3fx0 Citations

Structural basis for recognition of diubiquitins by NEMO.

Mol Cell 33 602-15 (2009)
Cited: 177 times
EuropePMC logo PMID: 19185524

Abstract

NEMO is the regulatory subunit of the IkappaB kinase (IKK) in NF-kappaB activation, and its CC2-LZ region interacts with Lys63 (K63)-linked polyubiquitin to recruit IKK to receptor signaling complexes. In vitro, CC2-LZ also interacts with tandem diubiquitin. Here we report the crystal structure of CC2-LZ with two dimeric coiled coils representing CC2 and LZ, respectively. Surprisingly, mutagenesis and nuclear magnetic resonance experiments reveal that the binding sites for diubiquitins at LZ are composites of both chains and that each ubiquitin in diubiquitins interacts with symmetrical NEMO asymmetrically. For tandem diubiquitin, the first ubiquitin uses the conserved hydrophobic patch and the C-terminal tail, while the second ubiquitin uses an adjacent surface patch. For K63-linked diubiquitin, the proximal ubiquitin uses its conserved hydrophobic patch, while the distal ubiquitin mostly employs the C-terminal arm including the K63 linkage residue. These studies uncover the energetics and geometry for mutual recognition of NEMO and diubiquitins.

Articles - 3fx0 mentioned but not cited (8)

  1. Structural basis for recognition of diubiquitins by NEMO. Lo YC, Lin SC, Rospigliosi CC, Conze DB, Wu CJ, Ashwell JD, Eliezer D, Wu H. Mol. Cell 33 602-615 (2009)
  2. Mechanism underlying IκB kinase activation mediated by the linear ubiquitin chain assembly complex. Fujita H, Rahighi S, Akita M, Kato R, Sasaki Y, Wakatsuki S, Iwai K. Mol. Cell. Biol. 34 1322-1335 (2014)
  3. Highly precise protein-protein interaction prediction based on consensus between template-based and de novo docking methods. Ohue M, Matsuzaki Y, Shimoda T, Ishida T, Akiyama Y. BMC Proc 7 S6 (2013)
  4. Probing the Solution Structure of IκB Kinase (IKK) Subunit γ and Its Interaction with Kaposi Sarcoma-associated Herpes Virus Flice-interacting Protein and IKK Subunit β by EPR Spectroscopy. Bagnéris C, Rogala KB, Baratchian M, Zamfir V, Kunze MB, Dagless S, Pirker KF, Collins MK, Hall BA, Barrett TE, Kay CW. J. Biol. Chem. 290 16539-16549 (2015)
  5. Inhibition of Canonical NF-κB Signaling by a Small Molecule Targeting NEMO-Ubiquitin Interaction. Vincendeau M, Hadian K, Messias AC, Brenke JK, Halander J, Griesbach R, Greczmiel U, Bertossi A, Stehle R, Nagel D, Demski K, Velvarska H, Niessing D, Geerlof A, Sattler M, Krappmann D. Sci Rep 6 18934 (2016)
  6. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Terwilliger TC, Bunkóczi G, Hung LW, Zwart PH, Smith JL, Akey DL, Adams PD. Acta Crystallogr D Struct Biol 72 359-374 (2016)
  7. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing. Terwilliger TC, Bunkóczi G, Hung LW, Zwart PH, Smith JL, Akey DL, Adams PD. Acta Crystallogr D Struct Biol 72 346-358 (2016)
  8. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (73)

  1. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Kawai T, Akira S. Nat. Immunol. 11 373-384 (2010)
  2. Ubiquitin-binding domains - from structures to functions. Dikic I, Wakatsuki S, Walters KJ. Nat. Rev. Mol. Cell Biol. 10 659-671 (2009)
  3. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Kulathu Y, Komander D. Nat. Rev. Mol. Cell Biol. 13 508-523 (2012)
  4. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Husnjak K, Dikic I. Annu. Rev. Biochem. 81 291-322 (2012)
  5. Molecular basis of NF-κB signaling. Napetschnig J, Wu H. Annu Rev Biophys 42 443-468 (2013)
  6. The IKK complex, a central regulator of NF-kappaB activation. Israël A. Cold Spring Harb Perspect Biol 2 a000158 (2010)
  7. Ubiquitination in signaling to and activation of IKK. Chen ZJ. Immunol Rev 246 95-106 (2012)
  8. Regulation of tumour necrosis factor signalling: live or let die. Brenner D, Blaser H, Mak TW. Nat. Rev. Immunol. 15 362-374 (2015)
  9. The spatial and temporal organization of ubiquitin networks. Grabbe C, Husnjak K, Dikic I. Nat. Rev. Mol. Cell Biol. 12 295-307 (2011)
  10. The IκB kinase complex in NF-κB regulation and beyond. Hinz M, Scheidereit C. EMBO Rep. 15 46-61 (2014)
  11. Signaling to NF-kappaB: regulation by ubiquitination. Wertz IE, Dixit VM. Cold Spring Harb Perspect Biol 2 a003350 (2010)
  12. Expanding role of ubiquitination in NF-κB signaling. Liu S, Chen ZJ. Cell Res. 21 6-21 (2011)
  13. Viral avoidance and exploitation of the ubiquitin system. Randow F, Lehner PJ. Nat. Cell Biol. 11 527-534 (2009)
  14. Linear polyubiquitination: a new regulator of NF-kappaB activation. Iwai K, Tokunaga F. EMBO Rep. 10 706-713 (2009)
  15. Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Miyamoto S. Cell Res. 21 116-130 (2011)
  16. Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Carpenter S, O'Neill LA. Biochem. J. 422 1-10 (2009)
  17. TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Walczak H. Immunol. Rev. 244 9-28 (2011)
  18. Generation and physiological roles of linear ubiquitin chains. Walczak H, Iwai K, Dikic I. BMC Biol. 10 23 (2012)
  19. NF-κB regulation: lessons from structures. Ghosh G, Wang VY, Huang DB, Fusco A. Immunol. Rev. 246 36-58 (2012)
  20. Ubiquitin in the immune system. Zinngrebe J, Montinaro A, Peltzer N, Walczak H. EMBO Rep. 15 28-45 (2014)
  21. Death receptor-ligand systems in cancer, cell death, and inflammation. Walczak H. Cold Spring Harb Perspect Biol 5 a008698 (2013)
  22. Control of life-or-death decisions by RIP1 kinase. Christofferson DE, Li Y, Yuan J. Annu. Rev. Physiol. 76 129-150 (2014)
  23. Regulation of nuclear factor-κB in autoimmunity. Sun SC, Chang JH, Jin J. Trends Immunol. 34 282-289 (2013)
  24. Linear ubiquitin chains: NF-κB signalling, cell death and beyond. Iwai K, Fujita H, Sasaki Y. Nat. Rev. Mol. Cell Biol. 15 503-508 (2014)
  25. Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Silke J, Brink R. Cell Death Differ. 17 35-45 (2010)
  26. A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. Bianchi K, Meier P. Mol. Cell 36 736-742 (2009)
  27. Molecular control of the NEMO family of ubiquitin-binding proteins. Clark K, Nanda S, Cohen P. Nat. Rev. Mol. Cell Biol. 14 673-685 (2013)
  28. Linear ubiquitination in immunity. Shimizu Y, Taraborrelli L, Walczak H. Immunol. Rev. 266 190-207 (2015)
  29. Structural studies of NF-κB signaling. Zheng C, Yin Q, Wu H. Cell Res. 21 183-195 (2011)
  30. The TLR and IL-1 signalling network at a glance. Cohen P. J. Cell. Sci. 127 2383-2390 (2014)
  31. Necroptosis and Inflammation. Newton K, Manning G. Annu. Rev. Biochem. 85 743-763 (2016)
  32. Genetic lessons learned from X-linked Mendelian susceptibility to mycobacterial diseases. Bustamante J, Picard C, Boisson-Dupuis S, Abel L, Casanova JL. Ann. N. Y. Acad. Sci. 1246 92-101 (2011)
  33. Structural basis of signal transduction in the TNF receptor superfamily. Li J, Yin Q, Wu H. Adv. Immunol. 119 135-153 (2013)
  34. A structural guide to proteins of the NF-kappaB signaling module. Huxford T, Ghosh G. Cold Spring Harb Perspect Biol 1 a000075 (2009)
  35. The emerging role of linear ubiquitination in cell signaling. Emmerich CH, Schmukle AC, Walczak H. Sci Signal 4 re5 (2011)
  36. Linear ubiquitination-mediated NF-κB regulation and its related disorders. Tokunaga F. J. Biochem. 154 313-323 (2013)
  37. Ubiquitination in the antiviral immune response. Davis ME, Gack MU. Virology 479-480 52-65 (2015)
  38. Multitasking with ubiquitin through multivalent interactions. Liu F, Walters KJ. Trends Biochem. Sci. 35 352-360 (2010)
  39. Met1-linked ubiquitination in immune signalling. Fiil BK, Gyrd-Hansen M. FEBS J. 281 4337-4350 (2014)
  40. Structural insights into the assembly of large oligomeric signalosomes in the Toll-like receptor-interleukin-1 receptor superfamily. Ferrao R, Li J, Bergamin E, Wu H. Sci Signal 5 re3 (2012)
  41. Building and decoding ubiquitin chains for mitophagy. Harper JW, Ordureau A, Heo JM. Nat. Rev. Mol. Cell Biol. 19 93-108 (2018)
  42. Diverse roles of the ubiquitin system in NF-κB activation. Iwai K. Biochim. Biophys. Acta 1843 129-136 (2014)
  43. Linear ubiquitination signals in adaptive immune responses. Ikeda F. Immunol. Rev. 266 222-236 (2015)
  44. New concepts and aids to facilitate crystallization. Bukowska MA, Grütter MG. Curr. Opin. Struct. Biol. 23 409-416 (2013)
  45. "Without Ub I am nothing": NEMO as a multifunctional player in ubiquitin-mediated control of NF-kappaB activation. Gautheron J, Courtois G. Cell. Mol. Life Sci. 67 3101-3113 (2010)
  46. Antibody fragments as tools in crystallography. Griffin L, Lawson A. Clin. Exp. Immunol. 165 285-291 (2011)
  47. Optimising methods for the preservation, capture and identification of ubiquitin chains and ubiquitylated proteins by immunoblotting. Emmerich CH, Cohen P. Biochem. Biophys. Res. Commun. 466 1-14 (2015)
  48. Selectivity of the ubiquitin-binding modules. Rahighi S, Dikic I. FEBS Lett. 586 2705-2710 (2012)
  49. Tumor Necrosis Factor Receptors: Pleiotropic Signaling Complexes and Their Differential Effects. Gough P, Myles IA. Front Immunol 11 585880 (2020)
  50. Immune diseases caused by mutations in kinases and components of the ubiquitin system. Cohen P. Nat. Immunol. 15 521-529 (2014)
  51. Linear ubiquitin chains: enzymes, mechanisms and biology. Rittinger K, Ikeda F. Open Biol 7 (2017)
  52. Significance of optineurin mutations in glaucoma and other diseases. Minegishi Y, Nakayama M, Iejima D, Kawase K, Iwata T. Prog Retin Eye Res 55 149-181 (2016)
  53. When ubiquitin meets NF-κB: a trove for anti-cancer drug development. Wu ZH, Shi Y. Curr. Pharm. Des. 19 3263-3275 (2013)
  54. Ubc13: the Lys63 ubiquitin chain building machine. Hodge CD, Spyracopoulos L, Glover JN. Oncotarget 7 64471-64504 (2016)
  55. Ubiquitin and its binding domains. Randles L, Walters KJ. Front Biosci (Landmark Ed) 17 2140-2157 (2012)
  56. Multitasking Kinase RIPK1 Regulates Cell Death and Inflammation. Newton K. Cold Spring Harb Perspect Biol 12 a036368 (2020)
  57. The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cohen P, Strickson S. Cell Death Differ. 24 1153-1159 (2017)
  58. Rare mendelian primary immunodeficiency diseases associated with impaired NF-κB signaling. Paciolla M, Pescatore A, Conte MI, Esposito E, Incoronato M, Lioi MB, Fusco F, Ursini MV. Genes Immun. 16 239-246 (2015)
  59. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Shi JH, Sun SC. Front Immunol 9 1849 (2018)
  60. Molecular basis for specificity of the Met1-linked polyubiquitin signal. Elliott PR. Biochem. Soc. Trans. 44 1581-1602 (2016)
  61. Linear Ubiquitin Code: Its Writer, Erasers, Decoders, Inhibitors, and Implications in Disorders. Oikawa D, Sato Y, Ito H, Tokunaga F. Int J Mol Sci 21 (2020)
  62. Non-lysine ubiquitylation: Doing things differently. Kelsall IR. Front Mol Biosci 9 1008175 (2022)
  63. The Many Roles of Ubiquitin in NF-κB Signaling. Courtois G, Fauvarque MO. Biomedicines 6 (2018)
  64. Holding All the CARDs: How MALT1 Controls CARMA/CARD-Dependent Signaling. Juilland M, Thome M. Front Immunol 9 1927 (2018)
  65. The role of ubiquitin-binding domains in human pathophysiology. Sokratous K, Hadjisavvas A, Diamandis EP, Kyriacou K. Crit Rev Clin Lab Sci 51 280-290 (2014)
  66. Biochemistry, Pathophysiology, and Regulation of Linear Ubiquitination: Intricate Regulation by Coordinated Functions of the Associated Ligase and Deubiquitinase. Fuseya Y, Iwai K. Cells 10 2706 (2021)
  67. HOIL-1, an atypical E3 ligase that controls MyD88 signalling by forming ester bonds between ubiquitin and components of the Myddosome. Cohen P, Kelsall IR, Nanda SK, Zhang J. Adv Biol Regul 75 100666 (2020)
  68. ISG15 and ISGylation in Human Diseases. Mirzalieva O, Juncker M, Schwartzenburg J, Desai S. Cells 11 538 (2022)
  69. Linear ubiquitin chain-binding domains. Fennell LM, Rahighi S, Ikeda F. FEBS J. 285 2746-2761 (2018)
  70. Mechanisms underlying linear ubiquitination and implications in tumorigenesis and drug discovery. Li J, Liu S, Li S. Cell Commun Signal 21 340 (2023)
  71. The Ubiquitin-Proteasome System in Immune Cells. Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. Biomolecules 11 (2021)
  72. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Duan T, Du Y, Xing C, Wang HY, Wang RF. Front Immunol 13 812774 (2022)
  73. Viruses utilize ubiquitination systems to escape TLR/RLR-mediated innate immunity. Huang S, Cheng A, Wang M, Yin Z, Huang J, Jia R. Front Immunol 13 1065211 (2022)

Articles citing this publication (96)

  1. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. Nat. Immunol. 10 1215-1221 (2009)
  2. Linear ubiquitination prevents inflammation and regulates immune signalling. Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA, Anderton H, Wong WW, Nachbur U, Gangoda L, Warnken U, Purcell AW, Silke J, Walczak H. Nature 471 591-596 (2011)
  3. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I. Cell 136 1098-1109 (2009)
  4. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T, Koschny R, Komander D, Silke J, Walczak H. Mol. Cell 36 831-844 (2009)
  5. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. Dynek JN, Goncharov T, Dueber EC, Fedorova AV, Izrael-Tomasevic A, Phu L, Helgason E, Fairbrother WJ, Deshayes K, Kirkpatrick DS, Vucic D. EMBO J. 29 4198-4209 (2010)
  6. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Emmerich CH, Ordureau A, Strickson S, Arthur JS, Pedrioli PG, Komander D, Cohen P. Proc. Natl. Acad. Sci. U.S.A. 110 15247-15252 (2013)
  7. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Xu M, Skaug B, Zeng W, Chen ZJ. Mol. Cell 36 302-314 (2009)
  8. Novel cross-talk within the IKK family controls innate immunity. Clark K, Peggie M, Plater L, Sorcek RJ, Young ER, Madwed JB, Hough J, McIver EG, Cohen P. Biochem. J. 434 93-104 (2011)
  9. Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Sims JJ, Cohen RE. Mol. Cell 33 775-783 (2009)
  10. ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S, Tergaonkar V. Mol. Cell 40 75-86 (2010)
  11. RIPK1 is not essential for TNFR1-induced activation of NF-kappaB. Wong WW, Gentle IE, Nachbur U, Anderton H, Vaux DL, Silke J. Cell Death Differ. 17 482-487 (2010)
  12. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Véron M, Agou F, Israël A. EMBO J. 28 2885-2895 (2009)
  13. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Kulathu Y, Akutsu M, Bremm A, Hofmann K, Komander D. Nat. Struct. Mol. Biol. 16 1328-1330 (2009)
  14. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, Mio K, Kamei K, Ma A, Iwai K, Nureki O. EMBO J. 31 3856-3870 (2012)
  15. TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures. Tarantino N, Tinevez JY, Crowell EF, Boisson B, Henriques R, Mhlanga M, Agou F, Israël A, Laplantine E. J. Cell Biol. 204 231-245 (2014)
  16. What determines the specificity and outcomes of ubiquitin signaling? Ikeda F, Crosetto N, Dikic I. Cell 143 677-681 (2010)
  17. Crystal structure of inhibitor of κB kinase β. Xu G, Lo YC, Li Q, Napolitano G, Wu X, Jiang X, Dreano M, Karin M, Wu H. Nature 472 325-330 (2011)
  18. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. van Wijk SJ, Fiskin E, Putyrski M, Pampaloni F, Hou J, Wild P, Kensche T, Grecco HE, Bastiaens P, Dikic I. Mol. Cell 47 797-809 (2012)
  19. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Bosanac I, Wertz IE, Pan B, Yu C, Kusam S, Lam C, Phu L, Phung Q, Maurer B, Arnott D, Kirkpatrick DS, Dixit VM, Hymowitz SG. Mol. Cell 40 548-557 (2010)
  20. A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. Oshiumi H, Miyashita M, Matsumoto M, Seya T. PLoS Pathog. 9 e1003533 (2013)
  21. The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. Jacobson AD, Zhang NY, Xu P, Han KJ, Noone S, Peng J, Liu CW. J. Biol. Chem. 284 35485-35494 (2009)
  22. LUBAC regulates NF-κB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. Niu J, Shi Y, Iwai K, Wu ZH. EMBO J. 30 3741-3753 (2011)
  23. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. Sasaki Y, Sano S, Nakahara M, Murata S, Kometani K, Aiba Y, Sakamoto S, Watanabe Y, Tanaka K, Kurosaki T, Iwai K. EMBO J. 32 2463-2476 (2013)
  24. Avid interactions underlie the Lys63-linked polyubiquitin binding specificities observed for UBA domains. Sims JJ, Haririnia A, Dickinson BC, Fushman D, Cohen RE. Nat. Struct. Mol. Biol. 16 883-889 (2009)
  25. NF-κB essential modulator (NEMO) interaction with linear and lys-63 ubiquitin chains contributes to NF-κB activation. Hadian K, Griesbach RA, Dornauer S, Wanger TM, Nagel D, Metlitzky M, Beisker W, Schmidt-Supprian M, Krappmann D. J. Biol. Chem. 286 26107-26117 (2011)
  26. Analysis of nuclear factor-κB (NF-κB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-κB. Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K, Dikic I. J. Biol. Chem. 287 23626-23634 (2012)
  27. A structural basis for IκB kinase 2 activation via oligomerization-dependent trans auto-phosphorylation. Polley S, Huang DB, Hauenstein AV, Fusco AJ, Zhong X, Vu D, Schröfelbauer B, Kim Y, Hoffmann A, Verma IM, Ghosh G, Huxford T. PLoS Biol. 11 e1001581 (2013)
  28. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Satpathy S, Wagner SA, Beli P, Gupta R, Kristiansen TA, Malinova D, Francavilla C, Tolar P, Bishop GA, Hostager BS, Choudhary C. Mol. Syst. Biol. 11 810 (2015)
  29. Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin. Yoshikawa A, Sato Y, Yamashita M, Mimura H, Yamagata A, Fukai S. FEBS Lett. 583 3317-3322 (2009)
  30. NEMO inhibits programmed necrosis in an NFκB-independent manner by restraining RIP1. O'Donnell MA, Hase H, Legarda D, Ting AT. PLoS ONE 7 e41238 (2012)
  31. An unexpected twist to the activation of IKKβ: TAK1 primes IKKβ for activation by autophosphorylation. Zhang J, Clark K, Lawrence T, Peggie MW, Cohen P. Biochem. J. 461 531-537 (2014)
  32. NEMO oligomerization and its ubiquitin-binding properties. Ivins FJ, Montgomery MG, Smith SJ, Morris-Davies AC, Taylor IA, Rittinger K. Biochem. J. 421 243-251 (2009)
  33. New mechanism of X-linked anhidrotic ectodermal dysplasia with immunodeficiency: impairment of ubiquitin binding despite normal folding of NEMO protein. Hubeau M, Ngadjeua F, Puel A, Israel L, Feinberg J, Chrabieh M, Belani K, Bodemer C, Fabre I, Plebani A, Boisson-Dupuis S, Picard C, Fischer A, Israel A, Abel L, Veron M, Casanova JL, Agou F, Bustamante J. Blood 118 926-935 (2011)
  34. Preparation of distinct ubiquitin chain reagents of high purity and yield. Dong KC, Helgason E, Yu C, Phu L, Arnott DP, Bosanac I, Compaan DM, Huang OW, Fedorova AV, Kirkpatrick DS, Hymowitz SG, Dueber EC. Structure 19 1053-1063 (2011)
  35. USP18 negatively regulates NF-κB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms. Yang Z, Xian H, Hu J, Tian S, Qin Y, Wang RF, Cui J. Sci Rep 5 12738 (2015)
  36. Insight into IKBKG/NEMO locus: report of new mutations and complex genomic rearrangements leading to incontinentia pigmenti disease. Conte MI, Pescatore A, Paciolla M, Esposito E, Miano MG, Lioi MB, McAleer MA, Giardino G, Pignata C, Irvine AD, Scheuerle AE, Royer G, Hadj-Rabia S, Bodemer C, Bonnefont JP, Munnich A, Smahi A, Steffann J, Fusco F, Ursini MV. Hum. Mutat. 35 165-177 (2014)
  37. DARPin-assisted crystallography of the CC2-LZ domain of NEMO reveals a coupling between dimerization and ubiquitin binding. Grubisha O, Kaminska M, Duquerroy S, Fontan E, Cordier F, Haouz A, Raynal B, Chiaravalli J, Delepierre M, Israël A, Véron M, Agou F. J. Mol. Biol. 395 89-104 (2010)
  38. Emerging complexity of protein ubiquitination in the NF-κB pathway. Habelhah H. Genes Cancer 1 735-747 (2010)
  39. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, Ishitani R, Kamei K, Takeyoshi I, Kawakami H, Iwai K, Hatada I, Sawasaki T, Ito H, Nureki O, Tokunaga F. Nat Commun 7 12547 (2016)
  40. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. Greenfeld H, Takasaki K, Walsh MJ, Ersing I, Bernhardt K, Ma Y, Fu B, Ashbaugh CW, Cabo J, Mollo SB, Zhou H, Li S, Gewurz BE. PLoS Pathog. 11 e1004890 (2015)
  41. Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Emmerich CH, Bakshi S, Kelsall IR, Ortiz-Guerrero J, Shpiro N, Cohen P. Biochem. Biophys. Res. Commun. 474 452-461 (2016)
  42. The yeast E4 ubiquitin ligase Ufd2 interacts with the ubiquitin-like domains of Rad23 and Dsk2 via a novel and distinct ubiquitin-like binding domain. Hänzelmann P, Stingele J, Hofmann K, Schindelin H, Raasi S. J. Biol. Chem. 285 20390-20398 (2010)
  43. Identification of a new NEMO/TRAF6 interface affected in incontinentia pigmenti pathology. Gautheron J, Pescatore A, Fusco F, Esposito E, Yamaoka S, Agou F, Ursini MV, Courtois G. Hum. Mol. Genet. 19 3138-3149 (2010)
  44. Linear polyubiquitin chains: a new modifier involved in NFκB activation and chronic inflammation, including dermatitis. Iwai K. Cell Cycle 10 3095-3104 (2011)
  45. Target specificity of the E3 ligase LUBAC for ubiquitin and NEMO relies on different minimal requirements. Smit JJ, van Dijk WJ, El Atmioui D, Merkx R, Ovaa H, Sixma TK. J. Biol. Chem. 288 31728-31737 (2013)
  46. Ubiquitin linkages make a difference. Dikic I, Dötsch V. Nat. Struct. Mol. Biol. 16 1209-1210 (2009)
  47. Kaposi's sarcoma-associated herpesvirus vFLIP and human T cell lymphotropic virus type 1 Tax oncogenic proteins activate IkappaB kinase subunit gamma by different mechanisms independent of the physiological cytokine-induced pathways. Shimizu A, Baratchian M, Takeuchi Y, Escors D, Macdonald D, Barrett T, Bagneris C, Collins M, Noursadeghi M. J. Virol. 85 7444-7448 (2011)
  48. NEMO-IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS-STING Pathway. Fang R, Wang C, Jiang Q, Lv M, Gao P, Yu X, Mu P, Zhang R, Bi S, Feng JM, Jiang Z. J. Immunol. 199 3222-3233 (2017)
  49. A protein quality control pathway regulated by linear ubiquitination. van Well EM, Bader V, Patra M, Sánchez-Vicente A, Meschede J, Furthmann N, Schnack C, Blusch A, Longworth J, Petrasch-Parwez E, Mori K, Arzberger T, Trümbach D, Angersbach L, Showkat C, Sehr DA, Berlemann LA, Goldmann P, Clement AM, Behl C, Woerner AC, Saft C, Wurst W, Haass C, Ellrichmann G, Gold R, Dittmar G, Hipp MS, Hartl FU, Tatzelt J, Winklhofer KF. EMBO J 38 (2019)
  50. Evidence for cooperative and domain-specific binding of the signal transducing adaptor molecule 2 (STAM2) to Lys63-linked diubiquitin. Lange A, Castañeda C, Hoeller D, Lancelin JM, Fushman D, Walker O. J. Biol. Chem. 287 18687-18699 (2012)
  51. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. Wang W, Mani AM, Wu ZH. J Cancer Metastasis Treat 3 45-59 (2017)
  52. Inducible Rubicon facilitates viral replication by antagonizing interferon production. Wan Y, Cao W, Han T, Ren S, Feng J, Chen T, Wang J, Broering R, Lu M, Zhu Y. Cell. Mol. Immunol. 14 607-620 (2017)
  53. Crystal structure of a complex of NOD1 CARD and ubiquitin. Ver Heul AM, Gakhar L, Piper RC, Subramanian R. PLoS ONE 9 e104017 (2014)
  54. Epstein-Barr latent membrane protein 1 transformation site 2 activates NF-kappaB in the absence of NF-kappaB essential modifier residues 133-224 or 373-419. Boehm D, Gewurz BE, Kieff E, Cahir-McFarland E. Proc. Natl. Acad. Sci. U.S.A. 107 18103-18108 (2010)
  55. Porcine Reproductive and Respiratory Syndrome Virus nsp1α Inhibits NF-κB Activation by Targeting the Linear Ubiquitin Chain Assembly Complex. Jing H, Fang L, Ding Z, Wang D, Hao W, Gao L, Ke W, Chen H, Xiao S. J. Virol. 91 (2017)
  56. Structural insights into the ubiquitin recognition by OPTN (optineurin) and its regulation by TBK1-mediated phosphorylation. Li F, Xu D, Wang Y, Zhou Z, Liu J, Hu S, Gong Y, Yuan J, Pan L. Autophagy 14 66-79 (2018)
  57. TRIM5α SPRY/coiled-coil interactions optimize avid retroviral capsid recognition. Roganowicz MD, Komurlu S, Mukherjee S, Plewka J, Alam SL, Skorupka KA, Wan Y, Dawidowski D, Cafiso DS, Ganser-Pornillos BK, Campbell EM, Pornillos O. PLoS Pathog. 13 e1006686 (2017)
  58. Innate immune-directed NF-κB signaling requires site-specific NEMO ubiquitination. Jun JC, Kertesy S, Jones MB, Marinis JM, Cobb BA, Tigno-Aranjuez JT, Abbott DW. Cell Rep 4 352-361 (2013)
  59. Mutation of nonessential cysteines shows that the NF-κB essential modulator forms a constitutive noncovalent dimer that binds IκB kinase-β with high affinity. Cote SM, Gilmore TD, Shaffer R, Weber U, Bollam R, Golden MS, Glover K, Herscovitch M, Ennis T, Allen KN, Whitty A. Biochemistry 52 9141-9154 (2013)
  60. Recent advances in polyubiquitin chain recognition. Wu H, Lo YC, Lin SC. F1000 Biol Rep 2 1-5 (2010)
  61. The PP4R1 sub-unit of protein phosphatase PP4 is essential for inhibition of NF-κB by merkel polyomavirus small tumour antigen. Abdul-Sada H, Müller M, Mehta R, Toth R, Arthur JSC, Whitehouse A, Macdonald A. Oncotarget 8 25418-25432 (2017)
  62. UBASH3A Mediates Risk for Type 1 Diabetes Through Inhibition of T-Cell Receptor-Induced NF-κB Signaling. Ge Y, Paisie TK, Newman JRB, McIntyre LM, Concannon P. Diabetes 66 2033-2043 (2017)
  63. A Central Region of NF-κB Essential Modulator Is Required for IKKβ-Induced Conformational Change and for Signal Propagation. Shaffer R, DeMaria AM, Kagermazova L, Liu Y, Babaei M, Caban-Penix S, Cervantes A, Jehle S, Makowski L, Gilmore TD, Whitty A, Allen KN. Biochemistry 58 2906-2920 (2019)
  64. Covalent modification of the NF-κB essential modulator (NEMO) by a chemical compound can regulate its ubiquitin binding properties in vitro. Hooper C, Jackson SS, Coughlin EE, Coon JJ, Miyamoto S. J. Biol. Chem. 289 33161-33174 (2014)
  65. Enhanced Purification of Ubiquitinated Proteins by Engineered Tandem Hybrid Ubiquitin-binding Domains (ThUBDs). Gao Y, Li Y, Zhang C, Zhao M, Deng C, Lan Q, Liu Z, Su N, Wang J, Xu F, Xu Y, Ping L, Chang L, Gao H, Wu J, Xue Y, Deng Z, Peng J, Xu P. Mol. Cell Proteomics 15 1381-1396 (2016)
  66. NEMO regulates a cell death switch in TNF signaling by inhibiting recruitment of RIPK3 to the cell death-inducing complex II. Pescatore A, Esposito E, Draber P, Walczak H, Ursini MV. Cell Death Dis 7 e2346 (2016)
  67. Structural Insights into Linear Tri-ubiquitin Recognition by A20-Binding Inhibitor of NF-κB, ABIN-2. Lin SM, Lin SC, Hong JY, Su TW, Kuo BJ, Chang WH, Tu YF, Lo YC. Structure 25 66-78 (2017)
  68. Two-sided ubiquitin binding of NF-κB essential modulator (NEMO) zinc finger unveiled by a mutation associated with anhidrotic ectodermal dysplasia with immunodeficiency syndrome. Ngadjeua F, Chiaravalli J, Traincard F, Raynal B, Fontan E, Agou F. J. Biol. Chem. 288 33722-33737 (2013)
  69. Evidence for M1-Linked Polyubiquitin-Mediated Conformational Change in NEMO. Hauenstein AV, Xu G, Kabaleeswaran V, Wu H. J. Mol. Biol. 429 3793-3800 (2017)
  70. LUBAC-mediated linear ubiquitination: a crucial regulator of immune signaling. Iwai K. Proc Jpn Acad Ser B Phys Biol Sci 97 120-133 (2021)
  71. Correlating interleukin-12 stimulated interferon-γ production and the absence of ectodermal dysplasia and anhidrosis (EDA) in patients with mutations in NF-κB essential modulator (NEMO). Haverkamp MH, Marciano BE, Frucht DM, Jain A, van de Vosse E, Holland SM. J. Clin. Immunol. 34 436-443 (2014)
  72. Differential polyubiquitin recognition by tandem ubiquitin binding domains of Rabex-5. Shin D, Lee SY, Han S, Ren S, Kim S, Aikawa Y, Lee S. Biochem. Biophys. Res. Commun. 423 757-762 (2012)
  73. Molluscum Contagiosum Virus MC159 Abrogates cIAP1-NEMO Interactions and Inhibits NEMO Polyubiquitination. Biswas S, Shisler JL. J. Virol. 91 (2017)
  74. Case Reports A novel NEMO/IKBKG mutation identified in a primary immunodeficiency disorder with recurrent atypical mycobacterial infections. Kolitz E, Chamseddin B, Son R, Vandergriff T, Hsu AP, Holland S, Wang RC. JAAD Case Rep 7 33-35 (2021)
  75. LUBAC assembles a ubiquitin signaling platform at mitochondria for signal amplification and transport of NF-κB to the nucleus. Wu Z, Berlemann LA, Bader V, Sehr DA, Dawin E, Covallero A, Meschede J, Angersbach L, Showkat C, Michaelis JB, Münch C, Rieger B, Namgaladze D, Herrera MG, Fiesel FC, Springer W, Mendes M, Stepien J, Barkovits K, Marcus K, Sickmann A, Dittmar G, Busch KB, Riedel D, Brini M, Tatzelt J, Cali T, Winklhofer KF. EMBO J 41 e112006 (2022)
  76. M1-linked ubiquitination by LUBEL is required for inflammatory responses to oral infection in Drosophila. Aalto AL, Mohan AK, Schwintzer L, Kupka S, Kietz C, Walczak H, Broemer M, Meinander A. Cell Death Differ. 26 860-876 (2019)
  77. N4BP1 negatively regulates NF-κB by binding and inhibiting NEMO oligomerization. Shi H, Sun L, Wang Y, Liu A, Zhan X, Li X, Tang M, Anderton P, Hildebrand S, Quan J, Ludwig S, Moresco EMY, Beutler B. Nat Commun 12 1379 (2021)
  78. Polyubiquitin ligand-induced phase transitions are optimized by spacing between ubiquitin units. Galagedera SKK, Dao TP, Enos SE, Chaudhuri A, Schmit JD, Castañeda CA. Proc Natl Acad Sci U S A 120 e2306638120 (2023)
  79. Structural studies of NEMO and TRAF6: implications in NF-κB activation. Wu H, Lo YC, Yin Q. Adv. Exp. Med. Biol. 691 89-91 (2011)
  80. Structurally plastic NEMO and oligomerization prone IKK2 subunits define the behavior of human IKK2:NEMO complexes in solution. Ko MS, Biswas T, Mulero MC, Bobkov AA, Ghosh G, Huxford T. Biochim Biophys Acta Proteins Proteom 1868 140526 (2020)
  81. Super-resolution microscopy reveals a preformed NEMO lattice structure that is collapsed in incontinentia pigmenti. Scholefield J, Henriques R, Savulescu AF, Fontan E, Boucharlat A, Laplantine E, Smahi A, Israël A, Agou F, Mhlanga MM. Nat Commun 7 12629 (2016)
  82. A conserved core region of the scaffold NEMO is essential for signal-induced conformational change and liquid-liquid phase separation. DiRusso CJ, DeMaria AM, Wong J, Wang W, Jordanides JJ, Whitty A, Allen KN, Gilmore TD. J Biol Chem 299 105396 (2023)
  83. ALPK1 mutants causing ROSAH syndrome or Spiradenoma are activated by human nucleotide sugars. Snelling T, Saalfrank A, Wood NT, Cohen P. Proc Natl Acad Sci U S A 120 e2313148120 (2023)
  84. Co-ordinated control of the ADP-heptose/ALPK1 signalling network by the E3 ligases TRAF6, TRAF2/c-IAP1 and LUBAC. Snelling T, Shpiro N, Gourlay R, Lamoliatte F, Cohen P. Biochem J 479 2195-2216 (2022)
  85. Diagnosing and mitigating method-based avidity artifacts that confound polyubiquitin-binding assays. Schoeffler AJ, Helgason E, Popovych N, Dueber EC. Biophys Rep (N Y) 1 100033 (2021)
  86. Identification of ester-linked ubiquitylation sites during TLR7 signalling increases the number of inter-ubiquitin linkages from 8 to 12. McCrory EH, Akimov V, Cohen P, Blagoev B. Biochem J 479 2419-2431 (2022)
  87. Keeping Cell Death in Check: Ubiquitylation-Dependent Control of TNFR1 and TLR Signaling. Griewahn L, Köser A, Maurer U. Front Cell Dev Biol 7 117 (2019)
  88. LUBAC is required for RIG-I sensing of RNA viruses. Teague HC, Lefevre C, Rieser E, Wolfram L, de Miguel D, Patricio de Oliveira D, Oliveira M, Mansur DS, Irigoyen N, Walczak H, Ferguson BJ. Cell Death Differ (2023)
  89. Linear ubiquitination induces NEMO phase separation to activate NF-κB signaling. Goel S, Oliva R, Jeganathan S, Bader V, Krause LJ, Kriegler S, Stender ID, Christine CW, Nakamura K, Hoffmann JE, Winter R, Tatzelt J, Winklhofer KF. Life Sci Alliance 6 e202201607 (2023)
  90. Multifunctional Peptides from Spanish Dry-Cured Pork Ham: Endothelial Responses and Molecular Modeling Studies. Martínez-Sánchez SM, Pérez-Sánchez H, Antonio Gabaldón J, Abellán-Alemán J, Montoro-García S. Int J Mol Sci 20 (2019)
  91. NEMO reshapes the α-Synuclein aggregate interface and acts as an autophagy adapter by co-condensation with p62. Furthmann N, Bader V, Angersbach L, Blusch A, Goel S, Sánchez-Vicente A, Krause LJ, Chaban SA, Grover P, Trinkaus VA, van Well EM, Jaugstetter M, Tschulik K, Damgaard RB, Saft C, Ellrichmann G, Gold R, Koch A, Englert B, Westenberger A, Klein C, Jungbluth L, Sachse C, Behrends C, Glatzel M, Hartl FU, Nakamura K, Christine CW, Huang EJ, Tatzelt J, Winklhofer KF. Nat Commun 14 8368 (2023)
  92. Novel biochemical, structural, and systems insights into inflammatory signaling revealed by contextual interaction proteomics. Ciuffa R, Uliana F, Uliana F, Mannion J, Mehnert M, Tenev T, Marulli C, Satanowski A, Keller LML, Rodilla Ramírez PN, Ori A, Gstaiger M, Meier P, Aebersold R. Proc Natl Acad Sci U S A 119 e2117175119 (2022)
  93. Regulatory subunit NEMO promotes polyubiquitin-dependent induction of NF-κB through a targetable second interaction with upstream activator IKK2. Ko MS, Cohen SN, Polley S, Mahata SK, Biswas T, Huxford T, Ghosh G. J Biol Chem 298 101864 (2022)
  94. Solution structure of the HOIL-1L NZF domain reveals a conformational switch regulating linear ubiquitin affinity. Walinda E, Sugase K, Ishii N, Shirakawa M, Iwai K, Morimoto D. J Biol Chem 299 105165 (2023)
  95. Structural basis for the simultaneous recognition of NEMO and acceptor ubiquitin by the HOIP NZF1 domain. Rahighi S, Iyer M, Oveisi H, Nasser S, Duong V. Sci Rep 12 12241 (2022)
  96. The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells. Kelsall IR, Zhang J, Knebel A, Arthur JSC, Cohen P. Proc. Natl. Acad. Sci. U.S.A. 116 13293-13298 (2019)