3fl5 Citations

Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2.

Abstract

Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a moderately potent and poorly selective inhibitor of protein kinase CK2, one of the most pleiotropic serine/threonine protein kinases, implicated in neoplasia and in other global diseases. By virtual screening of the MMS (Molecular Modeling Section) database, we have now identified quinalizarin (1,2,5,8-tetrahydroxyanthraquinone) as an inhibitor of CK2 that is more potent and selective than emodin. CK2 inhibition by quinalizarin is competitive with respect to ATP, with a Ki value of approx. 50 nM. Tested at 1 microM concentration on a panel of 75 protein kinases, quinalizarin drastically inhibits only CK2, with a promiscuity score (11.1), which is the lowest ever reported so far for a CK2 inhibitor. Especially remarkable is the ability of quinalizarin to discriminate between CK2 and a number of kinases, notably DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase), PIM (provirus integration site for Moloney murine leukaemia virus) 1, 2 and 3, HIPK2 (homeodomain-interacting protein kinase-2), MNK1 [MAPK (mitogen-activated protein kinase)-interacting kinase 1], ERK8 (extracellular-signal-regulated kinase 8) and PKD1 (protein kinase D 1), which conversely tend to be inhibited as drastically as CK2 by commercially available CK2 inhibitors. The determination of the crystal structure of a complex between quinalizarin and CK2alpha subunit highlights the relevance of polar interactions in stabilizing the binding, an unusual characteristic for a CK2 inhibitor, and disclose other structural features which may account for the narrow selectivity of this compound. Tested on Jurkat cells, quinalizarin proved able to inhibit endogenous CK2 and to induce apoptosis more efficiently than the commonly used CK2 inhibitors TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole).

Reviews - 3fl5 mentioned but not cited (1)

Articles - 3fl5 mentioned but not cited (3)

  1. The Selectivity of CK2 Inhibitor Quinalizarin: A Reevaluation. Cozza G, Venerando A, Sarno S, Pinna LA. Biomed Res Int 2015 734127 (2015)
  2. Malaria protein kinase CK2 (PfCK2) shows novel mechanisms of regulation. Graciotti M, Alam M, Solyakov L, Schmid R, Burley G, Bottrill AR, Doerig C, Cullis P, Tobin AB. PLoS ONE 9 e85391 (2014)
  3. Discovery of novel CK2 leads by cross-docking based virtual screening. Sun H, Wu X, Xu X, Jiang Z, Liu Z, You Q. Med Chem 10 628-639 (2014)


Reviews citing this publication (18)

  1. Computational methods in drug discovery. Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Pharmacol. Rev. 66 334-395 (2014)
  2. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. Haematologica 95 1004-1015 (2010)
  3. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Perez DI, Gil C, Martinez A. Med Res Rev 31 924-954 (2011)
  4. Recent advances in the design, synthesis, and biological evaluation of selective DYRK1A inhibitors: a new avenue for a disease modifying treatment of Alzheimer's? Smith B, Medda F, Gokhale V, Dunckley T, Hulme C. ACS Chem Neurosci 3 857-872 (2012)
  5. The PIM kinases in hematological cancers. Alvarado Y, Giles FJ, Swords RT. Expert Rev Hematol 5 81-96 (2012)
  6. Protein kinase CK2 inhibitors: a patent review. Cozza G, Pinna LA, Moro S. Expert Opin Ther Pat 22 1081-1097 (2012)
  7. Protein kinase CK2: a potential therapeutic target for diverse human diseases. Borgo C, D'Amore C, Sarno S, Salvi M, Ruzzene M. Signal Transduct Target Ther 6 183 (2021)
  8. Casein kinases as potential therapeutic targets. Cozza G, Pinna LA. Expert Opin. Ther. Targets 20 319-340 (2016)
  9. Structural and functional determinants of protein kinase CK2α: facts and open questions. Battistutta R, Lolli G. Mol. Cell. Biochem. 356 67-73 (2011)
  10. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Chua MM, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. Pharmaceuticals (Basel) 10 (2017)
  11. Hepcidin and the iron enigma in HCV infection. Georgopoulou U, Dimitriadis A, Foka P, Karamichali E, Mamalaki A. Virulence 5 465-476 (2014)
  12. Understanding protein kinase CK2 mis-regulation upon F508del CFTR expression. Venerando A, Pagano MA, Tosoni K, Meggio F, Cassidy D, Stobbart M, Pinna LA, Mehta A. Naunyn Schmiedebergs Arch. Pharmacol. 384 473-488 (2011)
  13. Regulation of human mitogen-activated protein kinase 15 (extracellular signal-regulated kinase 7/8) and its functions: A recent update. Lau ATY, Xu YM. J Cell Physiol 234 75-88 (2018)
  14. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Baier A, Szyszka R. Front Mol Biosci 9 916063 (2022)
  15. Downfalls of Chemical Probes Acting at the Kinase ATP-Site: CK2 as a Case Study. Atkinson EL, Iegre J, Brear PD, Zhabina EA, Hyvönen M, Spring DR. Molecules 26 1977 (2021)
  16. Protein Kinase CK2, a Potential Therapeutic Target in Carcinoma Management Lian H, Su M, Zhu Y, Zhou Y, Soomro SH, Fu H. Asian Pac. J. Cancer Prev. 20 23-32 (2019)
  17. CK2 Regulation: Perspectives in 2021. Roffey SE, Litchfield DW. Biomedicines 9 1361 (2021)
  18. Journey of anthraquinones as anticancer agents - a systematic review of recent literature. Malik MS, Alsantali RI, Jassas RS, Alsimaree AA, Syed R, Alsharif MA, Kalpana K, Morad M, Althagafi II, Ahmed SA. RSC Adv 11 35806-35827 (2021)

Articles citing this publication (62)

  1. Kinase inhibitors modulate huntingtin cell localization and toxicity. Atwal RS, Desmond CR, Caron N, Maiuri T, Xia J, Sipione S, Truant R. Nat. Chem. Biol. 7 453-460 (2011)
  2. Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer. Battistutta R, Cozza G, Pierre F, Papinutto E, Lolli G, Sarno S, O'Brien SE, Siddiqui-Jain A, Haddach M, Anderes K, Ryckman DM, Meggio F, Pinna LA. Biochemistry 50 8478-8488 (2011)
  3. Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells. Vandamme J, Völkel P, Rosnoblet C, Le Faou P, Angrand PO. Mol. Cell Proteomics 10 M110.002642 (2011)
  4. Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity. Luz S, Kongsuphol P, Mendes AI, Romeiras F, Sousa M, Schreiber R, Matos P, Jordan P, Mehta A, Amaral MD, Kunzelmann K, Farinha CM. Mol. Cell. Biol. 31 4392-4404 (2011)
  5. Protein kinase CK2 is a regulator of angiogenesis in endometriotic lesions. Feng D, Welker S, Körbel C, Rudzitis-Auth J, Menger MD, Montenarh M, Laschke MW. Angiogenesis 15 243-252 (2012)
  6. Antitumoral activity of allosteric inhibitors of protein kinase CK2. Moucadel V, Prudent R, Sautel CF, Teillet F, Barette C, Lafanechere L, Receveur-Brechot V, Cochet C. Oncotarget 2 997-1010 (2011)
  7. Insulin-like growth factor 1 mediates 5-fluorouracil chemoresistance in esophageal carcinoma cells through increasing survivin stability. Juan HC, Tsai HT, Chang PH, Huang CY, Hu CP, Wong FH. Apoptosis 16 174-183 (2011)
  8. The role of protein kinase CK2 in the regulation of the insulin production of pancreatic islets. Meng R, Götz C, Montenarh M. Biochem. Biophys. Res. Commun. 401 203-206 (2010)
  9. CK2 phosphorylation of Pdx-1 regulates its transcription factor activity. Meng R, Al-Quobaili F, Müller I, Götz C, Thiel G, Montenarh M. Cell. Mol. Life Sci. 67 2481-2489 (2010)
  10. DMXAA (Vadimezan, ASA404) is a multi-kinase inhibitor targeting VEGFR2 in particular. Buchanan CM, Shih JH, Astin JW, Rewcastle GW, Flanagan JU, Crosier PS, Shepherd PR. Clin. Sci. 122 449-457 (2012)
  11. Programmed cell death protein 5 (PDCD5) is phosphorylated by CK2 in vitro and in 293T cells. Salvi M, Xu D, Chen Y, Cabrelle A, Sarno S, Pinna LA. Biochem. Biophys. Res. Commun. 387 606-610 (2009)
  12. A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours. Kalathur M, Toso A, Chen J, Revandkar A, Danzer-Baltzer C, Guccini I, Alajati A, Sarti M, Pinton S, Brambilla L, Di Mitri D, Carbone G, Garcia-Escudero R, Padova A, Magnoni L, Tarditi A, Maccari L, Malusa F, Kalathur RK, A Pinna L, Cozza G, Ruzzene M, Delaleu N, Catapano CV, Frew IJ, Alimonti A. Nat Commun 6 7227 (2015)
  13. Cell-permeable dual inhibitors of protein kinases CK2 and PIM-1: structural features and pharmacological potential. Cozza G, Girardi C, Ranchio A, Lolli G, Sarno S, Orzeszko A, Kazimierczuk Z, Battistutta R, Ruzzene M, Pinna LA. Cell. Mol. Life Sci. 71 3173-3185 (2014)
  14. Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Herhaus L, Perez-Oliva AB, Cozza G, Gourlay R, Weidlich S, Campbell DG, Pinna LA, Sapkota GP. Sci Signal 8 ra35 (2015)
  15. Unbiased functional proteomics strategy for protein kinase inhibitor validation and identification of bona fide protein kinase substrates: application to identification of EEF1D as a substrate for CK2. Gyenis L, Duncan JS, Turowec JP, Bretner M, Litchfield DW. J. Proteome Res. 10 4887-4901 (2011)
  16. Urolithin as a converging scaffold linking ellagic acid and coumarin analogues: design of potent protein kinase CK2 inhibitors. Cozza G, Gianoncelli A, Bonvini P, Zorzi E, Pasquale R, Rosolen A, Pinna LA, Meggio F, Zagotto G, Moro S. ChemMedChem 6 2273-2286 (2011)
  17. Functional interaction of protein kinase CK2 and activating transcription factor 4 (ATF4), a key player in the cellular stress response. Ampofo E, Sokolowsky T, Götz C, Montenarh M. Biochim. Biophys. Acta 1833 439-451 (2013)
  18. Protein kinase CK2 is implicated in early steps of the differentiation of pre-adipocytes into adipocytes. Wilhelm N, Kostelnik K, Götz C, Montenarh M. Mol. Cell. Biochem. 365 37-45 (2012)
  19. Structural features underlying the selectivity of the kinase inhibitors NBC and dNBC: role of a nitro group that discriminates between CK2 and DYRK1A. Sarno S, Mazzorana M, Traynor R, Ruzzene M, Cozza G, Pagano MA, Meggio F, Zagotto G, Battistutta R, Pinna LA. Cell. Mol. Life Sci. 69 449-460 (2012)
  20. Structural and functional analysis of the flexible regions of the catalytic α-subunit of protein kinase CK2. Papinutto E, Ranchio A, Lolli G, Pinna LA, Battistutta R. J. Struct. Biol. 177 382-391 (2012)
  21. Exploiting the repertoire of CK2 inhibitors to target DYRK and PIM kinases. Cozza G, Sarno S, Ruzzene M, Girardi C, Orzeszko A, Kazimierczuk Z, Zagotto G, Bonaiuto E, Di Paolo ML, Pinna LA. Biochim. Biophys. Acta 1834 1402-1409 (2013)
  22. Down-regulation of CK2 activity results in a decrease in the level of cdc25C phosphatase in different prostate cancer cell lines. Schneider CC, Götz C, Hessenauer A, Günther J, Kartarius S, Montenarh M. Mol. Cell. Biochem. 356 177-184 (2011)
  23. Exploring the prominent performance of CX-4945 derivatives as protein kinase CK2 inhibitors by a combined computational study. Wang X, Pan P, Li Y, Li D, Hou T. Mol Biosyst 10 1196-1210 (2014)
  24. A complex signaling network involving protein kinase CK2 is required for hepatitis C virus core protein-mediated modulation of the iron-regulatory hepcidin gene expression. Foka P, Dimitriadis A, Kyratzopoulou E, Giannimaras DA, Sarno S, Simos G, Georgopoulou U, Mamalaki A. Cell. Mol. Life Sci. 71 4243-4258 (2014)
  25. CIGB-300, an anti-CK2 peptide, inhibits angiogenesis, tumor cell invasion and metastasis in lung cancer models. Benavent Acero F, Capobianco CS, Garona J, Cirigliano SM, Perera Y, Urtreger AJ, Perea SE, Alonso DF, Farina HG. Lung Cancer 107 14-21 (2017)
  26. Functional proteomics strategy for validation of protein kinase inhibitors reveals new targets for a TBB-derived inhibitor of protein kinase CK2. Gyenis L, Kuś A, Bretner M, Litchfield DW. J Proteomics 81 70-79 (2013)
  27. Association of protein kinase CK2 inhibition with cellular radiosensitivity of non-small cell lung cancer. Li Q, Li K, Yang T, Zhang S, Zhou Y, Li Z, Xiong J, Zhou F, Zhou X, Liu L, Meng R, Wu G. Sci Rep 7 16134 (2017)
  28. CK2 phosphorylation of C/EBPδ regulates its transcription factor activity. Schwind L, Zimmer AD, Götz C, Montenarh M. Int. J. Biochem. Cell Biol. 61 81-89 (2015)
  29. Inhibition of Aurora kinase B is important for biologic activity of the dual inhibitors of BCR-ABL and Aurora kinases R763/AS703569 and PHA-739358 in BCR-ABL transformed cells. Illert AL, Seitz AK, Rummelt C, Kreutmair S, Engh RA, Goodstal S, Peschel C, Duyster J, von Bubnoff N. PLoS ONE 9 e112318 (2014)
  30. Structural basis for low-affinity binding of non-R2 carboxylate-substituted tricyclic quinoline analogs to CK2α: comparative molecular dynamics simulation studies. Zhou Y, Li X, Zhang N, Zhong R. Chem Biol Drug Des 85 189-200 (2015)
  31. The p23 co-chaperone protein is a novel substrate of CK2 in Arabidopsis. Tosoni K, Costa A, Sarno S, D'Alessandro S, Sparla F, Pinna LA, Zottini M, Ruzzene M. Mol. Cell. Biochem. 356 245-254 (2011)
  32. Halogenated imidazole derivatives block RNA polymerase II elongation along mitogen inducible genes. Mikula M, Hanusek K, Paziewska A, Dzwonek A, Rubel T, Bomsztyk K, Ostrowski J. BMC Mol. Biol. 11 4 (2010)
  33. Protein kinase CK2 regulates metal toxicity in neuronal cells. Zaman MS, Johnson AJ, Bobek G, Kueh S, Kersaitis C, Bailey TD, Buskila Y, Wu MJ. Metallomics 8 82-90 (2016)
  34. 2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action. Bestgen B, Kufareva I, Seetoh W, Abell C, Hartmann RW, Abagyan R, Le Borgne M, Filhol O, Cochet C, Lomberget T, Engel M. J Med Chem 62 1817-1836 (2019)
  35. Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Purzner T, Purzner J, Buckstaff T, Cozza G, Gholamin S, Rusert JM, Hartl TA, Sanders J, Conley N, Ge X, Langan M, Ramaswamy V, Ellis L, Litzenburger U, Bolin S, Theruvath J, Nitta R, Qi L, Li XN, Li G, Taylor MD, Wechsler-Reya RJ, Pinna LA, Cho YJ, Fuller MT, Elias JE, Scott MP. Sci Signal 11 (2018)
  36. Hologram QSAR models of a series of 6-arylquinazolin-4-amine inhibitors of a new Alzheimer's disease target: dual specificity tyrosine-phosphorylation-regulated kinase-1A enzyme. Leal FD, da Silva Lima CH, de Alencastro RB, Castro HC, Rodrigues CR, Albuquerque MG. Int J Mol Sci 16 5235-5253 (2015)
  37. Nopp140-chaperoned 2'-O-methylation of small nuclear RNAs in Cajal bodies ensures splicing fidelity. Bizarro J, Deryusheva S, Wacheul L, Gupta V, Ernst FGM, Lafontaine DLJ, Gall JG, Meier UT. Genes Dev 35 1123-1141 (2021)
  38. Quinalizarin enhances radiosensitivity of nasopharyngeal carcinoma cells partially by suppressing SHP-1 expression. Pan X, Meng R, Yu Z, Mou J, Liu S, Sun Z, Zou Z, Wu G, Peng G. Int. J. Oncol. 48 1073-1084 (2016)
  39. Tracking down biotransformation to the genetic level: identification of a highly flexible glycosyltransferase from Saccharothrix espanaensis. Strobel T, Schmidt Y, Linnenbrink A, Luzhetskyy A, Luzhetska M, Taguchi T, Brötz E, Paululat T, Stasevych M, Stanko O, Novikov V, Bechthold A. Appl. Environ. Microbiol. 79 5224-5232 (2013)
  40. Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic β-cell proliferation activity. Kumar K, Man-Un Ung P, Wang P, Wang H, Li H, Andrews MK, Stewart AF, Schlessinger A, DeVita RJ. Eur J Med Chem 157 1005-1016 (2018)
  41. Proteomic Profiling of Microtubule Self-organization in M-phase. Rosas-Salvans M, Cavazza T, Espadas G, Sabido E, Vernos I. Mol. Cell Proteomics 17 1991-2004 (2018)
  42. ROCK2-Specific Inhibitor KD025 Suppresses Adipocyte Differentiation by Inhibiting Casein Kinase 2. Tran NNQ, Chun KH. Molecules 26 4747 (2021)
  43. Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. Kumar K, Wang P, Wilson J, Zlatanic V, Berrouet C, Khamrui S, Secor C, Swartz EA, Lazarus M, Sanchez R, Stewart AF, Garcia-Ocana A, DeVita RJ. J Med Chem 63 2986-3003 (2020)
  44. An Iron Shield to Protect Epigallocatehin-3-Gallate from Degradation: Multifunctional Self-Assembled Iron Oxide Nanocarrier Enhances Protein Kinase CK2 Intracellular Targeting and Inhibition. Fasolato L, Magro M, Cozza G, Sbarra F, Molinari S, Novelli E, Vianello F, Venerando A. Pharmaceutics 13 1266 (2021)
  45. Functional interplay between the transcription factors USF1 and PDX-1 and protein kinase CK2 in pancreatic β-cells. Spohrer S, Groß R, Nalbach L, Schwind L, Stumpf H, Menger MD, Ampofo E, Montenarh M, Götz C. Sci Rep 7 16367 (2017)
  46. Identification of quinones as novel PIM1 kinase inhibitors. Schroeder RL, Goyal N, Bratton M, Townley I, Pham NA, Tram P, Stone T, Geathers J, Nguyen K, Sridhar J. Bioorg. Med. Chem. Lett. 26 3187-3191 (2016)
  47. Impact of protein kinase CK2 inhibitors on proliferation and differentiation of neural stem cells. Bender M, Schwind L, Grundmann D, Martin M, Klotz M, Götz C, Montenarh M, Schäfer KH. Heliyon 3 e00318 (2017)
  48. Inhibition of CK2 Reduces NG2 Expression in Juvenile Angiofibroma. Boewe AS, Wemmert S, Kulas P, Schick B, Götz C, Wrublewsky S, Montenarh M, Menger MD, Laschke MW, Ampofo E. Biomedicines 10 966 (2022)
  49. Involvement of endothelial CK2 in the radiation induced perivascular resistant niche (PVRN) and the induction of radioresistance for non-small cell lung cancer (NSCLC) cells. Li Q, Zong Y, Li K, Jie X, Hong J, Zhou X, Wu B, Li Z, Zhang S, Wu G, Meng R. Biol. Res. 52 22 (2019)
  50. Progesterone receptor membrane component 1 is phosphorylated upon progestin treatment in breast cancer cells. Willibald M, Bayer G, Stahlhut V, Poschmann G, Stühler K, Gierke B, Pawlak M, Seeger H, Mueck AO, Niederacher D, Fehm T, Neubauer H. Oncotarget 8 72480-72493 (2017)
  51. Quinalizarin Induces Apoptosis through Reactive Oxygen Species (ROS)-Mediated Mitogen-Activated Protein Kinase (MAPK) and Signal Transducer and Activator of Transcription 3 (STAT3) Signaling Pathways in Colorectal Cancer Cells. Meng LQ, Wang Y, Luo YH, Piao XJ, Liu C, Wang Y, Zhang Y, Wang JR, Wang H, Xu WT, Liu Y, Wu YQ, Sun HN, Han YH, Jin MH, Shen GN, Fang NZ, Jin CH. Med. Sci. Monit. 24 3710-3719 (2018)
  52. The catalytic subunit of Plasmodium falciparum casein kinase 2 is essential for gametocytogenesis. Hitz E, Grüninger O, Passecker A, Wyss M, Scheurer C, Wittlin S, Beck HP, Brancucci NMB, Voss TS. Commun Biol 4 336 (2021)
  53. Activity of CoII-Quinalizarin: A Novel Analogue of Anthracycline-Based Anticancer Agents Targets Human DNA Topoisomerase, Whereas Quinalizarin Itself Acts via Formation of Semiquinone on Acute Lymphoblastic Leukemia MOLT-4 and HCT 116 Cells. Mukherjee Chatterjee S, Jain CK, Singha S, Das P, Roychoudhury S, Majumder HK, Das S. ACS Omega 3 10255-10266 (2018)
  54. Chemical Genetic Validation of CSNK2 Substrates Using an Inhibitor-Resistant Mutant in Combination with Triple SILAC Quantitative Phosphoproteomics. Gyenis L, Menyhart D, Cruise ES, Jurcic K, Roffey SE, Chai DB, Trifoi F, Fess SR, Desormeaux PJ, Núñez de Villavicencio Díaz T, Rabalski AJ, Zukowski SA, Turowec JP, Pittock P, Lajoie G, Litchfield DW. Front Mol Biosci 9 909711 (2022)
  55. Development of Kinase-Selective, Harmine-Based DYRK1A Inhibitors that Induce Pancreatic Human β-Cell Proliferation. Kumar K, Wang P, Sanchez R, Swartz EA, Stewart AF, DeVita RJ. J. Med. Chem. 61 7687-7699 (2018)
  56. Influence of CK2 protein kinase activity on the interaction between Trypanosoma cruzi and its vertebrate and invertebrate hosts. de Oliveira Souza JE, Gomes SMR, Lima AKC, de Souza Brito AC, Da-Silva SAG, de Carvalho Santos Lopes AH, Silva-Neto MAC, Atella GC, Dutra PML. Parasitol Res 123 80 (2024)
  57. Multihydroxy-Anthraquinone Derivatives as Free Radical and Cationic Photoinitiators of Various Photopolymerizations under Green LED. Zhang J, Hill N, Lalevée J, Fouassier JP, Zhao J, Graff B, Schmidt TW, Kable SH, Stenzel MH, Coote ML, Xiao P. Macromol Rapid Commun 39 e1800172 (2018)
  58. Quinalizarin induces ROS‑mediated apoptosis via the MAPK, STAT3 and NF‑κB signaling pathways in human breast cancer cells. Zang YQ, Feng YY, Luo YH, Zhai YQ, Ju XY, Feng YC, Sheng YN, Wang JR, Yu CQ, Jin CH. Mol Med Rep 20 4576-4586 (2019)
  59. Quinalizarin, a specific CK2 inhibitor, can reduce icotinib resistance in human lung adenocarcinoma cell lines. Li K, Zhou F, Zhou Y, Zhang S, Li Q, Li Z, Liu L, Wu G, Meng R. Int. J. Mol. Med. 44 437-446 (2019)
  60. SGC-CK2-1 Is an Efficient Inducer of Insulin Production and Secretion in Pancreatic β-Cells. Pack M, Götz C, Wrublewsky S, Montenarh M. Pharmaceutics 14 19 (2021)
  61. Structure-Activity Relationships and Biological Evaluation of 7-Substituted Harmine Analogs for Human β-Cell Proliferation. Kumar K, Wang P, A Swartz E, Khamrui S, Secor C, B Lazarus M, Sanchez R, F Stewart A, DeVita RJ. Molecules 25 (2020)
  62. The Natural Stilbenoid (-)-Hopeaphenol Inhibits HIV Transcription by Targeting Both PKC and NF-κB Signaling and Cyclin-Dependent Kinase 9. Tietjen I, Schonhofer C, Sciorillo A, Naidu ME, Haq Z, Kannan T, Kossenkov AV, Rivera-Ortiz J, Mounzer K, Hart C, Gyampoh K, Yuan Z, Beattie KD, Rali T, Shuda McGuire K, Davis RA, Montaner LJ. Antimicrob Agents Chemother 67 e0160022 (2023)


Related citations provided by authors (2)