3ucm Citations

Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide.

PLoS One 6 e28458 (2011)
Related entries: 3ucj, 3uck, 3ucn, 3uco

Cited: 26 times
EuropePMC logo PMID: 22162771

Abstract

The β-class carbonic anhydrases (β-CAs) are widely distributed among lower eukaryotes, prokaryotes, archaea, and plants. Like all CAs, the β-enzymes catalyze an important physiological reaction, namely the interconversion between carbon dioxide and bicarbonate. In plants the enzyme plays an important role in carbon fixation and metabolism. To further explore the structure-function relationship of β-CA, we have determined the crystal structures of the photoautotroph unicellular green alga Coccomyxa β-CA in complex with five different inhibitors: acetazolamide, thiocyanate, azide, iodide, and phosphate ions. The tetrameric Coccomyxa β-CA structure is similar to other β-CAs but it has a 15 amino acid extension in the C-terminal end, which stabilizes the tetramer by strengthening the interface. Four of the five inhibitors bind in a manner similar to what is found in complexes with α-type CAs. Iodide ions, however, make contact to the zinc ion via a zinc-bound water molecule or hydroxide ion--a type of binding mode not previously observed in any CA. Binding of inhibitors to Coccomyxa β-CA is mediated by side-chain movements of the conserved residue Tyr-88, extending the width of the active site cavity with 1.5-1.8 Å. Structural analysis and comparisons with other α- and β-class members suggest a catalytic mechanism in which the movements of Tyr-88 are important for the CO(2)-HCO(3)(-) interconversion, whereas a structurally conserved water molecule that bridges residues Tyr-88 and Gln-38, seems important for proton transfer, linking water molecules from the zinc-bound water to His-92 and buffer molecules.

Articles - 3ucm mentioned but not cited (1)

  1. Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide. Huang S, Hainzl T, Grundström C, Forsman C, Samuelsson G, Sauer-Eriksson AE. PLoS One 6 e28458 (2011)


Reviews citing this publication (4)

  1. How many carbonic anhydrase inhibition mechanisms exist? Supuran CT. J Enzyme Inhib Med Chem 31 345-360 (2016)
  2. Exploiting the hydrophobic and hydrophilic binding sites for designing carbonic anhydrase inhibitors. De Simone G, Alterio V, Supuran CT. Expert Opin Drug Discov 8 793-810 (2013)
  3. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets. Supuran CT. Pathogens 5 E44 (2016)
  4. A matter of structure: structural comparison of fungal carbonic anhydrases. Lehneck R, Pöggeler S. Appl Microbiol Biotechnol 98 8433-8441 (2014)

Articles citing this publication (21)

  1. Crystal structure and kinetic studies of a tetrameric type II β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Ferraroni M, Del Prete S, Vullo D, Capasso C, Supuran CT. Acta Crystallogr D Biol Crystallogr 71 2449-2456 (2015)
  2. An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Luca VD, Vullo D, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C. Bioorg Med Chem 21 1465-1469 (2013)
  3. Anion inhibition studies of two new β-carbonic anhydrases from the bacterial pathogen Legionella pneumophila. Nishimori I, Vullo D, Minakuchi T, Scozzafava A, Osman SM, AlOthman Z, Capasso C, Supuran CT. Bioorg Med Chem Lett 24 1127-1132 (2014)
  4. Anion inhibition studies of a β-carbonic anhydrase from Clostridium perfringens. Vullo D, Sai Kumar RS, Scozzafava A, Capasso C, Ferry JG, Supuran CT. Bioorg Med Chem Lett 23 6706-6710 (2013)
  5. Substantial role for carbonic anhydrase in latitudinal variation in mesophyll conductance of Populus trichocarpa Torr. & Gray. Momayyezi M, Guy RD. Plant Cell Environ 40 138-149 (2017)
  6. Crystal structures of two tetrameric β-carbonic anhydrases from the filamentous ascomycete Sordaria macrospora. Lehneck R, Neumann P, Vullo D, Elleuche S, Supuran CT, Ficner R, Pöggeler S. FEBS J 281 1759-1772 (2014)
  7. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). Rautenberger R, Fernández PA, Strittmatter M, Heesch S, Cornwall CE, Hurd CL, Roleda MY. Ecol Evol 5 874-888 (2015)
  8. Activation of β- and γ-carbonic anhydrases from pathogenic bacteria with tripeptides. Stefanucci A, Angeli A, Dimmito MP, Luisi G, Del Prete S, Capasso C, Donald WA, Mollica A, Supuran CT. J Enzyme Inhib Med Chem 33 945-950 (2018)
  9. Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. Zolfaghari Emameh R, Barker H, Tolvanen ME, Ortutay C, Parkkila S. Parasit Vectors 7 38 (2014)
  10. Anion inhibition studies of two α-carbonic anhydrases from Lotus japonicus, LjCAA1 and LjCAA2. Vullo D, Flemetakis E, Scozzafava A, Capasso C, Supuran CT. J Inorg Biochem 136 67-72 (2014)
  11. Structural Mapping of Anion Inhibitors to β-Carbonic Anhydrase psCA3 from Pseudomonas aeruginosa. Murray AB, Aggarwal M, Pinard M, Vullo D, Patrauchan M, Supuran CT, McKenna R. ChemMedChem 13 2024-2029 (2018)
  12. Sulfonamide inhibition profiles of the β-carbonic anhydrase from the pathogenic bacterium Francisella tularensis responsible of the febrile illness tularemia. Del Prete S, Vullo D, Osman SM, AlOthman Z, Supuran CT, Capasso C. Bioorg Med Chem 25 3555-3561 (2017)
  13. Biochemical and structural characterisation of a protozoan beta-carbonic anhydrase from Trichomonas vaginalis. Urbański LJ, Di Fiore A, Azizi L, Hytönen VP, Kuuslahti M, Buonanno M, Monti SM, Angeli A, Zolfaghari Emameh R, Supuran CT, De Simone G, Parkkila S. J Enzyme Inhib Med Chem 35 1292-1299 (2020)
  14. Biochemical characterization of the chloroplastic β-carbonic anhydrase from Flaveria bidentis (L.) "Kuntze". Dathan NA, Alterio V, Troiano E, Vullo D, Ludwig M, De Simone G, Supuran CT, Monti SM. J Enzyme Inhib Med Chem 29 500-504 (2014)
  15. Carbon Dioxide "Trapped" in a β-Carbonic Anhydrase. Aggarwal M, Chua TK, Pinard MA, Szebenyi DM, McKenna R. Biochemistry 54 6631-6638 (2015)
  16. Seeking new approach for therapeutic treatment of cholera disease via inhibition of bacterial carbonic anhydrases: experimental and theoretical studies for sixteen benzenesulfonamide derivatives. Gitto R, De Luca L, Mancuso F, Del Prete S, Vullo D, Supuran CT, Capasso C. J Enzyme Inhib Med Chem 34 1186-1192 (2019)
  17. Inhibition of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae with aromatic sulphonamides and clinically licenced drugs - a joint docking/molecular dynamics study. Bonardi A, Nocentini A, Osman SM, Alasmary FA, Almutairi TM, Abdullah DS, Gratteri P, Supuran CT. J Enzyme Inhib Med Chem 36 469-479 (2021)
  18. Comparison of the Anion Inhibition Profiles of the α-CA Isoforms (SpiCA1, SpiCA2 and SpiCA3) from the Scleractinian Coral Stylophora pistillata. Del Prete S, Bua S, Zoccola D, Alasmary FAS, AlOthman Z, Alqahtani LS, Techer N, Supuran CT, Tambutté S, Capasso C. Int J Mol Sci 19 E2128 (2018)
  19. In Silico-Guided Identification of New Potent Inhibitors of Carbonic Anhydrases Expressed in Vibrio cholerae. Mancuso F, De Luca L, Angeli A, Berrino E, Del Prete S, Capasso C, Supuran CT, Gitto R. ACS Med Chem Lett 11 2294-2299 (2020)
  20. Crystal Structure of β-Carbonic Anhydrase CafA from the Fungal Pathogen Aspergillus fumigatus. Kim S, Yeon J, Sung J, Jin MS. Mol Cells 43 831-840 (2020)
  21. Multimerization variants as potential drivers of neofunctionalization. Lee Y, Szymanski DB. Sci Adv 7 eabf0984 (2021)