Moreira IS, Dias Soeiro Cordeiro MN. Curr Neuropharmacol 16 786-848 (2018)
  80. Multiple conformational states in retrospective virtual screening - homology models vs. crystal structures: beta-2 adrenergic receptor case study. Mordalski S, Witek J, Smusz S, Rataj K, Bojarski AJ. J Cheminform 7 13 (2015)
  81. Repositioning Dequalinium as Potent Muscarinic Allosteric Ligand by Combining Virtual Screening Campaigns and Experimental Binding Assays. Mazzolari A, Gervasoni S, Pedretti A, Fumagalli L, Matucci R, Vistoli G. Int J Mol Sci 21 E5961 (2020)
  82. Antinociceptive Effect of the Essential Oil from Croton conduplicatus Kunth (Euphorbiaceae). de Oliveira Júnior RG, Ferraz CAA, Silva JC, de Oliveira AP, Diniz TC, E Silva MG, Quintans Júnior LJ, de Souza AVV, Dos Santos US, Turatti ICC, Lopes NP, Lorenzo VP, Almeida JRGDS. Molecules 22 E900 (2017)
  83. GPCR large-amplitude dynamics by 19F-NMR of aprepitant bound to the neurokinin 1 receptor. Pan B, Liu D, Yang L, Wüthrich K. Proc Natl Acad Sci U S A 119 e2122682119 (2022)
  84. Identification and pharmacological profile of SPP1, a potent, functionally selective and brain penetrant agonist at muscarinic M1 receptors. Broad LM, Sanger HE, Mogg AJ, Colvin EM, Zwart R, Evans DA, Pasqui F, Sher E, Wishart GN, Barth VN, Felder CC, Goldsmith PJ. Br J Pharmacol 176 110-126 (2019)
  85. Improving prediction of helix-helix packing in membrane proteins using predicted contact numbers as restraints. Li B, Mendenhall J, Nguyen ED, Weiner BE, Fischer AW, Meiler J. Proteins 85 1212-1221 (2017)
  86. Molecular Affinity of Mabolo Extracts to an Octopamine Receptor of a Fruit Fly. Dacanay FND, Ladra MCJA, Junio HA, Nellas RB. Molecules 22 E1677 (2017)
  87. Structure-Based Design and Discovery of New M2 Receptor Agonists. Fish I, Stößel A, Eitel K, Valant C, Albold S, Huebner H, Möller D, Clark MJ, Sunahara RK, Christopoulos A, Shoichet BK, Gmeiner P. J Med Chem 60 9239-9250 (2017)
  88. The structural study of mutation-induced inactivation of human muscarinic receptor M4. Wang J, Wu M, Wu L, Xu Y, Li F, Wu Y, Popov P, Wang L, Bai F, Zhao S, Liu ZJ, Hua T. IUCrJ 7 294-305 (2020)
  89. A benchmark study of loop modeling methods applied to G protein-coupled receptors. Wink LH, Baker DL, Cole JA, Parrill AL. J Comput Aided Mol Des 33 573-595 (2019)
  90. A computational drug-target network for yuanhu zhitong prescription. Xu H, Tao Y, Lu P, Wang P, Zhang F, Yuan Y, Wang S, Xiao X, Yang H, Huang L. Evid Based Complement Alternat Med 2013 658531 (2013)
  91. Characterizing Interhelical Interactions of G-Protein Coupled Receptors with the Fragment Molecular Orbital Method. Heifetz A, Morao I, Babu MM, James T, Southey MWY, Fedorov DG, Aldeghi M, Bodkin MJ, Townsend-Nicholson A. J Chem Theory Comput 16 2814-2824 (2020)
  92. Dynamical Correlations Reveal Allosteric Sites in G Protein-Coupled Receptors. Renault P, Giraldo J. Int J Mol Sci 22 E187 (2020)
  93. G protein-coupled receptors of class A harness the energy of membrane potential to increase their sensitivity and selectivity. Shalaeva DN, Cherepanov DA, Galperin MY, Vriend G, Mulkidjanian AY. Biochim Biophys Acta Biomembr 1861 183051 (2019)
  94. Improving virtual screening of G protein-coupled receptors via ligand-directed modeling. Coudrat T, Simms J, Christopoulos A, Wootten D, Sexton PM. PLoS Comput Biol 13 e1005819 (2017)
  95. Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands. Schaller D, Hagenow S, Stark H, Wolber G. PLoS One 14 e0218820 (2019)
  96. Novel M2 -selective, Gi -biased agonists of muscarinic acetylcholine receptors. Randáková A, Nelic D, Ungerová D, Nwokoye P, Su Q, Doležal V, El-Fakahany EE, Boulos J, Jakubík J. Br J Pharmacol 177 2073-2089 (2020)
  97. Spiro[pyrrolidine-3,3'-oxindoles] and Their Indoline Analogues as New 5-HT6 Receptor Chemotypes. Kelemen ÁA, Satala G, Bojarski AJ, Keserű GM. Molecules 22 E2221 (2017)
  98. Systems Pharmacological Approach to Investigate the Mechanism of Ohwia caudata for Application to Alzheimer's Disease. Sun YW, Wang Y, Guo ZF, Du KC, Meng DL. Molecules 24 E1499 (2019)
  99. Conformational and Thermodynamic Landscape of GPCR Activation from Theory and Computation. Dong SS, Goddard WA, Abrol R. Biophys J 110 2618-2629 (2016)
  100. Effects of asparagine mutagenesis of conserved aspartic acids in helix 2 (D2.50) and 3 (D3.32) of M1-M4 muscarinic receptors on the irreversible binding of nitrogen mustard analogs of acetylcholine and McN-A-343. Suga H, Ehlert FJ. Biochemistry 52 4914-4928 (2013)
  101. Influence of the Structural Accuracy of Homology Models on Their Applicability to Docking-Based Virtual Screening: The β2 Adrenergic Receptor as a Case Study. Costanzi S, Cohen A, Danfora A, Dolatmoradi M. J Chem Inf Model 59 3177-3190 (2019)
  102. Quantitative surface field analysis: learning causal models to predict ligand binding affinity and pose. Cleves AE, Jain AN. J Comput Aided Mol Des 32 731-757 (2018)
  103. Signaling-Biased and Constitutively Active Dopamine D2 Receptor Variant. Rodriguez-Contreras D, Condon AF, Buck DC, Asad N, Dore TM, Verbeek DS, Tijssen MAJ, Shinde U, Williams JT, Neve KA. ACS Chem Neurosci 12 1873-1884 (2021)
  104. Structural Characterization of an LPA1 Second Extracellular Loop Mimetic with a Self-Assembling Coiled-Coil Folding Constraint. Young JK, Clayton BT, Kikonyogo A, Pham TC, Parrill AL. Int J Mol Sci 14 2788-2807 (2013)
  105. Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Xu J, Wang Q, Hübner H, Hu Y, Niu X, Wang H, Maeda S, Inoue A, Tao Y, Gmeiner P, Du Y, Jin C, Kobilka BK. Nat Commun 14 376 (2023)
  106. Structure of the first sphingosine 1-phosphate receptor. Parrill AL, Lima S, Spiegel S. Sci Signal 5 pe23 (2012)
  107. 7×7 RMSD matrix: A new method for quantitative comparison of the transmembrane domain structures in the G-protein coupled receptors. Wang T, Wang Y, Tang L, Duan Y, Liu H. J Struct Biol 199 87-101 (2017)
  108. Binding site identification of G protein-coupled receptors through a 3D Zernike polynomials-based method: application to C. elegans olfactory receptors. Di Rienzo L, De Flaviis L, Ruocco G, Folli V, Milanetti E. J Comput Aided Mol Des 36 11-24 (2022)
  109. Discovery of Potential, Dual-Active Histamine H3 Receptor Ligands with Combined Antioxidant Properties. Kuder KJ, Kotańska M, Szczepańska K, Mika K, Reiner-Link D, Stark H, Kieć-Kononowicz K. Molecules 26 2300 (2021)
  110. Drug Repurposing on G Protein-Coupled Receptors Using a Computational Profiling Approach. de Felice A, Aureli S, Limongelli V. Front Mol Biosci 8 673053 (2021)
  111. Ligand Docking Methods to Recognize Allosteric Inhibitors for G-Protein-Coupled Receptors. Harini K, Jayashree S, Tiwari V, Vishwanath S, Sowdhamini R. Bioinform Biol Insights 15 11779322211037769 (2021)
  112. Motions around conserved helical weak spots facilitate GPCR activation. Bibbe JM, Vriend G. Proteins 89 1577-1586 (2021)
  113. Structural and Functional Effect of an Oscillating Electric Field on the Dopamine-D3 Receptor: A Molecular Dynamics Simulation Study. Fallah Z, Jamali Y, Rafii-Tabar H. PLoS One 11 e0166412 (2016)
  114. Structural basis of efficacy-driven ligand selectivity at GPCRs. Powers AS, Pham V, Burger WAC, Thompson G, Laloudakis Y, Barnes NW, Sexton PM, Paul SM, Christopoulos A, Thal DM, Felder CC, Valant C, Dror RO. Nat Chem Biol 19 805-814 (2023)
  115. The Recognition of Unrelated Ligands by Identical Proteins. Pottel J, Levit A, Korczynska M, Fischer M, Shoichet BK. ACS Chem Biol 13 2522-2533 (2018)
  116. Apo2ph4: A Versatile Workflow for the Generation of Receptor-based Pharmacophore Models for Virtual Screening. Heider J, Kilian J, Garifulina A, Hering S, Langer T, Seidel T. J Chem Inf Model 63 101-110 (2023)
  117. Benzophenone Derivatives with Histamine H3 Receptor Affinity and Cholinesterase Inhibitory Potency as Multitarget-Directed Ligands for Possible Therapy of Alzheimer's Disease. Godyń J, Zaręba P, Stary D, Kaleta M, Kuder KJ, Latacz G, Mogilski S, Reiner-Link D, Frank A, Doroz-Płonka A, Olejarz-Maciej A, Sudoł-Tałaj S, Nolte T, Handzlik J, Stark H, Więckowska A, Malawska B, Kieć-Kononowicz K, Łażewska D, Bajda M. Molecules 28 238 (2022)
  118. Evolutionary association of receptor-wide amino acids with G protein-coupling selectivity in aminergic GPCRs. Selçuk B, Erol I, Durdağı S, Adebali O. Life Sci Alliance 5 e202201439 (2022)
  119. Extracellular loop 2 of G protein-coupled olfactory receptors is critical for odorant recognition. Yu Y, Ma Z, Pacalon J, Xu L, Li W, Belloir C, Topin J, Briand L, Golebiowski J, Cong X. J Biol Chem 298 102331 (2022)
  120. In silico prediction of ARB resistance: A first step in creating personalized ARB therapy. Anderson SD, Tabassum A, Yeon JK, Sharma G, Santos P, Soong TH, Thu YW, Nies I, Kurita T, Chandler A, Alsamarah A, Kanassatega RS, Luo YL, Botello-Smith WM, Andresen BT. PLoS Comput Biol 16 e1007719 (2020)
  121. The Active Compounds of Yixin Ningshen Tablet and Their Potential Action Mechanism in Treating Coronary Heart Disease- A Network Pharmacology and Proteomics Approach. Lv X, Wang H, Wu R, Shen X, Ye G. Evid Based Complement Alternat Med 2020 4912395 (2020)
  122. Three-dimensional descriptors for aminergic GPCRs: dependence on docking conformation and crystal structure. Jastrzębski S, Sieradzki I, Leśniak D, Tabor J, Bojarski AJ, Podlewska S. Mol Divers 23 603-613 (2019)
  123. Transmembrane Domain 3 Is a Transplantable Pharmacophore in the Photodynamic Activation of Cholecystokinin 1 Receptor. Li Y, Cui ZJ. ACS Pharmacol Transl Sci 5 539-547 (2022)
  124. Unifying view of mechanical and functional hotspots across class A GPCRs. Ponzoni L, Rossetti G, Maggi L, Giorgetti A, Carloni P, Micheletti C. PLoS Comput Biol 13 e1005381 (2017)
  125. 3DDPDs: describing protein dynamics for proteochemometric bioactivity prediction. A case for (mutant) G protein-coupled receptors. Gorostiola González M, van den Broek RL, Braun TGM, Chatzopoulou M, Jespers W, IJzerman AP, Heitman LH, van Westen GJP. J Cheminform 15 74 (2023)
  126. Allostery of atypical modulators at oligomeric G protein-coupled receptors. Shivnaraine RV, Kelly B, Elmslie G, Huang XP, Dong YJ, Seidenberg M, Wells JW, Ellis J. Sci Rep 11 9265 (2021)
  127. An Assay on the Possible Effect of Essential Oil Constituents on Receptors Involved in Women's Hormonal Health and Reproductive System Diseases. Sakhteman A, Pasdaran A, Afifi M, Hamedi A. J Evid Based Integr Med 25 2515690X20932527 (2020)
  128. Antispasmodic Effect of Valeriana pilosa Root Essential Oil and Potential Mechanisms of Action: Ex Vivo and In Silico Studies. Ybañez-Julca RO, Pino-Ríos R, Quispe-Díaz IM, Asunción-Alvarez D, Acuña-Tarrillo EE, Mantilla-Rodríguez E, Minchan-Herrera P, Catalán MA, Zevallos-Escobar L, Vásquez-Corales E, Yáñez O, Gutiérrez-Alvarado WO, Benites J. Pharmaceutics 15 2072 (2023)
  129. Assessment of the transmembrane domain structures in GPCR Dock 2013 models. Wang T, Liu H, Duan Y. J Struct Biol 201 210-220 (2018)
  130. Effects of Icariin and Its Metabolites on GPCR Regulation and MK-801-Induced Schizophrenia-Like Behaviors in Mice. Seong SH, Kim SH, Ryu JH, Jeong JW, Jung HA, Choi JS. Molecules 28 7300 (2023)
  131. Modelface: an Application Programming Interface (API) for Homology Modeling Studies Using Modeller Software. Sakhteman A, Zare B. Iran J Pharm Res 15 801-807 (2016)
  132. Odorant Receptor OR2C1 Is an Essential Modulator of Boar Sperm Capacitation by Binding with Heparin. Yuan X, Wang Y, Ali MA, Qin Z, Guo Z, Zhang Y, Zhang M, Zhou G, Yang J, Chen L, Shen L, Zhu L, Zeng C. Int J Mol Sci 24 1664 (2023)
  133. Structural basis of α1A-adrenergic receptor activation and recognition by an extracellular nanobody. Toyoda Y, Zhu A, Kong F, Shan S, Zhao J, Wang N, Sun X, Zhang L, Yan C, Kobilka BK, Liu X. Nat Commun 14 3655 (2023)
  134. Subdiffusive-Brownian crossover in membrane proteins: a generalized Langevin equation-based approach. Di Cairano L, Stamm B, Calandrini V. Biophys J 120 4722-4737 (2021)


Reviews citing this publication (96)

  1. Molecular signatures of G-protein-coupled receptors. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM. Nature 494 185-194 (2013)
  2. Structure-function of the G protein-coupled receptor superfamily. Katritch V, Cherezov V, Stevens RC. Annu Rev Pharmacol Toxicol 53 531-556 (2013)
  3. Opioid receptors: distinct roles in mood disorders. Lutz PE, Kieffer BL. Trends Neurosci 36 195-206 (2013)
  4. Emerging paradigms in GPCR allostery: implications for drug discovery. Wootten D, Christopoulos A, Sexton PM. Nat Rev Drug Discov 12 630-644 (2013)
  5. Generic GPCR residue numbers - aligning topology maps while minding the gaps. Isberg V, de Graaf C, Bortolato A, Cherezov V, Katritch V, Marshall FH, Mordalski S, Pin JP, Stevens RC, Vriend G, Gloriam DE. Trends Pharmacol Sci 36 22-31 (2015)
  6. Muscarinic acetylcholine receptors: novel opportunities for drug development. Kruse AC, Kobilka BK, Gautam D, Sexton PM, Christopoulos A, Wess J. Nat Rev Drug Discov 13 549-560 (2014)
  7. Structure-based drug screening for G-protein-coupled receptors. Shoichet BK, Kobilka BK. Trends Pharmacol Sci 33 268-272 (2012)
  8. Restructuring G-protein- coupled receptor activation. Audet M, Bouvier M. Cell 151 14-23 (2012)
  9. Structure and function of serotonin G protein-coupled receptors. McCorvy JD, Roth BL. Pharmacol Ther 150 129-142 (2015)
  10. The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Manglik A, Kobilka B. Curr Opin Cell Biol 27 136-143 (2014)
  11. Unifying family A GPCR theories of activation. Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS. Pharmacol Ther 143 51-60 (2014)
  12. Methodological advances: the unsung heroes of the GPCR structural revolution. Ghosh E, Kumari P, Jaiman D, Shukla AK. Nat Rev Mol Cell Biol 16 69-81 (2015)
  13. Cation Diffusion Facilitator family: Structure and function. Kolaj-Robin O, Russell D, Hayes KA, Pembroke JT, Soulimane T. FEBS Lett 589 1283-1295 (2015)
  14. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Kukkonen JP. Am J Physiol Cell Physiol 304 C2-32 (2013)
  15. Advances in recombinant protein expression for use in pharmaceutical research. Assenberg R, Wan PT, Geisse S, Mayr LM. Curr Opin Struct Biol 23 393-402 (2013)
  16. Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor. Kappel K, Miao Y, McCammon JA. Q Rev Biophys 48 479-487 (2015)
  17. Cannabinoids and Cannabinoid Receptors: The Story so Far. Shahbazi F, Grandi V, Banerjee A, Trant JF. iScience 23 101301 (2020)
  18. An update on the physiological and therapeutic relevance of GPCR oligomers. Farran B. Pharmacol Res 117 303-327 (2017)
  19. G protein-coupled receptors--recent advances. Latek D, Modzelewska A, Trzaskowski B, Palczewski K, Filipek S. Acta Biochim Pol 59 515-529 (2012)
  20. G-protein coupled receptors: advances in simulation and drug discovery. Miao Y, McCammon JA. Curr Opin Struct Biol 41 83-89 (2016)
  21. Structural features of the G-protein/GPCR interactions. Moreira IS. Biochim Biophys Acta 1840 16-33 (2014)
  22. Molecular properties of muscarinic acetylcholine receptors. Haga T. Proc Jpn Acad Ser B Phys Biol Sci 89 226-256 (2013)
  23. Biased agonism at G protein-coupled receptors: the promise and the challenges--a medicinal chemistry perspective. Shonberg J, Lopez L, Scammells PJ, Christopoulos A, Capuano B, Lane JR. Med Res Rev 34 1286-1330 (2014)
  24. Ligand-receptor interaction platforms and their applications for drug discovery. Fang Y. Expert Opin Drug Discov 7 969-988 (2012)
  25. Targeting Muscarinic Acetylcholine Receptors for the Treatment of Psychiatric and Neurological Disorders. Moran SP, Maksymetz J, Conn PJ. Trends Pharmacol Sci 40 1006-1020 (2019)
  26. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. Biochim Biophys Acta 1838 15-33 (2014)
  27. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations. Hertig S, Latorraca NR, Dror RO. PLoS Comput Biol 12 e1004746 (2016)
  28. Structural determinants of arrestin functions. Gurevich VV, Gurevich EV. Prog Mol Biol Transl Sci 118 57-92 (2013)
  29. Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits. Davie BJ, Christopoulos A, Scammells PJ. ACS Chem Neurosci 4 1026-1048 (2013)
  30. GPCR crystal structures: Medicinal chemistry in the pocket. Shonberg J, Kling RC, Gmeiner P, Löber S. Bioorg Med Chem 23 3880-3906 (2015)
  31. Molecular alliance-from orthosteric and allosteric ligands to dualsteric/bitopic agonists at G protein coupled receptors. Mohr K, Schmitz J, Schrage R, Tränkle C, Holzgrabe U. Angew Chem Int Ed Engl 52 508-516 (2013)
  32. Understanding the common themes and diverse roles of the second extracellular loop (ECL2) of the GPCR super-family. Woolley MJ, Conner AC. Mol Cell Endocrinol 449 3-11 (2017)
  33. Allostery at opioid receptors: modulation with small molecule ligands. Livingston KE, Traynor JR. Br J Pharmacol 175 2846-2856 (2018)
  34. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Milić D, Veprintsev DB. Front Pharmacol 6 66 (2015)
  35. Emerging opportunities for allosteric modulation of G-protein coupled receptors. Wang CI, Lewis RJ. Biochem Pharmacol 85 153-162 (2013)
  36. Grand opening of structure-guided design for novel opioids. Filizola M, Devi LA. Trends Pharmacol Sci 34 6-12 (2013)
  37. An overview of biological macromolecule crystallization. Russo Krauss I, Merlino A, Vergara A, Sica F. Int J Mol Sci 14 11643-11691 (2013)
  38. Kinetics and mechanism of G protein-coupled receptor activation. Lohse MJ, Maiellaro I, Calebiro D. Curr Opin Cell Biol 27 87-93 (2014)
  39. Successful Strategies to Determine High-Resolution Structures of GPCRs. Xiang J, Chun E, Liu C, Jing L, Al-Sahouri Z, Zhu L, Liu W. Trends Pharmacol Sci 37 1055-1069 (2016)
  40. Relevance of rhodopsin studies for GPCR activation. Deupi X. Biochim Biophys Acta 1837 674-682 (2014)
  41. Structure-based and fragment-based GPCR drug discovery. Andrews SP, Brown GA, Christopher JA. ChemMedChem 9 256-275 (2014)
  42. Impact of helix irregularities on sequence alignment and homology modeling of G protein-coupled receptors. Gonzalez A, Cordomí A, Caltabiano G, Pardo L. Chembiochem 13 1393-1399 (2012)
  43. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins. Stivala CE, Benoit E, Aráoz R, Servent D, Novikov A, Molgó J, Zakarian A. Nat Prod Rep 32 411-435 (2015)
  44. A Molecular Pharmacologist's Guide to G Protein-Coupled Receptor Crystallography. Piscitelli CL, Kean J, de Graaf C, Deupi X. Mol Pharmacol 88 536-551 (2015)
  45. Endogenous lipid activated G protein-coupled receptors: emerging structural features from crystallography and molecular dynamics simulations. Hurst DP, Schmeisser M, Reggio PH. Chem Phys Lipids 169 46-56 (2013)
  46. Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Roth BL. Nat Struct Mol Biol 26 535-544 (2019)
  47. Compound activity prediction using models of binding pockets or ligand properties in 3D. Kufareva I, Chen YC, Ilatovskiy AV, Abagyan R. Curr Top Med Chem 12 1869-1882 (2012)
  48. Discovery of GPCR ligands for probing signal transduction pathways. Brogi S, Tafi A, Désaubry L, Nebigil CG. Front Pharmacol 5 255 (2014)
  49. G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Ding X, Zhao X, Watts A. Biochem J 450 443-457 (2013)
  50. Production of GPCR and GPCR complexes for structure determination. Maeda S, Schertler GF. Curr Opin Struct Biol 23 381-392 (2013)
  51. Minireview: Novel aspects of M3 muscarinic receptor signaling in pancreatic β-cells. Nakajima K, Jain S, Ruiz de Azua I, McMillin SM, Rossi M, Wess J. Mol Endocrinol 27 1208-1216 (2013)
  52. Functional and structural perspectives on allosteric modulation of GPCRs. Langmead CJ, Christopoulos A. Curr Opin Cell Biol 27 94-101 (2014)
  53. Structure and function of LGR5: an enigmatic G-protein coupled receptor marking stem cells. Kumar KK, Burgess AW, Gulbis JM. Protein Sci 23 551-565 (2014)
  54. Unlocking the secrets of the gatekeeper: methods for stabilizing and crystallizing GPCRs. Bertheleme N, Chae PS, Singh S, Mossakowska D, Hann MM, Smith KJ, Hubbard JA, Dowell SJ, Byrne B. Biochim Biophys Acta 1828 2583-2591 (2013)
  55. Gaussian accelerated molecular dynamics for elucidation of drug pathways. Bhattarai A, Miao Y. Expert Opin Drug Discov 13 1055-1065 (2018)
  56. Structural studies of G protein-coupled receptors. Lu M, Wu B. IUBMB Life 68 894-903 (2016)
  57. The role of metals in mammalian olfaction of low molecular weight organosulfur compounds. Block E, Batista VS, Matsunami H, Zhuang H, Ahmed L. Nat Prod Rep 34 529-557 (2017)
  58. Design of Next-Generation G Protein-Coupled Receptor Drugs: Linking Novel Pharmacology and In Vivo Animal Models. Bradley SJ, Tobin AB. Annu Rev Pharmacol Toxicol 56 535-559 (2016)
  59. GPCR activation: protonation and membrane potential. Zhang XC, Sun K, Zhang L, Li X, Cao C. Protein Cell 4 747-760 (2013)
  60. Novel insights into M3 muscarinic acetylcholine receptor physiology and structure. Kruse AC, Li J, Hu J, Kobilka BK, Wess J. J Mol Neurosci 53 316-323 (2014)
  61. Structure-function studies with G protein-coupled receptors as a paradigm for improving drug discovery and development of therapeutics. McNeely PM, Naranjo AN, Robinson AS. Biotechnol J 7 1451-1461 (2012)
  62. Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. van der Westhuizen ET, Choy KHC, Valant C, McKenzie-Nickson S, Bradley SJ, Tobin AB, Sexton PM, Christopoulos A. Front Pharmacol 11 606656 (2020)
  63. Allosteric modulation of G protein-coupled receptors by amiloride and its derivatives. Perspectives for drug discovery? Massink A, Amelia T, Karamychev A, IJzerman AP. Med Res Rev 40 683-708 (2020)
  64. Structural Variability in the RLR-MAVS Pathway and Sensitive Detection of Viral RNAs. Jiang QX. Med Chem 15 443-458 (2019)
  65. Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Schonenbach NS, Hussain S, O'Malley MA. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7 408-427 (2015)
  66. Sulfur-containing amino acids in 7TMRs: molecular gears for pharmacology and function. Cordomí A, Gómez-Tamayo JC, Gigoux V, Fourmy D. Trends Pharmacol Sci 34 320-331 (2013)
  67. Amino acid conservation and interactions in rhodopsin: probing receptor activation by NMR spectroscopy. Pope A, Eilers M, Reeves PJ, Smith SO. Biochim Biophys Acta 1837 683-693 (2014)
  68. Cardiac autonomic innervation. Jamali HK, Waqar F, Gerson MC. J Nucl Cardiol 24 1558-1570 (2017)
  69. Current Advances in Allosteric Modulation of Muscarinic Receptors. Jakubik J, El-Fakahany EE. Biomolecules 10 E325 (2020)
  70. Dualsteric GPCR targeting and functional selectivity: the paradigmatic M(2) muscarinic acetylcholine receptor. Bock A, Mohr K. Drug Discov Today Technol 10 e245-52 (2013)
  71. Structure-based studies of chemokine receptors. Zhu L, Zhao Q, Wu B. Curr Opin Struct Biol 23 539-546 (2013)
  72. [G protein-coupled receptors in the spotlight]. Lebon G, Tate CG. Med Sci (Paris) 28 876-882 (2012)
  73. Guidelines for the Synthesis of Small-Molecule Irreversible Probes Targeting G Protein-Coupled Receptors. Jörg M, Scammells PJ. ChemMedChem 11 1488-1498 (2016)
  74. Drug Design Targeting the Muscarinic Receptors and the Implications in Central Nervous System Disorders. Johnson CR, Kangas BD, Jutkiewicz EM, Bergman J, Coop A. Biomedicines 10 398 (2022)
  75. Identifying G protein-coupled receptor dimers from crystal packings. Stenkamp RE. Acta Crystallogr D Struct Biol 74 655-670 (2018)
  76. X-ray structural information of GPCRs in drug design: what are the limitations and where do we go? Topiol S. Expert Opin Drug Discov 8 607-620 (2013)
  77. Chemogenomics of allosteric binding sites in GPCRs. Gloriam DE. Drug Discov Today Technol 10 e307-13 (2013)
  78. The role of experimental and computational structural approaches in 7TM drug discovery. Topiol S, Sabio M. Expert Opin Drug Discov 10 1071-1084 (2015)
  79. Invited review: GPCR structural characterization: Using fragments as building blocks to determine a complete structure. Cohen LS, Fracchiolla KE, Becker J, Naider F. Biopolymers 102 223-243 (2014)
  80. Muscarinic receptor oligomerization. Marsango S, Ward RJ, Alvarez-Curto E, Milligan G. Neuropharmacology 136 401-410 (2018)
  81. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes. Dalet FG, Guadalupe TF, María Del Carmen CH, Humberto GA, Antonio SU. Neural Regen Res 8 2290-2302 (2013)
  82. Targeting the M1 muscarinic acetylcholine receptor in Alzheimer's disease. Dwomoh L, Tejeda GS, Tobin AB. Neuronal Signal 6 NS20210004 (2022)
  83. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Egyed A, Kiss DJ, Keserű GM. Front Pharmacol 13 847788 (2022)
  84. [G protein-coupled receptors: allosteric regulators of cell metabolism]. Galzi JL, Ilien B. Med Sci (Paris) 28 852-857 (2012)
  85. G Protein-Coupled Receptors Regulated by Membrane Potential. David D, Bentulila Z, Tauber M, Ben-Chaim Y. Int J Mol Sci 23 13988 (2022)
  86. Integration and Spatial Organization of Signaling by G Protein-Coupled Receptor Homo- and Heterodimers. Maggio R, Fasciani I, Carli M, Petragnano F, Marampon F, Rossi M, Scarselli M. Biomolecules 11 1828 (2021)
  87. Modulation of Muscarinic Signalling in the Central Nervous System by Steroid Hormones and Neurosteroids. Szczurowska E, Szánti-Pintér E, Chetverikov N, Randáková A, Kudová E, Jakubík J. Int J Mol Sci 24 507 (2022)
  88. Molecular modeling of vasopressin receptor and in silico screening of V1b receptor antagonists. Hagiwara Y, Ohno K, Kamohara M, Takasaki J, Watanabe T, Fukunishi Y, Nakamura H, Orita M. Expert Opin Drug Discov 8 951-964 (2013)
  89. Novel Molecular Targets of Antidepressants. Jarończyk M, Walory J. Molecules 27 533 (2022)
  90. The Camerino symposium series (1978-2013): a privileged observatory of receptorology development. Giannella M, Angeli P. In Silico Pharmacol 1 21 (2013)
  91. Central Facial Nervous System Biomolecules Involved in Peripheral Facial Nerve Injury Responses and Potential Therapeutic Strategies. Lee JM, Choi YJ, Yoo MC, Yeo SG. Antioxidants (Basel) 12 1036 (2023)
  92. Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu-opioid receptor. Zhang JJ, Song CG, Dai JM, Li L, Yang XM, Chen ZN. MedComm (2020) 3 e148 (2022)
  93. Preface: Cholinergic Mechanisms. Prado MAM, Marchot P, Silman I. J Neurochem 142 Suppl 2 3-6 (2017)
  94. Therapeutic Targets and Precision Medicine in COPD: Inflammation, Ion Channels, Both, or Neither? Bolger GB. Int J Mol Sci 24 17363 (2023)
  95. [Strategies for the structural determination of G protein-coupled receptors: from an example of histamine H₁ receptor]. Shiroishi M. Yakugaku Zasshi 133 539-547 (2013)
  96. [Structural Life Science towards the Regulation of Selective GPCR Signaling]. Kobayashi T. Yakugaku Zasshi 136 179-184 (2016)

Articles citing this publication (224)

  1. Structural basis for allosteric regulation of GPCRs by sodium ions. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC. Science 337 232-236 (2012)
  2. Structural insights into µ-opioid receptor activation. Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK. Nature 524 315-321 (2015)
  3. The cation-π interaction. Dougherty DA. Acc Chem Res 46 885-893 (2013)
  4. Allosteric sodium in class A GPCR signaling. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC. Trends Biochem Sci 39 233-244 (2014)
  5. Structural basis for molecular recognition at serotonin receptors. Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E, McCorvy JD, Gao X, Zhou XE, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Roth BL, Cherezov V, Stevens RC, Xu HE. Science 340 610-614 (2013)
  6. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Chun E, Thompson AA, Liu W, Roth CB, Griffith MT, Katritch V, Kunken J, Xu F, Cherezov V, Hanson MA, Stevens RC. Structure 20 967-976 (2012)
  7. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, Shaw DE. Nature 503 295-299 (2013)
  8. Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Draper-Joyce CJ, Khoshouei M, Thal DM, Liang YL, Nguyen ATN, Furness SGB, Venugopal H, Baltos JA, Plitzko JM, Danev R, Baumeister W, May LT, Wootten D, Sexton PM, Glukhova A, Christopoulos A. Nature 558 559-563 (2018)
  9. Agonist-bound structure of the human P2Y12 receptor. Zhang J, Zhang K, Gao ZG, Paoletta S, Zhang D, Han GW, Li T, Ma L, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q. Nature 509 119-122 (2014)
  10. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Maeda S, Qu Q, Robertson MJ, Skiniotis G, Kobilka BK. Science 364 552-557 (2019)
  11. A new class of amphiphiles bearing rigid hydrophobic groups for solubilization and stabilization of membrane proteins. Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Kruse AC, Manglik A, Cho KH, Nurva S, Gether U, Guan L, Loland CJ, Byrne B, Kobilka BK, Gellman SH. Chemistry 18 9485-9490 (2012)
  12. A kinetic view of GPCR allostery and biased agonism. Lane JR, May LT, Parton RG, Sexton PM, Christopoulos A. Nat Chem Biol 13 929-937 (2017)
  13. Conformation of receptor-bound visual arrestin. Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J, Gurevich VV, Hubbell WL. Proc Natl Acad Sci U S A 109 18407-18412 (2012)
  14. Lecture The structural basis of G-protein-coupled receptor signaling (Nobel Lecture). Kobilka B. Angew Chem Int Ed Engl 52 6380-6388 (2013)
  15. Biophysical fragment screening of the β1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design. Christopher JA, Brown J, Doré AS, Errey JC, Koglin M, Marshall FH, Myszka DG, Rich RL, Tate CG, Tehan B, Warne T, Congreve M. J Med Chem 56 3446-3455 (2013)
  16. N-terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor. Zou Y, Weis WI, Kobilka BK. PLoS One 7 e46039 (2012)
  17. Gaussian Accelerated Molecular Dynamics in NAMD. Pang YT, Miao Y, Wang Y, McCammon JA. J Chem Theory Comput 13 9-19 (2017)
  18. The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Bock A, Merten N, Schrage R, Dallanoce C, Bätz J, Klöckner J, Schmitz J, Matera C, Simon K, Kebig A, Peters L, Müller A, Schrobang-Ley J, Tränkle C, Hoffmann C, De Amici M, Holzgrabe U, Kostenis E, Mohr K. Nat Commun 3 1044 (2012)
  19. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors. Martin AL, Steurer MA, Aronstam RS. PLoS One 10 e0138463 (2015)
  20. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus. Dennis SH, Pasqui F, Colvin EM, Sanger H, Mogg AJ, Felder CC, Broad LM, Fitzjohn SM, Isaac JT, Mellor JR. Cereb Cortex 26 414-426 (2016)
  21. Deconstructing behavioral neuropharmacology with cellular specificity. Shields BC, Kahuno E, Kim C, Apostolides PF, Brown J, Lindo S, Mensh BD, Dudman JT, Lavis LD, Tadross MR. Science 356 eaaj2161 (2017)
  22. Gaussian Accelerated Molecular Dynamics: Theory, Implementation, and Applications. Miao Y, McCammon JA. Annu Rep Comput Chem 13 231-278 (2017)
  23. Diverse GPCRs exhibit conserved water networks for stabilization and activation. Venkatakrishnan AJ, Ma AK, Fonseca R, Latorraca NR, Kelly B, Betz RM, Asawa C, Kobilka BK, Dror RO. Proc Natl Acad Sci U S A 116 3288-3293 (2019)
  24. Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases. Salmon M, Luttmann MA, Foley JJ, Buckley PT, Schmidt DB, Burman M, Webb EF, DeHaas CJ, Kotzer CJ, Barrett VJ, Slack RJ, Sarau HM, Palovich MR, Lainé DI, Hay DW, Rumsey WL. J Pharmacol Exp Ther 345 260-270 (2013)
  25. NSC23766, a widely used inhibitor of Rac1 activation, additionally acts as a competitive antagonist at muscarinic acetylcholine receptors. Levay M, Krobert KA, Wittig K, Voigt N, Bermudez M, Wolber G, Dobrev D, Levy FO, Wieland T. J Pharmacol Exp Ther 347 69-79 (2013)
  26. Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study. Chae PS, Rana RR, Gotfryd K, Rasmussen SG, Kruse AC, Cho KH, Capaldi S, Carlsson E, Kobilka B, Loland CJ, Gether U, Banerjee S, Byrne B, Lee JK, Gellman SH. Chem Commun (Camb) 49 2287-2289 (2013)
  27. The importance of ligands for G protein-coupled receptor stability. Zhang X, Stevens RC, Xu F. Trends Biochem Sci 40 79-87 (2015)
  28. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Miao Y, Goldfeld DA, Moo EV, Sexton PM, Christopoulos A, McCammon JA, Valant C. Proc Natl Acad Sci U S A 113 E5675-84 (2016)
  29. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ. J Struct Biol 182 209-218 (2013)
  30. Conserved Residues Control Activation of Mammalian G Protein-Coupled Odorant Receptors. de March CA, Yu Y, Ni MJ, Adipietro KA, Matsunami H, Ma M, Golebiowski J. J Am Chem Soc 137 8611-8616 (2015)
  31. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications. Cvicek V, Goddard WA, Abrol R. PLoS Comput Biol 12 e1004805 (2016)
  32. Critical off-target effects of the widely used Rac1 inhibitors NSC23766 and EHT1864 in mouse platelets. Dütting S, Heidenreich J, Cherpokova D, Amin E, Zhang SC, Ahmadian MR, Brakebusch C, Nieswandt B. J Thromb Haemost 13 827-838 (2015)
  33. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods. Collin C, Hauser F, Gonzalez de Valdivia E, Li S, Reisenberger J, Carlsen EM, Khan Z, Hansen NO, Puhm F, Søndergaard L, Niemiec J, Heninger M, Ren GR, Grimmelikhuijzen CJ. Cell Mol Life Sci 70 3231-3242 (2013)
  34. The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane. Patowary S, Alvarez-Curto E, Xu TR, Holz JD, Oliver JA, Milligan G, Raicu V. Biochem J 452 303-312 (2013)
  35. Do plants contain g protein-coupled receptors? Taddese B, Upton GJ, Bailey GR, Jordan SR, Abdulla NY, Reeves PJ, Reynolds CA. Plant Physiol 164 287-307 (2014)
  36. Naturally evolved G protein-coupled receptors adopt metastable conformations. Chen KY, Zhou F, Fryszczyn BG, Barth P. Proc Natl Acad Sci U S A 109 13284-13289 (2012)
  37. Novel tripod amphiphiles for membrane protein analysis. Chae PS, Kruse AC, Gotfryd K, Rana RR, Cho KH, Rasmussen SG, Bae HE, Chandra R, Gether U, Guan L, Kobilka BK, Loland CJ, Byrne B, Gellman SH. Chemistry 19 15645-15651 (2013)
  38. Abundance, distribution, mobility and oligomeric state of M₂ muscarinic acetylcholine receptors in live cardiac muscle. Nenasheva TA, Neary M, Mashanov GI, Birdsall NJ, Breckenridge RA, Molloy JE. J Mol Cell Cardiol 57 129-136 (2013)
  39. Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study. Cho KH, Husri M, Amin A, Gotfryd K, Lee HJ, Go J, Kim JW, Loland CJ, Guan L, Byrne B, Chae PS. Analyst 140 3157-3163 (2015)
  40. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. Kruse AC, Weiss DR, Rossi M, Hu J, Hu K, Eitel K, Gmeiner P, Wess J, Kobilka BK, Shoichet BK. Mol Pharmacol 84 528-540 (2013)
  41. Lipid-Protein Interactions Are a Unique Property and Defining Feature of G Protein-Coupled Receptors. Sejdiu BI, Tieleman DP. Biophys J 118 1887-1900 (2020)
  42. Predicted structure of agonist-bound glucagon-like peptide 1 receptor, a class B G protein-coupled receptor. Kirkpatrick A, Heo J, Abrol R, Goddard WA. Proc Natl Acad Sci U S A 109 19988-19993 (2012)
  43. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study. Sadaf A, Mortensen JS, Capaldi S, Tikhonova E, Hariharan P, de Castro Ribeiro O, Loland CJ, Guan L, Byrne B, Chae PS. Chem Sci 7 1933-1939 (2016)
  44. M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. Bradley SJ, Bourgognon JM, Sanger HE, Verity N, Mogg AJ, White DJ, Butcher AJ, Moreno JA, Molloy C, Macedo-Hatch T, Edwards JM, Wess J, Pawlak R, Read DJ, Sexton PM, Broad LM, Steinert JR, Mallucci GR, Christopoulos A, Felder CC, Tobin AB. J Clin Invest 127 487-499 (2017)
  45. Cardiac resynchronization therapy restores sympathovagal balance in the failing heart by differential remodeling of cholinergic signaling. DeMazumder D, Kass DA, O'Rourke B, Tomaselli GF. Circ Res 116 1691-1699 (2015)
  46. Structure of the human angiotensin II type 1 (AT1) receptor bound to angiotensin II from multiple chemoselective photoprobe contacts reveals a unique peptide binding mode. Fillion D, Cabana J, Guillemette G, Leduc R, Lavigne P, Escher E. J Biol Chem 288 8187-8197 (2013)
  47. The roles played by highly truncated splice variants of G protein-coupled receptors. Wise H. J Mol Signal 7 13 (2012)
  48. Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study: Implications of Detergent Kink for Micellar Properties. Das M, Du Y, Ribeiro O, Hariharan P, Mortensen JS, Patra D, Skiniotis G, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. J Am Chem Soc 139 3072-3081 (2017)
  49. Molecular mechanisms of bitopic ligand engagement with the M1 muscarinic acetylcholine receptor. Keov P, López L, Devine SM, Valant C, Lane JR, Scammells PJ, Sexton PM, Christopoulos A. J Biol Chem 289 23817-23837 (2014)
  50. Pharmacological characterization and modeling of the binding sites of novel 1,3-bis(pyridinylethynyl)benzenes as metabotropic glutamate receptor 5-selective negative allosteric modulators. Mølck C, Harpsøe K, Gloriam DE, Clausen RP, Madsen U, Pedersen LØ, Jimenez HN, Nielsen SM, Mathiesen JM, Bräuner-Osborne H. Mol Pharmacol 82 929-937 (2012)
  51. Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking. Langelaan DN, Reddy T, Banks AW, Dellaire G, Dupré DJ, Rainey JK. Biochim Biophys Acta 1828 1471-1483 (2013)
  52. All muscarinic acetylcholine receptors (M1-M5) are expressed in murine brain microvascular endothelium. Radu BM, Osculati AMM, Suku E, Banciu A, Tsenov G, Merigo F, Di Chio M, Banciu DD, Tognoli C, Kacer P, Giorgetti A, Radu M, Bertini G, Fabene PF. Sci Rep 7 5083 (2017)
  53. Membrane-sensitive conformational states of helix 8 in the metabotropic Glu2 receptor, a class C GPCR. Bruno A, Costantino G, de Fabritiis G, Pastor M, Selent J. PLoS One 7 e42023 (2012)
  54. Pharmacologic Evidence for a Putative Conserved Allosteric Site on Opioid Receptors. Livingston KE, Stanczyk MA, Burford NT, Alt A, Canals M, Traynor JR. Mol Pharmacol 93 157-167 (2018)
  55. Hemifluorinated maltose-neopentyl glycol (HF-MNG) amphiphiles for membrane protein stabilisation. Cho KH, Byrne B, Chae PS. Chembiochem 14 452-455 (2013)
  56. The A- and B-type muscarinic acetylcholine receptors from Drosophila melanogaster couple to different second messenger pathways. Ren GR, Folke J, Hauser F, Li S, Grimmelikhuijzen CJ. Biochem Biophys Res Commun 462 358-364 (2015)
  57. Expanding the horizons of G protein-coupled receptor structure-based ligand discovery and optimization using homology models. Cavasotto CN, Palomba D. Chem Commun (Camb) 51 13576-13594 (2015)
  58. Biased Gs versus Gq proteins and β-arrestin signaling in the NK1 receptor determined by interactions in the water hydrogen bond network. Valentin-Hansen L, Frimurer TM, Mokrosinski J, Holliday ND, Schwartz TW. J Biol Chem 290 24495-24508 (2015)
  59. Structural dynamics and thermostabilization of neurotensin receptor 1. Lee S, Bhattacharya S, Tate CG, Grisshammer R, Vaidehi N. J Phys Chem B 119 4917-4928 (2015)
  60. Hydrophobic variants of ganglio-tripod amphiphiles for membrane protein manipulation. Chae PS, Cho KH, Wander MJ, Bae HE, Gellman SH, Laible PD. Biochim Biophys Acta 1838 278-286 (2014)
  61. A Novel Voltage Sensor in the Orthosteric Binding Site of the M2 Muscarinic Receptor. Barchad-Avitzur O, Priest MF, Dekel N, Bezanilla F, Parnas H, Ben-Chaim Y. Biophys J 111 1396-1408 (2016)
  62. Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography. Li D, Boland C, Aragao D, Walsh K, Caffrey M. J Vis Exp e4001 (2012)
  63. Improving the apo-state detergent stability of NTS1 with CHESS for pharmacological and structural studies. Scott DJ, Kummer L, Egloff P, Bathgate RA, Plückthun A. Biochim Biophys Acta 1838 2817-2824 (2014)
  64. Molecular mechanism of activation of human musk receptors OR5AN1 and OR1A1 by (R)-muscone and diverse other musk-smelling compounds. Ahmed L, Zhang Y, Block E, Buehl M, Corr MJ, Cormanich RA, Gundala S, Matsunami H, O'Hagan D, Ozbil M, Pan Y, Sekharan S, Ten N, Wang M, Yang M, Zhang Q, Zhang R, Batista VS, Zhuang H. Proc Natl Acad Sci U S A 115 E3950-E3958 (2018)
  65. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex. Mnpotra JS, Qiao Z, Cai J, Lynch DL, Grossfield A, Leioatts N, Hurst DP, Pitman MC, Song ZH, Reggio PH. J Biol Chem 289 20259-20272 (2014)
  66. The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases. Abd-Ella A, Stankiewicz M, Mikulska K, Nowak W, Pennetier C, Goulu M, Fruchart-Gaillard C, Licznar P, Apaire-Marchais V, List O, Corbel V, Servent D, Lapied B. PLoS One 10 e0126406 (2015)
  67. A Three-Site Mechanism for Agonist/Antagonist Selective Binding to Vasopressin Receptors. Saleh N, Saladino G, Gervasio FL, Haensele E, Banting L, Whitley DC, Sopkova-de Oliveira Santos J, Bureau R, Clark T. Angew Chem Int Ed Engl 55 8008-8012 (2016)
  68. Improved glucose-neopentyl glycol (GNG) amphiphiles for membrane protein solubilization and stabilization. Cho KH, Bae HE, Das M, Gellman SH, Chae PS. Chem Asian J 9 632-638 (2014)
  69. Lifetime of muscarinic receptor-G-protein complexes determines coupling efficiency and G-protein subtype selectivity. Ilyaskina OS, Lemoine H, Bünemann M. Proc Natl Acad Sci U S A 115 5016-5021 (2018)
  70. Letter QM/MM model of the mouse olfactory receptor MOR244-3 validated by site-directed mutagenesis experiments. Sekharan S, Ertem MZ, Zhuang H, Block E, Matsunami H, Zhang R, Wei JN, Pan Y, Batista VS. Biophys J 107 L5-L8 (2014)
  71. The extracellular loop 2 (ECL2) of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity. Wifling D, Bernhardt G, Dove S, Buschauer A. PLoS One 10 e0117185 (2015)
  72. Voltage affects the dissociation rate constant of the m2 muscarinic receptor. Ben Chaim Y, Bochnik S, Parnas I, Parnas H. PLoS One 8 e74354 (2013)
  73. A Photoswitchable Dualsteric Ligand Controlling Receptor Efficacy. Agnetta L, Kauk M, Canizal MCA, Messerer R, Holzgrabe U, Hoffmann C, Decker M. Angew Chem Int Ed Engl 56 7282-7287 (2017)
  74. Crystal structure of the M5 muscarinic acetylcholine receptor. Vuckovic Z, Gentry PR, Berizzi AE, Hirata K, Varghese S, Thompson G, van der Westhuizen ET, Burger WAC, Rahmani R, Valant C, Langmead CJ, Lindsley CW, Baell JB, Tobin AB, Sexton PM, Christopoulos A, Thal DM. Proc Natl Acad Sci U S A 116 26001-26007 (2019)
  75. Detailed analysis of biased histamine H₄ receptor signalling by JNJ 7777120 analogues. Nijmeijer S, Vischer HF, Sirci F, Schultes S, Engelhardt H, de Graaf C, Rosethorne EM, Charlton SJ, Leurs R. Br J Pharmacol 170 78-88 (2013)
  76. Pilot the pulse: controlling the multiplicity of receptor dynamics. Bock A, Kostenis E, Tränkle C, Lohse MJ, Mohr K. Trends Pharmacol Sci 35 630-638 (2014)
  77. The role of Cysteine 6.47 in class A GPCRs. Olivella M, Caltabiano G, Cordomí A. BMC Struct Biol 13 3 (2013)
  78. The role of water in activation mechanism of human N-formyl peptide receptor 1 (FPR1) based on molecular dynamics simulations. Yuan S, Ghoshdastider U, Trzaskowski B, Latek D, Debinski A, Pulawski W, Wu R, Gerke V, Filipek S. PLoS One 7 e47114 (2012)
  79. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study. Sadaf A, Du Y, Santillan C, Mortensen JS, Molist I, Seven AB, Hariharan P, Skiniotis G, Loland CJ, Kobilka BK, Guan L, Byrne B, Chae PS. Chem Sci 8 8315-8324 (2017)
  80. G Protein-Coupled Estrogen Receptor (GPER) Agonist Dual Binding Mode Analyses toward Understanding of its Activation Mechanism: A Comparative Homology Modeling Approach. Arnatt CK, Zhang Y. Mol Inform 32 647-658 (2013)
  81. Insights into adenosine A2A receptor activation through cooperative modulation of agonist and allosteric lipid interactions. Bruzzese A, Dalton JAR, Giraldo J. PLoS Comput Biol 16 e1007818 (2020)
  82. Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking. Tamamis P, Kieslich CA, Nikiforovich GV, Woodruff TM, Morikis D, Archontis G. BMC Biophys 7 5 (2014)
  83. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations. Salmas RE, Yurtsever M, Durdagi S. Sci Rep 5 13180 (2015)
  84. Melanin concentrating hormone receptor 1 (MCHR1) antagonists-Still a viable approach for obesity treatment? Högberg T, Frimurer TM, Sasmal PK. Bioorg Med Chem Lett 22 6039-6047 (2012)
  85. How Do Branched Detergents Stabilize GPCRs in Micelles? Lee S, Ghosh S, Jana S, Robertson N, Tate CG, Vaidehi N. Biochemistry 59 2125-2134 (2020)
  86. Asymmetric maltose neopentyl glycol amphiphiles for a membrane protein study: effect of detergent asymmetricity on protein stability. Bae HE, Du Y, Hariharan P, Mortensen JS, Kumar KK, Ha B, Das M, Lee HS, Loland CJ, Guan L, Kobilka BK, Chae PS. Chem Sci 10 1107-1116 (2019)
  87. Identification of potent, selective, CNS-targeted inverse agonists of the ghrelin receptor. McClure KF, Jackson M, Cameron KO, Kung DW, Perry DA, Orr ST, Zhang Y, Kohrt J, Tu M, Gao H, Fernando D, Jones R, Erasga N, Wang G, Polivkova J, Jiao W, Swartz R, Ueno H, Bhattacharya SK, Stock IA, Varma S, Bagdasarian V, Perez S, Kelly-Sullivan D, Wang R, Kong J, Cornelius P, Michael L, Lee E, Janssen A, Steyn SJ, Lapham K, Goosen T. Bioorg Med Chem Lett 23 5410-5414 (2013)
  88. Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor (D2R) and investigation of drug/receptor interactions. Salmas RE, Yurtsever M, Stein M, Durdagi S. Mol Divers 19 321-332 (2015)
  89. Loop prediction for a GPCR homology model: algorithms and results. Goldfeld DA, Zhu K, Beuming T, Friesner RA. Proteins 81 214-228 (2013)
  90. Mesitylene-Cored Glucoside Amphiphiles (MGAs) for Membrane Protein Studies: Importance of Alkyl Chain Density in Detergent Efficacy. Cho KH, Ribeiro O, Du Y, Tikhonova E, Mortensen JS, Markham K, Hariharan P, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Chemistry 22 18833-18839 (2016)
  91. Molecular mechanisms of methoctramine binding and selectivity at muscarinic acetylcholine receptors. Jakubík J, Zimčík P, Randáková A, Fuksová K, El-Fakahany EE, Doležal V. Mol Pharmacol 86 180-192 (2014)
  92. Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation. Cho KH, Du Y, Scull NJ, Hariharan P, Gotfryd K, Loland CJ, Guan L, Byrne B, Kobilka BK, Chae PS. Chemistry 21 10008-10013 (2015)
  93. Carbohydrate-containing Triton X-100 analogues for membrane protein solubilization and stabilization. Chae PS, Wander MJ, Cho KH, Laible PD, Gellman SH. Mol Biosyst 9 626-629 (2013)
  94. Entry from the Lipid Bilayer: A Possible Pathway for Inhibition of a Peptide G Protein-Coupled Receptor by a Lipophilic Small Molecule. Bokoch MP, Jo H, Valcourt JR, Srinivasan Y, Pan AC, Capponi S, Grabe M, Dror RO, Shaw DE, DeGrado WF, Coughlin SR. Biochemistry 57 5748-5758 (2018)
  95. Global fold of human cannabinoid type 2 receptor probed by solid-state 13C-, 15N-MAS NMR and molecular dynamics simulations. Kimura T, Vukoti K, Lynch DL, Hurst DP, Grossfield A, Pitman MC, Reggio PH, Yeliseev AA, Gawrisch K. Proteins 82 452-465 (2014)
  96. Non-neuronal functions of the m2 muscarinic acetylcholine receptor. Ockenga W, Kühne S, Bocksberger S, Banning A, Tikkanen R. Genes (Basel) 4 171-197 (2013)
  97. Novel Scaffold Identification of mGlu1 Receptor Negative Allosteric Modulators Using a Hierarchical Virtual Screening Approach. Jang JW, Cho NC, Min SJ, Cho YS, Park KD, Seo SH, No KT, Pae AN. Chem Biol Drug Des 87 239-256 (2016)
  98. A new family of insect muscarinic acetylcholine receptors. Xia RY, Li MQ, Wu YS, Qi YX, Ye GY, Huang J. Insect Mol Biol 25 362-369 (2016)
  99. Autoantibodies to beta-adrenergic and muscarinic cholinergic receptors in Myalgic Encephalomyelitis (ME) patients - A validation study in plasma and cerebrospinal fluid from two Swedish cohorts. Bynke A, Julin P, Gottfries CG, Heidecke H, Scheibenbogen C, Bergquist J. Brain Behav Immun Health 7 100107 (2020)
  100. Composite aromatic boxes for enzymatic transformations of quaternary ammonium substrates. Nagy GN, Marton L, Contet A, Ozohanics O, Ardelean LM, Révész A, Vékey K, Irimie FD, Vial H, Cerdan R, Vértessy BG. Angew Chem Int Ed Engl 53 13471-13476 (2014)
  101. Fluorescent probe for high-throughput screening of membrane protein expression. Backmark AE, Olivier N, Snijder A, Gordon E, Dekker N, Ferguson AD. Protein Sci 22 1124-1132 (2013)
  102. Memetic algorithms for ligand expulsion from protein cavities. Rydzewski J, Nowak W. J Chem Phys 143 124101 (2015)
  103. Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors-A Consequence of Evolutionary Pressure? Jensen AS, Sparre-Ulrich AH, Davis-Poynter N, Rosenkilde MM. Adv Virol 2012 231813 (2012)
  104. A new crystal structure fragment-based pharmacophore method for G protein-coupled receptors. Fidom K, Isberg V, Hauser AS, Mordalski S, Lehto T, Bojarski AJ, Gloriam DE. Methods 71 104-112 (2015)
  105. An Engineered Lithocholate-Based Facial Amphiphile Stabilizes Membrane Proteins: Assessing the Impact of Detergent Customizability on Protein Stability. Das M, Du Y, Mortensen JS, Bae HE, Bae HE, Byrne B, Loland CJ, Kobilka BK, Kobilka BK, Chae PS. Chemistry 24 9860-9868 (2018)
  106. Binding of Gq protein stabilizes the activated state of the muscarinic receptor type 1. Tateyama M, Kubo Y. Neuropharmacology 65 173-181 (2013)
  107. Investigation of the conformational dynamics of the apo A2A adenosine receptor. Caliman AD, Swift SE, Wang Y, Miao Y, McCammon JA. Protein Sci 24 1004-1012 (2015)
  108. Label-Free Kinetics: Exploiting Functional Hemi-Equilibrium to Derive Rate Constants for Muscarinic Receptor Antagonists. Riddy DM, Valant C, Rueda P, Charman WN, Sexton PM, Summers RJ, Christopoulos A, Langmead CJ. Mol Pharmacol 88 779-790 (2015)
  109. New insight into active muscarinic receptors with the novel radioagonist [³H]iperoxo. Schrage R, Holze J, Klöckner J, Balkow A, Klause AS, Schmitz AL, De Amici M, Kostenis E, Tränkle C, Holzgrabe U, Mohr K. Biochem Pharmacol 90 307-319 (2014)
  110. Structural Characteristics of the Allosteric Binding Site Represent a Key to Subtype Selective Modulators of Muscarinic Acetylcholine Receptors. Bermudez M, Rakers C, Wolber G. Mol Inform 34 526-530 (2015)
  111. Comment Structural biology: Muscarinic receptors become crystal clear. Kow RL, Nathanson NM. Nature 482 480-481 (2012)
  112. Towards predictive docking at aminergic G-protein coupled receptors. Jakubík J, El-Fakahany EE, Doležal V. J Mol Model 21 284 (2015)
  113. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor. Wiktor M, Morin S, Sass HJ, Kebbel F, Grzesiek S. J Biomol NMR 55 79-95 (2013)
  114. Elastic network normal mode dynamics reveal the GPCR activation mechanism. Kolan D, Fonar G, Samson AO. Proteins 82 579-586 (2014)
  115. Flavonoids with M1 muscarinic acetylcholine receptor binding activity. Swaminathan M, Chee CF, Chin SP, Buckle MJ, Rahman NA, Doughty SW, Chung LY. Molecules 19 8933-8948 (2014)
  116. Functional fusions of T4 lysozyme in the third intracellular loop of a G protein-coupled receptor identified by a random screening approach in yeast. Mathew E, Ding FX, Naider F, Dumont ME. Protein Eng Des Sel 26 59-71 (2013)
  117. Helix 3 acts as a conformational hinge in Class A GPCR activation: An analysis of interhelical interaction energies in crystal structures. Lans I, Dalton JAR, Giraldo J. J Struct Biol 192 545-553 (2015)
  118. How to Choose the Suitable Template for Homology Modelling of GPCRs: 5-HT7 Receptor as a Test Case. Shahaf N, Pappalardo M, Basile L, Guccione S, Rayan A. Mol Inform 35 414-423 (2016)
  119. Membrane Chemistry Tunes the Structure of a Peptide Transporter. Lasitza-Male T, Bartels K, Jungwirth J, Wiggers F, Rosenblum G, Hofmann H, Löw C. Angew Chem Int Ed Engl 59 19121-19128 (2020)
  120. Pendant-bearing glucose-neopentyl glycol (P-GNG) amphiphiles for membrane protein manipulation: Importance of detergent pendant chain for protein stabilization. Bae HE, Cecchetti C, Du Y, Katsube S, Mortensen JS, Huang W, Rehan S, Lee HJ, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Acta Biomater 112 250-261 (2020)
  121. Probing the binding site of novel selective positive allosteric modulators at the M1 muscarinic acetylcholine receptor. Khajehali E, Valant C, Jörg M, Tobin AB, Conn PJ, Lindsley CW, Sexton PM, Scammells PJ, Christopoulos A. Biochem Pharmacol 154 243-254 (2018)
  122. Proteoliposome-based selection of a recombinant antibody fragment against the human M2 muscarinic acetylcholine receptor. Suharni, Nomura Y, Arakawa T, Hino T, Abe H, Nakada-Nakura Y, Sato Y, Iwanari H, Shiroishi M, Asada H, Shimamura T, Murata T, Kobayashi T, Hamakubo T, Iwata S, Nomura N. Monoclon Antib Immunodiagn Immunother 33 378-385 (2014)
  123. Using molecular dynamics for the refinement of atomistic models of GPCRs by homology modeling. Lupala CS, Rasaeifar B, Gomez-Gutierrez P, Perez JJ. J Biomol Struct Dyn 36 2436-2448 (2018)
  124. Activation mechanisms of the first sphingosine-1-phosphate receptor. Caliman AD, Miao Y, McCammon JA. Protein Sci 26 1150-1160 (2017)
  125. Analyses of the effects of Gq protein on the activated states of the muscarinic M3 receptor and the purinergic P2Y1 receptor. Tateyama M, Kubo Y. Physiol Rep 1 e00134 (2013)
  126. Conformational restriction of G-proteins Coupled Receptors (GPCRs) upon complexation to G-proteins: a putative activation mode of GPCRs? Louet M, Karakas E, Perret A, Perahia D, Martinez J, Floquet N. FEBS Lett 587 2656-2661 (2013)
  127. Discovery of subtype selective muscarinic receptor antagonists as alternatives to atropine using in silico pharmacophore modeling and virtual screening methods. Bhattacharjee AK, Pomponio JW, Evans SA, Pervitsky D, Gordon RK. Bioorg Med Chem 21 2651-2662 (2013)
  128. Distinct Agonist Regulation of Muscarinic Acetylcholine M2-M3 Heteromers and Their Corresponding Homomers. Aslanoglou D, Alvarez-Curto E, Marsango S, Milligan G. J Biol Chem 290 14785-14796 (2015)
  129. Model structures of inactive and peptide agonist bound C5aR: Insights into agonist binding, selectivity and activation. Rana S, Sahoo AR. Biochem Biophys Rep 1 85-96 (2015)
  130. Molecular basis for selective activation of DREADD-based chemogenetics. Zhang S, Gumpper RH, Huang XP, Liu Y, Krumm BE, Cao C, Fay JF, Roth BL. Nature 612 354-362 (2022)
  131. Predicted 3D structures of olfactory receptors with details of odorant binding to OR1G1. Kim SK, Goddard WA. J Comput Aided Mol Des 28 1175-1190 (2014)
  132. Tailored host-guest lipidic cubic phases: a protocell model exhibiting nucleic acid recognition. Komisarski M, Osornio YM, Siegel JS, Landau EM. Chemistry 19 1262-1267 (2013)
  133. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy. Kimata N, Reeves PJ, Smith SO. J Magn Reson 253 111-118 (2015)
  134. A Strategy Combining Differential Low-Throughput Screening and Virtual Screening (DLS-VS) Accelerating the Discovery of new Modulators for the Orphan GPR34 Receptor. Diaz C, Labit-Le Bouteiller C, Yvon S, Cambon-Kernëis A, Roasio A, Jamme MF, Aries A, Feuillerat C, Perret E, Guette F, Dieu P, Miloux B, Albène D, Hasel N, Kaghad M, Ferran E, Lupker J, Ferrara P. Mol Inform 32 213-229 (2013)
  135. Evolution of the Muscarinic Acetylcholine Receptors in Vertebrates. Pedersen JE, Bergqvist CA, Larhammar D. eNeuro 5 ENEURO.0340-18.2018 (2018)
  136. Fluorescence activation mechanism and imaging of drug permeation with new sensors for smoking-cessation ligands. Nichols AL, Blumenfeld Z, Fan C, Luebbert L, Blom AEM, Cohen BN, Marvin JS, Borden PM, Kim CH, Muthusamy AK, Shivange AV, Knox HJ, Campello HR, Wang JH, Dougherty DA, Looger LL, Gallagher T, Rees DC, Lester HA. Elife 11 e74648 (2022)
  137. Heterotropic cooperativity within and between protomers of an oligomeric M(2) muscarinic receptor. Shivnaraine RV, Huang XP, Seidenberg M, Ellis J, Wells JW. Biochemistry 51 4518-4540 (2012)
  138. Homology-based Modeling of Rhodopsin-like Family Members in the Inactive State: Structural Analysis and Deduction of Tips for Modeling and Optimization. Pappalardo M, Rayan M, Abu-Lafi S, Leonardi ME, Milardi D, Guccione S, Rayan A. Mol Inform 36 (2017)
  139. Identification of destabilizing and stabilizing mutations of Ste2p, a G protein-coupled receptor in Saccharomyces cerevisiae. Zuber J, Danial SA, Connelly SM, Naider F, Dumont ME. Biochemistry 54 1787-1806 (2015)
  140. New Malonate-Derived Tetraglucoside Detergents for Membrane Protein Stability. Ehsan M, Katsube S, Cecchetti C, Du Y, Mortensen JS, Wang H, Nygaard A, Ghani L, Loland CJ, Kobilka BK, Byrne B, Guan L, Chae PS. ACS Chem Biol 15 1697-1707 (2020)
  141. Structural insight into receptor-selectivity for lurasidone. Ichikawa O, Okazaki K, Nakahira H, Maruyama M, Nagata R, Tokuda K, Horisawa T, Yamazaki K. Neurochem Int 61 1133-1143 (2012)
  142. Trehalose-cored amphiphiles for membrane protein stabilization: importance of the detergent micelle size in GPCR stability. Das M, Du Y, Mortensen JS, Ramos M, Ghani L, Lee HJ, Bae HE, Byrne B, Guan L, Loland CJ, Kobilka BK, Chae PS. Org Biomol Chem 17 3249-3257 (2019)
  143. Vitamin E-based glycoside amphiphiles for membrane protein structural studies. Ehsan M, Du Y, Molist I, Seven AB, Hariharan P, Mortensen JS, Ghani L, Loland CJ, Skiniotis G, Guan L, Byrne B, Kobilka BK, Chae PS. Org Biomol Chem 16 2489-2498 (2018)
  144. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation. Chae PS, Bae HE, Das M. Chem Commun (Camb) 50 12300-12303 (2014)
  145. Basal Histamine H4 Receptor Activation: Agonist Mimicry by the Diphenylalanine Motif. Wifling D, Pfleger C, Kaindl J, Ibrahim P, Kling RC, Buschauer A, Gohlke H, Clark T. Chemistry 25 14613-14624 (2019)
  146. Comparative analysis of the heptahelical transmembrane bundles of G protein-coupled receptors. Okada T. PLoS One 7 e35802 (2012)
  147. Effects of novel tacrine-related cholinesterase inhibitors in the reversal of 3-quinuclidinyl benzilate-induced cognitive deficit in rats--Is there a potential for Alzheimer's disease treatment? Misik J, Korabecny J, Nepovimova E, Kracmarova A, Kassa J. Neurosci Lett 612 261-268 (2016)
  148. Heterodimerization of Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Leads to Increased M2R Affinity and Selectivity. She X, Pegoli A, Mayr J, Hübner H, Bernhardt G, Gmeiner P, Keller M. ACS Omega 2 6741-6754 (2017)
  149. Multidimensional Intersection of Nicotine, Gene Expression, and Behavior. Sherafat Y, Bautista M, Fowler CD. Front Behav Neurosci 15 649129 (2021)
  150. New ganglio-tripod amphiphiles (TPAs) for membrane protein solubilization and stabilization: implications for detergent structure-property relationships. Chae PS, Bae HE, Ehsan M, Hussain H, Kim JW. Org Biomol Chem 12 8480-8487 (2014)
  151. Preparation of purified GPCRs for structural studies. Cooke RM, Koglin M, Errey JC, Marshall FH. Biochem Soc Trans 41 185-190 (2013)
  152. Rational design in search for 5-phenylhydantoin selective 5-HT7R antagonists. Molecular modeling, synthesis and biological evaluation. Kucwaj-Brysz K, Warszycki D, Podlewska S, Witek J, Witek K, González Izquierdo A, Satała G, Loza MI, Lubelska A, Latacz G, Bojarski AJ, Castro M, Kieć-Kononowicz K, Handzlik J. Eur J Med Chem 112 258-269 (2016)
  153. Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling. Rana S, Sahoo AR, Majhi BK. Mol Biosyst 12 1586-1599 (2016)
  154. Cholinergic antagonist 3-quinuclidinyl benzilate - Impact on learning and memory in Wistar rats. Misik J, Vanek J, Musilek K, Kassa J. Behav Brain Res 266 193-200 (2014)
  155. Conformational selection guides β-arrestin recruitment at a biased G protein-coupled receptor. Kleist AB, Jenjak S, Sente A, Laskowski LJ, Szpakowska M, Calkins MM, Anderson EI, McNally LM, Heukers R, Bobkov V, Peterson FC, Thomas MA, Chevigné A, Smit MJ, McCorvy JD, Babu MM, Volkman BF. Science 377 222-228 (2022)
  156. Deoxycholate-Based Glycosides (DCGs) for Membrane Protein Stabilisation. Bae HE, Gotfryd K, Thomas J, Hussain H, Ehsan M, Go J, Loland CJ, Byrne B, Chae PS. Chembiochem 16 1454-1459 (2015)
  157. Design, synthesis and binding affinity of acetylcholine carbamoyl analogues. Bolchi C, Valoti E, Binda M, Fasoli F, Ferrara R, Fumagalli L, Gotti C, Matucci R, Vistoli G, Pallavicini M. Bioorg Med Chem Lett 23 6481-6485 (2013)
  158. Dynamical important residue network (DIRN): network inference via conformational change. Li Q, Luo R, Chen HF. Bioinformatics 35 4664-4670 (2019)
  159. Efficient isotopic tryptophan labeling of membrane proteins by an indole controlled process conduct. Berger C, Berndt S, Pichert A, Theisgen S, Huster D. Biotechnol Bioeng 110 1681-1690 (2013)
  160. Functional assay for T4 lysozyme-engineered G protein-coupled receptors with an ion channel reporter. Niescierowicz K, Caro L, Cherezov V, Vivaudou M, Moreau CJ. Structure 22 149-155 (2014)
  161. Ligand-Induced Coupling between Oligomers of the M2 Receptor and the Gi1 Protein in Live Cells. Li Y, Shivnaraine RV, Huang F, Wells JW, Gradinaru CC. Biophys J 115 881-895 (2018)
  162. Muscarine-like compounds derived from a pyrolysis product of cellulose. Defant A, Mancini I, Matucci R, Bellucci C, Dosi F, Malferrari D, Fabbri D. Org Biomol Chem 13 6291-6298 (2015)
  163. Neuromodulation Therapy in Heart Failure: Combined Use of Drugs and Devices. Sobowale CO, Hori Y, Ajijola OA. J Innov Card Rhythm Manag 11 4151-4159 (2020)
  164. Novel muscarinic acetylcholine receptor hybrid ligands embedding quinuclidine and 1,4-dioxane fragments. Del Bello F, Bonifazi A, Giorgioni G, Petrelli R, Quaglia W, Altomare A, Falcicchio A, Matucci R, Vistoli G, Piergentili A. Eur J Med Chem 137 327-337 (2017)
  165. Self-Assembly Behavior and Application of Terphenyl-Cored Trimaltosides for Membrane-Protein Studies: Impact of Detergent Hydrophobic Group Geometry on Protein Stability. Ehsan M, Du Y, Mortensen JS, Hariharan P, Qu Q, Ghani L, Das M, Grethen A, Byrne B, Skiniotis G, Keller S, Loland CJ, Guan L, Kobilka BK, Chae PS. Chemistry 25 11545-11554 (2019)
  166. Sodium ions allosterically modulate the M2 muscarinic receptor. Friedman S, Tauber M, Ben-Chaim Y. Sci Rep 10 11177 (2020)
  167. Structural determinants for the interactions between muscarinic toxin 7 and muscarinic acetylcholine receptors. Xu J, Zhao H, Zheng Z, Wang Y, Niu Y, Wang H, Xu J, Lu Y, Chen H. J Mol Recognit 28 239-252 (2015)
  168. Synthesis of novel and functionally selective non-competitive muscarinic antagonists as chemical probes. Boulos JF, Jakubik J, Boulos JM, Randakova A, Momirov J. Chem Biol Drug Des 91 93-104 (2018)
  169. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors. Moreau CJ, Revilloud J, Caro LN, Dupuis JP, Trouchet A, Estrada-Mondragón A, Nieścierowicz K, Sapay N, Crouzy S, Vivaudou M. Sci Rep 7 41154 (2017)
  170. Determinants of Orexin Receptor Binding and Activation-A Molecular Dynamics Study. Karhu L, Magarkar A, Bunker A, Xhaard H. J Phys Chem B 123 2609-2622 (2019)
  171. Domains for activation and inactivation in G protein-coupled receptors--a mutational analysis of constitutive activity of the adenosine A2B receptor. Peeters MC, Li Q, Elands R, van Westen GJ, Lenselink EB, Müller CE, IJzerman AP. Biochem Pharmacol 92 348-357 (2014)
  172. Evaluation of AaDOP2 receptor antagonists reveals antidepressants and antipsychotics as novel lead molecules for control of the yellow fever mosquito, Aedes aegypti. Conley JM, Meyer JM, Nuss AB, Doyle TB, Savinov SN, Hill CA, Watts VJ. J Pharmacol Exp Ther 352 53-60 (2015)
  173. N-terminal fusion tags for effective production of g-protein-coupled receptors in bacterial cell-free systems. Lyukmanova EN, Shenkarev ZO, Khabibullina NF, Kulbatskiy DS, Shulepko MA, Petrovskaya LE, Arseniev AS, Dolgikh DA, Kirpichnikov MP. Acta Naturae 4 58-64 (2012)
  174. New penta-saccharide-bearing tripod amphiphiles for membrane protein structure studies. Ehsan M, Ghani L, Du Y, Hariharan P, Mortensen JS, Ribeiro O, Hu H, Skiniotis G, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Analyst 142 3889-3898 (2017)
  175. Novel long-acting antagonists of muscarinic ACh receptors. Randáková A, Rudajev V, Doležal V, Boulos J, Jakubík J. Br J Pharmacol 175 1731-1743 (2018)
  176. Pharmacophore-Map-Pick: A Method to Generate Pharmacophore Models for All Human GPCRs. Dai SX, Li GH, Gao YD, Huang JF. Mol Inform 35 81-91 (2016)
  177. Predicted ligands for the human urotensin-II G protein-coupled receptor with some experimental validation. Kim SK, Goddard WA, Yi KY, Lee BH, Lim CJ, Trzaskowski B. ChemMedChem 9 1732-1743 (2014)
  178. Proteomics screen to reveal molecular changes mediated by C722G missense mutation in CHRM2 gene. Hou D, Chen Y, Liu J, Xu L, Zhang Z, Zhang J, Wang H, Wang X, Chen J, Zhao R, Hu A, Hakonarson H, Zhang L, Shen Y. J Proteomics 89 39-50 (2013)
  179. Structural determinants at the M2 muscarinic receptor modulate the RGS4-GIRK response to pilocarpine by impairment of the receptor voltage sensitivity. Chen IS, Furutani K, Kurachi Y. Sci Rep 7 6110 (2017)
  180. T4 lysozyme-facilitated crystallization of the human molybdenum cofactor-dependent enzyme mARC. Kubitza C, Ginsel C, Bittner F, Havemeyer A, Clement B, Scheidig AJ. Acta Crystallogr F Struct Biol Commun 74 337-344 (2018)
  181. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection. Jin Q, Chen H, Wang X, Zhao L, Xu Q, Wang H, Li G, Yang X, Ma H, Wu H, Ji X. PLoS One 10 e0131894 (2015)
  182. Toward activated homology models of the human M1 muscarinic acetylcholine receptor. Chin SP, Buckle MJ, Chalmers DK, Yuriev E, Doughty SW. J Mol Graph Model 49 91-98 (2014)
  183. Uptake of the butyrate receptors, GPR41 and GPR43, in lipidic bicontinuous cubic phases suitable for in meso crystallization. Liang YL, Conn CE, Drummond CJ, Darmanin C. J Colloid Interface Sci 441 78-84 (2015)
  184. A Multispecific Investigation of the Metal Effect in Mammalian Odorant Receptors for Sulfur-Containing Compounds. Zhang R, Pan Y, Ahmed L, Block E, Zhang Y, Batista VS, Zhuang H. Chem Senses 43 357-366 (2018)
  185. A comparative study of branched and linear mannitol-based amphiphiles on membrane protein stability. Hussain H, Helton T, Du Y, Mortensen JS, Hariharan P, Ehsan M, Byrne B, Loland CJ, Kobilka BK, Guan L, Chae PS. Analyst 143 5702-5710 (2018)
  186. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms. Randáková A, Dolejší E, Rudajev V, Zimčík P, Doležal V, El-Fakahany EE, Jakubík J. Pharmacol Res 97 27-39 (2015)
  187. Extracellular surface residues of the α1B-adrenoceptor critical for G protein-coupled receptor function. Ragnarsson L, Andersson Å, Thomas WG, Lewis RJ. Mol Pharmacol 87 121-129 (2015)
  188. FRET-based nanobiosensor for detection of scopolamine in hairy root extraction of Atropa belladonna. Bagheri F, Piri K, Mohsenifar A, Ghaderi S. Talanta 164 593-600 (2017)
  189. Hydrophobic variations of N-oxide amphiphiles for membrane protein manipulation: importance of non-hydrocarbon groups in the hydrophobic portion. Chae PS, Sadaf A, Gellman SH. Chem Asian J 9 110-116 (2014)
  190. Mode of interaction of 1,4-dioxane agonists at the M2 and M3 muscarinic receptor orthosteric sites. Del Bello F, Bonifazi A, Quaglia W, Mazzolari A, Barocelli E, Bertoni S, Matucci R, Nesi M, Piergentili A, Vistoli G. Bioorg Med Chem Lett 24 3255-3259 (2014)
  191. Rationally Engineered Tandem Facial Amphiphiles for Improved Membrane Protein Stabilization Efficacy. Das M, Du Y, Mortensen JS, Hariharan P, Lee HS, Byrne B, Loland CJ, Guan L, Kobilka BK, Chae PS. Chembiochem 19 2225-2232 (2018)
  192. Rebuilding a macromolecular membrane complex at the atomic scale: case of the Kir6.2 potassium channel coupled to the muscarinic acetylcholine receptor M2. Sapay N, Estrada-Mondragon A, Moreau C, Vivaudou M, Crouzy S. Proteins 82 1694-1707 (2014)
  193. Structural characterization of triple transmembrane domain containing fragments of a yeast G protein-coupled receptor in an organic : aqueous environment by solution-state NMR spectroscopy. Fracchiolla KE, Cohen LS, Arshava B, Poms M, Zerbe O, Becker JM, Naider F. J Pept Sci 21 212-222 (2015)
  194. Synthesis and biological comparison of enantiomers of mepenzolate bromide, a muscarinic receptor antagonist with bronchodilatory and anti-inflammatory activities. Yamashita Y, Tanaka K, Asano T, Yamakawa N, Kobayashi D, Ishihara T, Hanaya K, Shoji M, Sugai T, Wada M, Mashimo T, Fukunishi Y, Mizushima T. Bioorg Med Chem 22 3488-3497 (2014)
  195. Understanding the molecular functions of the second extracellular loop (ECL2) of the calcitonin gene-related peptide (CGRP) receptor using a comprehensive mutagenesis approach. Woolley MJ, Simms J, Mobarec JC, Reynolds CA, Poyner DR, Conner AC. Mol Cell Endocrinol 454 39-49 (2017)
  196. Utility of an "Allosteric Site-Impaired" M2 Muscarinic Acetylcholine Receptor as a Novel Construct for Validating Mechanisms of Action of Synthetic and Putative Endogenous Allosteric Modulators. Moo EV, Sexton PM, Christopoulos A, Valant C. Mol Pharmacol 94 1298-1309 (2018)
  197. Vibrational spectroscopy analysis of ligand efficacy in human M2 muscarinic acetylcholine receptor (M2R). Katayama K, Suzuki K, Suno R, Kise R, Tsujimoto H, Iwata S, Inoue A, Kobayashi T, Kandori H. Commun Biol 4 1321 (2021)
  198. Editorial What is the potential of G protein-coupled receptor [corrected] allosteric sites in drug design? Garland SL. Future Med Chem 6 729-732 (2014)
  199. A New Molecular Mechanism To Engineer Protean Agonism at a G Protein-Coupled Receptor. De Min A, Matera C, Bock A, Holze J, Kloeckner J, Muth M, Traenkle C, De Amici M, Kenakin T, Holzgrabe U, Dallanoce C, Kostenis E, Mohr K, Schrage R. Mol Pharmacol 91 348-356 (2017)
  200. A Novel Screening Approach for Optimal and Functional Fusion of T4 Lysozyme in GPCRs. Mathew E, Dumont ME. Methods Enzymol 557 27-43 (2015)
  201. Born This Way: Using Intrinsic Disorder to Map the Connections between SLITRKs, TSHR, and Male Sexual Orientation. Basavanhally T, Fonseca R, Uversky VN. Proteomics 18 e1800307 (2018)
  202. Characterization of an A-Type Muscarinic Acetylcholine Receptor and Its Possible Non-neuronal Role in the Oriental Armyworm, Mythimna separata Walker (Lepidoptera: Noctuidae). Lü S, Jiang M, Tian X, Hong S, Zhang J, Zhang Y. Front Physiol 11 400 (2020)
  203. Maltose-bis(hydroxymethyl)phenol (MBPs) and Maltose-tris(hydroxymethyl)phenol (MTPs) Amphiphiles for Membrane Protein Stability. Ehsan M, Wang H, Cecchetti C, Mortensen JS, Du Y, Hariharan P, Nygaard A, Lee HJ, Ghani L, Guan L, Loland CJ, Byrne B, Kobilka BK, Chae PS. ACS Chem Biol 16 1779-1790 (2021)
  204. Modeling the allosteric modulation on a G-Protein Coupled Receptor: the case of M2 muscarinic Acetylcholine Receptor in complex with LY211960. Maggi L, Carloni P, Rossetti G. Sci Rep 10 3037 (2020)
  205. News Opioid receptors revealed. Buchen L. Nature 483 383 (2012)
  206. Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics. Vuckovic Z, Wang J, Pham V, Mobbs JI, Belousoff MJ, Bhattarai A, Burger WAC, Thompson G, Yeasmin M, Nawaratne V, Leach K, van der Westhuizen ET, Khajehali E, Liang YL, Glukhova A, Wootten D, Lindsley CW, Tobin A, Sexton P, Danev R, Valant C, Miao Y, Christopoulos A, Thal DM. Elife 12 e83477 (2023)
  207. The leukotriene B4 receptor BLT1 is stabilized by transmembrane helix capping mutations. Hori T, Nakamura M, Yokomizo T, Shimizu T, Miyano M. Biochem Biophys Rep 4 243-249 (2015)
  208. Vibrational analysis of acetylcholine binding to the M2 receptor. Suzuki K, Katayama K, Sumii Y, Nakagita T, Suno R, Tsujimoto H, Iwata S, Kobayashi T, Shibata N, Kandori H. RSC Adv 11 12559-12567 (2021)
  209. Xanomeline displays concomitant orthosteric and allosteric binding modes at the M4 mAChR. Burger WAC, Pham V, Vuckovic Z, Powers AS, Mobbs JI, Laloudakis Y, Glukhova A, Wootten D, Tobin AB, Sexton PM, Paul SM, Felder CC, Danev R, Dror RO, Christopoulos A, Valant C, Thal DM. Nat Commun 14 5440 (2023)
  210. Cymbopogon citratus Essential Oil: Extraction, GC-MS, Phytochemical Analysis, Antioxidant Activity, and In Silico Molecular Docking for Protein Targets Related to CNS. Cortes-Torres AG, López-Castillo GN, Marín-Torres JL, Portillo-Reyes R, Luna F, Baca BE, Sandoval-Ramírez J, Carrasco-Carballo A. Curr Issues Mol Biol 45 5164-5179 (2023)
  211. Comment A muscarinic view on Gq. Mohr K, Tränkle C. Naunyn Schmiedebergs Arch Pharmacol 386 935-936 (2013)
  212. Activation and signaling mechanism revealed by GPR119-Gs complex structures. Qian Y, Wang J, Yang L, Liu Y, Wang L, Liu W, Lin Y, Yang H, Ma L, Ye S, Wu S, Qiao A. Nat Commun 13 7033 (2022)
  213. Biochemical characterization of a heterotrimeric G(i)-protein activator peptide designed from the junction between the intracellular third loop and sixth transmembrane helix in the m4 muscarinic acetylcholine receptor. Terawaki S, Matsubayashi R, Hara K, Onozuka T, Kohno T, Wakamatsu K. Biochem Biophys Res Commun 463 64-69 (2015)
  214. Bona fide choline monoxygenases evolved in Amaranthaceae plants from oxygenases of unknown function: Evidence from phylogenetics, homology modeling and docking studies. Carrillo-Campos J, Riveros-Rosas H, Rodríguez-Sotres R, Muñoz-Clares RA. PLoS One 13 e0204711 (2018)
  215. Characterization of methanthelinium binding and function at human M1-M5 muscarinic acetylcholine receptors. Irmen M, Holze J, Bödefeld T, Tränkle C. Naunyn Schmiedebergs Arch Pharmacol 391 1037-1052 (2018)
  216. Computational investigation of functional water molecules in GPCRs bound to G protein or arrestin. Hu J, Sun X, Kang Z, Cheng J. J Comput Aided Mol Des 37 91-105 (2023)
  217. Fusion with Promiscuous Gα16 Subunit Reveals Signaling Bias at Muscarinic Receptors. Randáková A, Nelic D, Hochmalová M, Zimčík P, Mulenga MJ, Boulos J, Jakubík J. Int J Mol Sci 22 10089 (2021)
  218. Homology Modeling and Validation of the Human M1 Muscarinic Acetylcholine Receptor. Jójárt B, Balint AM, Balint S, Viskolcz B. Mol Inform 31 635-638 (2012)
  219. Metal ions-binding T4 lysozyme as an intramolecular protein purification tag compatible with X-ray crystallography. Boura E, Baumlova A, Chalupska D, Dubankova A, Klima M. Protein Sci 26 1116-1123 (2017)
  220. Predicting allosteric sites using fast conformational sampling as guided by coarse-grained normal modes. Zheng W. J Chem Phys 158 124127 (2023)
  221. Structural Insight into the Mechanism of 4-Aminoquinolines Selectivity for the alpha2A-Adrenoceptor. Li Z, Li J, Liu L, Deng W, Liu Q, Liu R, Zhang W, He Z, Fan L, Yang Y, Duan Y, Hou H, Wang X, Yang Z, Wang X, Chen S, Wang Y, Huang N, Chen J. Drug Des Devel Ther 14 2585-2594 (2020)
  222. Structural insights into the human niacin receptor HCA2-Gi signalling complex. Yang Y, Kang HJ, Gao R, Wang J, Han GW, DiBerto JF, Wu L, Tong J, Qu L, Wu Y, Pileski R, Li X, Zhang XC, Zhao S, Kenakin T, Wang Q, Stevens RC, Peng W, Roth BL, Rao Z, Liu ZJ. Nat Commun 14 1692 (2023)
  223. Synergistic regulation mechanism of iperoxo and LY2119620 for muscarinic acetylcholine M2 receptor. Li Q, Chen HF. RSC Adv 8 13067-13074 (2018)
  224. T4-lysozyme fusion for the production of human formyl peptide receptors for structural determination. Wang X, Cui Y, Wang J. Appl Biochem Biotechnol 172 2571-2581 (2014)