3pdz Citations

Solution structure of the PDZ2 domain from human phosphatase hPTP1E and its interactions with C-terminal peptides from the Fas receptor.

Biochemistry 39 2572-80 (2000)
Cited: 47 times
EuropePMC logo PMID: 10704206

Abstract

The solution structure of the second PDZ domain (PDZ2) from human phosphatase hPTP1E has been determined using 2D and 3D heteronuclear NMR experiments. The binding of peptides derived from the C-terminus of the Fas receptor to PDZ2 was studied via changes in backbone peptide and protein resonances. The structure is based on a total of 1387 nonredundant experimental NMR restraints including 1261 interproton distance restraints, 45 backbone hydrogen bonds, and 81 torsion angle restraints. Analysis of 30 lowest-energy structures resulted in rmsd values of 0.41 +/- 0.09 A for backbone atoms (N, Calpha, C') and 1.08 +/- 0.10 A for all heavy atoms, excluding the disordered N- and C-termini. The hPTP1E PDZ2 structure is similar to known PDZ domain structures but contains two unique structural features. In the peptide binding domain, the first glycine of the GLGF motif is replaced by a serine. This serine appears to replace a bound water observed in PDZ crystal structures that hydrogen bonds to the bound peptide's C-terminus. The hPTP1E PDZ2 structure also contains an unusually large loop following strand beta2 and proximal to the peptide binding site. This well-ordered loop folds back against the PDZ domain and contains several residues that undergo large amide chemical shift changes upon peptide binding. Direct observation of peptide resonances demonstrates that as many as six Fas peptide residues interact with the PDZ2 domain.

Reviews - 3pdz mentioned but not cited (3)

  1. Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Bhat AA, Uppada S, Achkar IW, Hashem S, Yadav SK, Shanmugakonar M, Al-Naemi HA, Haris M, Uddin S. Front Physiol 9 1942 (2018)
  2. Specificity in PDZ-peptide interaction networks: Computational analysis and review. Amacher JF, Brooks L, Hampton TH, Madden DR. J Struct Biol X 4 100022 (2020)
  3. Allosterism in the PDZ Family. Stevens AO, He Y. Int J Mol Sci 23 1454 (2022)

Articles - 3pdz mentioned but not cited (12)

  1. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Lee SS, Weiss RS, Javier RT. Proc Natl Acad Sci U S A 94 6670-6675 (1997)
  2. Prediction of functional sites by analysis of sequence and structure conservation. Panchenko AR, Kondrashov F, Bryant S. Protein Sci 13 884-892 (2004)
  3. Signaling pathways of PDZ2 domain: a molecular dynamics interaction correlation analysis. Kong Y, Karplus M. Proteins 74 145-154 (2009)
  4. Structure of PICK1 and other PDZ domains obtained with the help of self-binding C-terminal extensions. Elkins JM, Papagrigoriou E, Berridge G, Yang X, Phillips C, Gileadi C, Savitsky P, Doyle DA. Protein Sci 16 683-694 (2007)
  5. Functional dynamics of PDZ binding domains: a normal-mode analysis. De Los Rios P, Cecconi F, Pretre A, Dietler G, Michielin O, Piazza F, Juanico B. Biophys J 89 14-21 (2005)
  6. Crystallographic and nuclear magnetic resonance evaluation of the impact of peptide binding to the second PDZ domain of protein tyrosine phosphatase 1E. Zhang J, Sapienza PJ, Ke H, Chang A, Hengel SR, Wang H, Phillips GN, Lee AL. Biochemistry 49 9280-9291 (2010)
  7. Kinetic response of a photoperturbed allosteric protein. Buchli B, Waldauer SA, Walser R, Donten ML, Pfister R, Blöchliger N, Steiner S, Caflisch A, Zerbe O, Hamm P. Proc Natl Acad Sci U S A 110 11725-11730 (2013)
  8. Verification of alternative splicing variants based on domain integrity, truncation length and intrinsic protein disorder. Hegyi H, Kalmar L, Horvath T, Tompa P. Nucleic Acids Res 39 1208-1219 (2011)
  9. Protein dynamics investigated by inherent structure analysis. Rao F, Karplus M. Proc Natl Acad Sci U S A 107 9152-9157 (2010)
  10. Conserved tertiary couplings stabilize elements in the PDZ fold, leading to characteristic patterns of domain conformational flexibility. Ho BK, Agard DA. Protein Sci 19 398-411 (2010)
  11. Accurate prediction of the dynamical changes within the second PDZ domain of PTP1e. Cilia E, Vuister GW, Lenaerts T. PLoS Comput Biol 8 e1002794 (2012)
  12. SenseNet, a tool for analysis of protein structure networks obtained from molecular dynamics simulations. Schneider M, Antes I. PLoS One 17 e0265194 (2022)


Reviews citing this publication (5)

  1. PDZ domains and the organization of supramolecular complexes. Sheng M, Sala C. Annu Rev Neurosci 24 1-29 (2001)
  2. PDZ domains-glue and guide. van Ham M, Hendriks W. Mol Biol Rep 30 69-82 (2003)
  3. The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains. Luck K, Charbonnier S, Travé G. FEBS Lett 586 2648-2661 (2012)
  4. Protein-protein interactions: mechanisms and modification by drugs. Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P. J Mol Recognit 15 405-422 (2002)
  5. The protein tyrosine phosphatase PTP-Basophil/Basophil-like. Interacting proteins and molecular functions. Erdmann KS. Eur J Biochem 270 4789-4798 (2003)

Articles citing this publication (27)

  1. Ligand-dependent dynamics and intramolecular signaling in a PDZ domain. Fuentes EJ, Der CJ, Lee AL. J Mol Biol 335 1105-1115 (2004)
  2. Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions. Schumann FH, Riepl H, Maurer T, Gronwald W, Neidig KP, Kalbitzer HR. J Biomol NMR 39 275-289 (2007)
  3. Formation of nNOS/PSD-95 PDZ dimer requires a preformed beta-finger structure from the nNOS PDZ domain. Tochio H, Mok YK, Zhang Q, Kan HM, Bredt DS, Zhang M. J Mol Biol 303 359-370 (2000)
  4. Convergent and divergent ligand specificity among PDZ domains of the LAP and zonula occludens (ZO) families. Zhang Y, Yeh S, Appleton BA, Held HA, Kausalya PJ, Phua DCY, Lee Wong W, Lasky LA, Wiesmann C, Hunziker W, Sidhu SS. J Biol Chem 281 22299-22311 (2006)
  5. Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK. Schuh K, Uldrijan S, Gambaryan S, Roethlein N, Neyses L. J Biol Chem 278 9778-9783 (2003)
  6. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Baker R, Lewis SM, Sasaki AT, Wilkerson EM, Locasale JW, Cantley LC, Kuhlman B, Dohlman HG, Campbell SL. Nat Struct Mol Biol 20 46-52 (2013)
  7. Comparative structural analysis of the Erbin PDZ domain and the first PDZ domain of ZO-1. Insights into determinants of PDZ domain specificity. Appleton BA, Zhang Y, Wu P, Yin JP, Hunziker W, Skelton NJ, Sidhu SS, Wiesmann C. J Biol Chem 281 22312-22320 (2006)
  8. Crystal structure of the PDZ1 domain of human Na(+)/H(+) exchanger regulatory factor provides insights into the mechanism of carboxyl-terminal leucine recognition by class I PDZ domains. Karthikeyan S, Leung T, Birrane G, Webster G, Ladias JA. J Mol Biol 308 963-973 (2001)
  9. Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3. Runyon ST, Zhang Y, Appleton BA, Sazinsky SL, Wu P, Pan B, Wiesmann C, Skelton NJ, Sidhu SS. Protein Sci 16 2454-2471 (2007)
  10. Solution structure of the PDZ2 domain from cytosolic human phosphatase hPTP1E complexed with a peptide reveals contribution of the beta2-beta3 loop to PDZ domain-ligand interactions. Kozlov G, Banville D, Gehring K, Ekiel I. J Mol Biol 320 813-820 (2002)
  11. Structure, dynamics and binding characteristics of the second PDZ domain of PTP-BL. Walma T, Spronk CA, Tessari M, Aelen J, Schepens J, Hendriks W, Vuister GW. J Mol Biol 316 1101-1110 (2002)
  12. The Adenomatous Polyposis Coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain. Erdmann KS, Kuhlmann J, Lessmann V, Herrmann L, Eulenburg V, Eulenburg V, Müller O, Heumann R. Oncogene 19 3894-3901 (2000)
  13. Structural and functional analysis of the ligand specificity of the HtrA2/Omi PDZ domain. Zhang Y, Appleton BA, Wu P, Wiesmann C, Sidhu SS. Protein Sci 16 1738-1750 (2007)
  14. Two conserved residues govern the salt and pH dependencies of the binding reaction of a PDZ domain. Chi CN, Engström A, Gianni S, Larsson M, Jemth P. J Biol Chem 281 36811-36818 (2006)
  15. Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity. Kachel N, Erdmann KS, Kremer W, Wolff P, Gronwald W, Heumann R, Kalbitzer HR. J Mol Biol 334 143-155 (2003)
  16. Surface plasmon resonance analysis of the binding of high-risk mucosal HPV E6 oncoproteins to the PDZ1 domain of the tight junction protein MAGI-1. Fournane S, Charbonnier S, Chapelle A, Kieffer B, Orfanoudakis G, Travé G, Masson M, Nominé Y. J Mol Recognit 24 511-523 (2011)
  17. Estimating the accuracy of protein structures using residual dipolar couplings. Simon K, Xu J, Kim C, Skrynnikov NR. J Biomol NMR 33 83-93 (2005)
  18. Anchoring TRP to the INAD macromolecular complex requires the last 14 residues in its carboxyl terminus. Peng L, Popescu DC, Wang N, Shieh BH. J Neurochem 104 1526-1535 (2008)
  19. Inhibition of Fas associated phosphatase 1 (Fap1) facilitates apoptosis of colon cancer stem cells and enhances the effects of oxaliplatin. Huang W, Bei L, Eklund EA. Oncotarget 9 25891-25902 (2018)
  20. Investigation of the PDZ domain ligand binding site using chemically modified peptides. Novak KA, Fujii N, Guy RK. Bioorg Med Chem Lett 12 2471-2474 (2002)
  21. Spotting the difference in molecular dynamics simulations of biomolecules. Sakuraba S, Kono H. J Chem Phys 145 074116 (2016)
  22. Atomic resolution protein allostery from the multi-state structure of a PDZ domain. Ashkinadze D, Kadavath H, Pokharna A, Chi CN, Friedmann M, Strotz D, Kumari P, Minges M, Cadalbert R, Königl S, Güntert P, Vögeli B, Riek R. Nat Commun 13 6232 (2022)
  23. Equilibrium unfolding of the PDZ domain of β2-syntrophin. Torchio GM, Ermácora MR, Sica MP. Biophys J 102 2835-2844 (2012)
  24. Interactomic affinity profiling by holdup assay: Acetylation and distal residues impact the PDZome-binding specificity of PTEN phosphatase. Jané P, Gógl G, Kostmann C, Bich G, Girault V, Caillet-Saguy C, Eberling P, Vincentelli R, Wolff N, Travé G, Nominé Y. PLoS One 15 e0244613 (2020)
  25. Phosphorylation-induced changes in the PDZ domain of Dishevelled 3. Jurásek M, Kumar J, Paclíková P, Kumari A, Tripsianes K, Bryja V, Vácha R. Sci Rep 11 1484 (2021)
  26. ESI-MS and FTIR studies of the interaction between the second PDZ domain of hPTP1E and target peptides. Papp R, Ekiel I, English AM. Biochem Cell Biol 81 71-80 (2003)
  27. High-resolution crystal structure of the PDZ1 domain of human protein tyrosine phosphatase PTP-Bas. Lee SO, Lee MK, Ku B, Bae KH, Lee SC, Lim HM, Kim SJ, Chi SW. Biochem Biophys Res Commun 478 1205-1210 (2016)