3en6 Citations

Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases.

Nat Chem Biol 4 691-9 (2008)
Related entries: 2v4l, 3en4, 3en5, 3en7, 3ene

Cited: 231 times
EuropePMC logo PMID: 18849971

Abstract

The clinical success of multitargeted kinase inhibitors has stimulated efforts to identify promiscuous drugs with optimal selectivity profiles. It remains unclear to what extent such drugs can be rationally designed, particularly for combinations of targets that are structurally divergent. Here we report the systematic discovery of molecules that potently inhibit both tyrosine kinases and phosphatidylinositol-3-OH kinases, two protein families that are among the most intensely pursued cancer drug targets. Through iterative chemical synthesis, X-ray crystallography and kinome-level biochemical profiling, we identified compounds that inhibit a spectrum of new target combinations in these two families. Crystal structures revealed that the dual selectivity of these molecules is controlled by a hydrophobic pocket conserved in both enzyme classes and accessible through a rotatable bond in the drug skeleton. We show that one compound, PP121, blocks the proliferation of tumor cells by direct inhibition of oncogenic tyrosine kinases and phosphatidylinositol-3-OH kinases. These molecules demonstrate the feasibility of accessing a chemical space that intersects two families of oncogenes.

Reviews - 3en6 mentioned but not cited (1)

  1. Three-Dimensional Interactions Analysis of the Anticancer Target c-Src Kinase with Its Inhibitors. Jha V, Macchia M, Tuccinardi T, Poli G. Cancers (Basel) 12 (2020)

Articles - 3en6 mentioned but not cited (1)

  1. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance. Stogios PJ, Spanogiannopoulos P, Evdokimova E, Egorova O, Shakya T, Todorovic N, Capretta A, Wright GD, Savchenko A. Biochem. J. 454 191-200 (2013)


Reviews citing this publication (79)

  1. Targeting the phosphoinositide 3-kinase pathway in cancer. Liu P, Cheng H, Roberts TM, Zhao JJ. Nat Rev Drug Discov 8 627-644 (2009)
  2. Rapamycin passes the torch: a new generation of mTOR inhibitors. Benjamin D, Colombi M, Moroni C, Hall MN. Nat Rev Drug Discov 10 868-880 (2011)
  3. Targeting the cancer kinome through polypharmacology. Knight ZA, Lin H, Shokat KM. Nat. Rev. Cancer 10 130-137 (2010)
  4. Combinatorial drug therapy for cancer in the post-genomic era. Al-Lazikani B, Banerji U, Workman P. Nat. Biotechnol. 30 679-692 (2012)
  5. Regulation and function of mTOR signalling in T cell fate decisions. Chi H. Nat. Rev. Immunol. 12 325-338 (2012)
  6. Target identification and mechanism of action in chemical biology and drug discovery. Schenone M, Dančík V, Wagner BK, Clemons PA. Nat. Chem. Biol. 9 232-240 (2013)
  7. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Grande MT, López-Novoa JM. Nat Rev Nephrol 5 319-328 (2009)
  8. Unveiling the role of network and systems biology in drug discovery. Pujol A, Mosca R, Farrés J, Aloy P. Trends Pharmacol. Sci. 31 115-123 (2010)
  9. Selectivity and therapeutic inhibition of kinases: to be or not to be? Ghoreschi K, Laurence A, O'Shea JJ. Nat. Immunol. 10 356-360 (2009)
  10. Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Xie L, Xie L, Kinnings SL, Bourne PE. Annu. Rev. Pharmacol. Toxicol. 52 361-379 (2012)
  11. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Dar AC, Shokat KM. Annu. Rev. Biochem. 80 769-795 (2011)
  12. Polypharmacology: drug discovery for the future. Reddy AS, Zhang S. Expert Rev Clin Pharmacol 6 41-47 (2013)
  13. Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Zhang YJ, Duan Y, Zheng XF. Drug Discov. Today 16 325-331 (2011)
  14. A network medicine approach to human disease. Zanzoni A, Soler-López M, Aloy P. FEBS Lett. 583 1759-1765 (2009)
  15. Pharmacologic agents targeting autophagy. Vakifahmetoglu-Norberg H, Xia HG, Yuan J. J. Clin. Invest. 125 5-13 (2015)
  16. Targeting tumour-supportive cellular machineries in anticancer drug development. Dobbelstein M, Moll U. Nat Rev Drug Discov 13 179-196 (2014)
  17. PI3K/mTORC1 activation in hamartoma syndromes: therapeutic prospects. Krymskaya VP, Goncharova EA. Cell Cycle 8 403-413 (2009)
  18. Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors. Shuttleworth SJ, Silva FA, Cecil AR, Tomassi CD, Hill TJ, Raynaud FI, Clarke PA, Workman P. Curr. Med. Chem. 18 2686-2714 (2011)
  19. mTOR pathway in colorectal cancer: an update. Francipane MG, Lagasse E. Oncotarget 5 49-66 (2014)
  20. Inhibition of the PI3K/AKT/mTOR Pathway in Solid Tumors. LoRusso PM. J. Clin. Oncol. 34 3803-3815 (2016)
  21. Structure and organization of drug-target networks: insights from genomic approaches for drug discovery. Janga SC, Tzakos A. Mol Biosyst 5 1536-1548 (2009)
  22. Navigating the network: signaling cross-talk in hematopoietic cells. Fraser ID, Germain RN. Nat. Immunol. 10 327-331 (2009)
  23. Allosteric and ATP-competitive kinase inhibitors of mTOR for cancer treatment. García-Echeverría C. Bioorg. Med. Chem. Lett. 20 4308-4312 (2010)
  24. Autophagy-regulating small molecules and their therapeutic applications. Baek KH, Park J, Shin I. Chem Soc Rev 41 3245-3263 (2012)
  25. mTOR inhibitors in cancer therapy. Xie J, Wang X, Proud CG. F1000Res 5 (2016)
  26. Ligand-receptor interaction platforms and their applications for drug discovery. Fang Y. Expert Opin Drug Discov 7 969-988 (2012)
  27. Structure-based design of molecular cancer therapeutics. van Montfort RL, Workman P. Trends Biotechnol. 27 315-328 (2009)
  28. Predicting drug side-effects by chemical systems biology. Tatonetti NP, Liu T, Altman RB. Genome Biol. 10 238 (2009)
  29. From laptop to benchtop to bedside: structure-based drug design on protein targets. Chen L, Morrow JK, Tran HT, Phatak SS, Du-Cuny L, Zhang S. Curr. Pharm. Des. 18 1217-1239 (2012)
  30. mTOR in health and in sickness. Liko D, Hall MN. J. Mol. Med. 93 1061-1073 (2015)
  31. mTOR signaling, Tregs and immune modulation. Chapman NM, Chi H. Immunotherapy 6 1295-1311 (2014)
  32. Combining targeted therapies: practical issues to consider at the bench and bedside. Rodon J, Perez J, Kurzrock R. Oncologist 15 37-50 (2010)
  33. Blocking the mTOR pathway: a drug discovery perspective. Garcia-Echeverria C. Biochem. Soc. Trans. 39 451-455 (2011)
  34. Molecular networks in drug discovery. Morrow JK, Tian L, Zhang S. Crit Rev Biomed Eng 38 143-156 (2010)
  35. Potential therapeutic effects of the MTOR inhibitors for preventing ageing and progeria-related disorders. Evangelisti C, Cenni V, Lattanzi G. Br J Clin Pharmacol 82 1229-1244 (2016)
  36. Targeting LKB1 in cancer - exposing and exploiting vulnerabilities. Momcilovic M, Shackelford DB. Br. J. Cancer 113 574-584 (2015)
  37. Furthering the design and the discovery of small molecule ATP-competitive mTOR inhibitors as an effective cancer treatment. Lv X, Ma X, Hu Y. Expert Opin Drug Discov 8 991-1012 (2013)
  38. Unravelling the connection between metabolism and tumorigenesis through studies of the liver kinase B1 tumour suppressor. Shackelford DB. J Carcinog 12 16 (2013)
  39. Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Jung HJ, Kwon HJ. Arch. Pharm. Res. 38 1627-1641 (2015)
  40. System-based drug discovery within the human kinome. Bamborough P. Expert Opin Drug Discov 7 1053-1070 (2012)
  41. The mTOR signaling pathway as a treatment target for intracranial neoplasms. Pachow D, Wick W, Gutmann DH, Mawrin C. Neuro-oncology 17 189-199 (2015)
  42. New insights into small-molecule inhibitors of Bcr-Abl. Schenone S, Bruno O, Radi M, Botta M. Med Res Rev 31 1-41 (2011)
  43. What general conclusions can we draw from kinase profiling data sets? Sutherland JJ, Gao C, Cahya S, Vieth M. Biochim. Biophys. Acta 1834 1425-1433 (2013)
  44. Modular pharmacology: deciphering the interacting structural organization of the targeted networks. Wang Z, Wang YY. Drug Discov. Today 18 560-566 (2013)
  45. A Drosophila approach to thyroid cancer therapeutics. Das TK, Cagan RL. Drug Discov Today Technol 10 e65-71 (2013)
  46. Non-clinical studies required for new drug development - Part I: early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies. Andrade EL, Bento AF, Cavalli J, Oliveira SK, Freitas CS, Marcon R, Schwanke RC, Siqueira JM, Calixto JB. Braz. J. Med. Biol. Res. 49 e5644 (2016)
  47. Key autophagic targets and relevant small-molecule compounds in cancer therapy. Tong XP, Chen Y, Zhang SY, Xie T, Tian M, Guo MR, Kasimu R, Ouyang L, Wang JH. Cell Prolif. 48 7-16 (2015)
  48. Modulation of insulin-like growth factor-1 receptor and its signaling network for the treatment of cancer: current status and future perspectives. Jin M, Buck E, Mulvihill MJ. Oncol Rev 7 e3 (2013)
  49. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy. Iturriaga-Vásquez P, Alzate-Morales J, Bermudez I, Varas R, Reyes-Parada M. Pharmacol. Res. 101 9-17 (2015)
  50. Multitarget inhibitors derived from crosstalk mechanism involving VEGFR2. Ding C, Zhang C, Zhang M, Chen YZ, Tan C, Tan Y, Jiang Y. Future Med Chem 6 1771-1789 (2014)
  51. Polypharmacology in Precision Oncology: Current Applications and Future Prospects. Antolin AA, Workman P, Mestres J, Al-Lazikani B. Curr. Pharm. Des. 22 6935-6945 (2016)
  52. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. Martins WK, Silva MDND, Pandey K, Maejima I, Ramalho E, Olivon VC, Diniz SN, Grasso D. Curr Res Pharmacol Drug Discov 2 100033 (2021)
  53. Targeting oncogenic and epigenetic survival pathways in lymphoma. Leslie LA, Younes A. Leuk. Lymphoma 54 2365-2376 (2013)
  54. Somatic mutations in PI3Kalpha: structural basis for enzyme activation and drug design. Gabelli SB, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Biochim. Biophys. Acta 1804 533-540 (2010)
  55. WNK-SPAK/OSR1-NCC kinase signaling pathway as a novel target for the treatment of salt-sensitive hypertension. Brown A, Meor Azlan NF, Wu Z, Zhang J. Acta Pharmacol Sin 42 508-517 (2021)
  56. mTOR inhibitors: changing landscape of endocrine-resistant breast cancer. Chumsri S, Sabnis G, Tkaczuk K, Brodie A. Future Oncol 10 443-456 (2014)
  57. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Abramson HN. Oncotarget 7 81926-81968 (2016)
  58. The molecular basis for RET tyrosine-kinase inhibitors in thyroid cancer. De Falco V, Carlomagno F, Li HY, Santoro M. Best Pract. Res. Clin. Endocrinol. Metab. 31 307-318 (2017)
  59. Drug Repurposing Is a New Opportunity for Developing Drugs against Neuropsychiatric Disorders. Lee HM, Kim Y. Schizophr Res Treatment 2016 6378137 (2016)
  60. Network, nodes and nexus: systems approach to multitarget therapeutics. Murthy D, Attri KS, Gokhale RS. Curr. Opin. Biotechnol. 24 1129-1136 (2013)
  61. Turning liabilities into opportunities: Off-target based drug repurposing in cancer. Palve V, Liao Y, Remsing Rix LL, Rix U. Semin Cancer Biol 68 209-229 (2021)
  62. Combining mTOR Inhibitors and T Cell-Based Immunotherapies in Cancer Treatment. El Hage A, Dormond O. Cancers (Basel) 13 1359 (2021)
  63. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery. Ravikumar B, Aittokallio T. Expert Opin Drug Discov 13 179-192 (2018)
  64. Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets. Quick QA. Int J Mol Sci 19 (2018)
  65. Predictive in silico off-target profiling in drug discovery. Schmidt F, Matter H, Hessler G, Czich A. Future Med Chem 6 295-317 (2014)
  66. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Ali ES, Mitra K, Akter S, Ramproshad S, Mondal B, Khan IN, Islam MT, Sharifi-Rad J, Calina D, Cho WC. Cancer Cell Int 22 284 (2022)
  67. Chemical and Structural Strategies to Selectively Target mTOR Kinase. Borsari C, De Pascale M, Wymann MP. ChemMedChem 16 2744-2759 (2021)
  68. Genie in a bottle: controlled release helps tame natural polypharmacology? Long MJ, Liu X, Aye Y. Curr Opin Chem Biol 51 48-56 (2019)
  69. In situ activation of therapeutics through bioorthogonal catalysis. Wang W, Zhang X, Huang R, Hirschbiegel CM, Wang H, Ding Y, Rotello VM. Adv Drug Deliv Rev 176 113893 (2021)
  70. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Yi YW, You KS, Park JS, Lee SG, Seong YS. Int J Mol Sci 23 48 (2021)
  71. 4-Aminopyrazolopyrimidine scaffold and its deformation in the design of tyrosine and serine/threonine kinase inhibitors in medicinal chemistry. Chen X, Huang Y, Xu W, Cai Y, Yang Y. RSC Med Chem 13 1008-1028 (2022)
  72. Exploring the mTOR Signalling Pathway and Its Inhibitory Scope in Cancer. Mir SA, Dar A, Alshehri SA, Wahab S, Hamid L, Almoyad MAA, Ali T, Bader GN. Pharmaceuticals (Basel) 16 1004 (2023)
  73. Overview of Research into mTOR Inhibitors. Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Molecules 27 5295 (2022)
  74. Recent developments in anticancer kinase inhibitors based on the pyrazolo[3,4-d]pyrimidine scaffold. Baillache DJ, Unciti-Broceta A. RSC Med Chem 11 1112-1135 (2020)
  75. Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension. Meor Azlan NF, Koeners MP, Zhang J. Acta Pharm Sin B 11 1117-1128 (2021)
  76. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. Josiah SS, Meor Azlan NF, Zhang J. Int J Mol Sci 22 (2021)
  77. The Therapeutic Potential of Neuronal K-Cl Co-Transporter KCC2 in Huntington's Disease and Its Comorbidities. Andrews K, Josiah SS, Zhang J. Int J Mol Sci 21 E9142 (2020)
  78. Unveiling Novel Avenues in mTOR-Targeted Therapeutics: Advancements in Glioblastoma Treatment. Singh S, Barik D, Lawrie K, Mohapatra I, Prasad S, Naqvi AR, Singh A, Singh G. Int J Mol Sci 24 14960 (2023)
  79. [Quantitation of cellular phosphorylation dynamics by phosphoproteomics approaches]. Ishihama Y, Imami K. Yakugaku Zasshi 134 521-527 (2014)

Articles citing this publication (150)

  1. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM. PLoS Biol. 7 e38 (2009)
  2. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Lehár J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short GF, Staunton JE, Jin X, Lee MS, Zimmermann GR, Borisy AA. Nat. Biotechnol. 27 659-666 (2009)
  3. mTOR kinase structure, mechanism and regulation. Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. Nature 497 217-223 (2013)
  4. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, Vu C, Lilly MB, Mallya S, Ong ST, Konopleva M, Martin MB, Ren P, Liu Y, Rommel C, Fruman DA. Nat. Med. 16 205-213 (2010)
  5. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, Campisi J. Nat. Cell Biol. 17 1049-1061 (2015)
  6. Inhibitor hijacking of Akt activation. Okuzumi T, Fiedler D, Zhang C, Gray DC, Aizenstein B, Hoffman R, Shokat KM. Nat. Chem. Biol. 5 484-493 (2009)
  7. Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes DaGama EM, Caldas-Lopes E, Beebe K, Perna F, Hatzi K, Vu LP, Zhao X, Zatorska D, Taldone T, Smith-Jones P, Alpaugh M, Gross SS, Pillarsetty N, Ku T, Lewis JS, Larson SM, Levine R, Erdjument-Bromage H, Guzman ML, Nimer SD, Melnick A, Neckers L, Chiosis G. Nat. Chem. Biol. 7 818-826 (2011)
  8. Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Chen T, Shen L, Yu J, Wan H, Guo A, Chen J, Long Y, Zhao J, Pei G. Aging Cell 10 908-911 (2011)
  9. The p110 delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI, Gorrec F, Hon WC, Liu Y, Rommel C, Gaillard P, Rückle T, Schwarz MK, Shokat KM, Shaw JP, Williams RL. Nat. Chem. Biol. 6 117-124 (2010)
  10. Determining target engagement in living systems. Simon GM, Niphakis MJ, Cravatt BF. Nat. Chem. Biol. 9 200-205 (2013)
  11. mTOR Mediated Anti-Cancer Drug Discovery. Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS. Drug Discov Today Ther Strateg 6 47-55 (2009)
  12. Dual activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration in vitro and causes tumor regression in vivo. Zhang H, Xu X, Gajewiak J, Tsukahara R, Fujiwara Y, Liu J, Fells JI, Perygin D, Parrill AL, Tigyi G, Prestwich GD. Cancer Res. 69 5441-5449 (2009)
  13. Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. Xie L, Evangelidis T, Xie L, Bourne PE. PLoS Comput. Biol. 7 e1002037 (2011)
  14. Efficacy of the investigational mTOR kinase inhibitor MLN0128/INK128 in models of B-cell acute lymphoblastic leukemia. Janes MR, Vu C, Mallya S, Shieh MP, Limon JJ, Li LS, Jessen KA, Martin MB, Ren P, Lilly MB, Sender LS, Liu Y, Rommel C, Fruman DA. Leukemia 27 586-594 (2013)
  15. Kinome-wide selectivity profiling of ATP-competitive mammalian target of rapamycin (mTOR) inhibitors and characterization of their binding kinetics. Liu Q, Kirubakaran S, Hur W, Niepel M, Westover K, Thoreen CC, Wang J, Ni J, Patricelli MP, Vogel K, Riddle S, Waller DL, Traynor R, Sanda T, Zhao Z, Kang SA, Zhao J, Look AT, Sorger PK, Sabatini DM, Gray NS. J. Biol. Chem. 287 9742-9752 (2012)
  16. BCR-ABL suppresses autophagy through ATF5-mediated regulation of mTOR transcription. Sheng Z, Ma L, Sun JE, Zhu LJ, Green MR. Blood 118 2840-2848 (2011)
  17. Measuring and interpreting the selectivity of protein kinase inhibitors. Smyth LA, Collins I. J Chem Biol 2 131-151 (2009)
  18. The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. Wang BT, Ducker GS, Barczak AJ, Barbeau R, Erle DJ, Shokat KM. Proc. Natl. Acad. Sci. U.S.A. 108 15201-15206 (2011)
  19. Pharmacological targeting of the pseudokinase Her3. Xie T, Lim SM, Westover KD, Dodge ME, Ercan D, Ficarro SB, Udayakumar D, Gurbani D, Tae HS, Riddle SM, Sim T, Marto JA, Jänne PA, Crews CM, Gray NS. Nat. Chem. Biol. 10 1006-1012 (2014)
  20. Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors. Ducker GS, Atreya CE, Simko JP, Hom YK, Matli MR, Benes CH, Hann B, Nakakura EK, Bergsland EK, Donner DB, Settleman J, Shokat KM, Warren RS. Oncogene 33 1590-1600 (2014)
  21. A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications. Guo S, Liang Y, Murphy SF, Huang A, Shen H, Kelly DF, Sobrado P, Sheng Z. Autophagy 11 560-572 (2015)
  22. Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Yabuuchi H, Niijima S, Takematsu H, Ida T, Hirokawa T, Hara T, Ogawa T, Minowa Y, Tsujimoto G, Okuno Y. Mol. Syst. Biol. 7 472 (2011)
  23. Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery. Brown JR, Auger KR. BMC Evol. Biol. 11 4 (2011)
  24. The small molecules AZD0530 and dasatinib inhibit dengue virus RNA replication via Fyn kinase. de Wispelaere M, LaCroix AJ, Yang PL. J. Virol. 87 7367-7381 (2013)
  25. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Dong P, Xiong F, Que Y, Wang K, Yu L, Li Z, Ren M. Front Plant Sci 6 677 (2015)
  26. Chemoproteomics-based kinome profiling and target deconvolution of clinical multi-kinase inhibitors in primary chronic lymphocytic leukemia cells. Kruse U, Pallasch CP, Bantscheff M, Eberhard D, Frenzel L, Ghidelli S, Maier SK, Werner T, Wendtner CM, Drewes G. Leukemia 25 89-100 (2011)
  27. Using multiple microenvironments to find similar ligand-binding sites: application to kinase inhibitor binding. Liu T, Altman RB. PLoS Comput. Biol. 7 e1002326 (2011)
  28. Hypoxia induces a phase transition within a kinase signaling network in cancer cells. Wei W, Shi Q, Remacle F, Qin L, Shackelford DB, Shin YS, Mischel PS, Levine RD, Heath JR. Proc. Natl. Acad. Sci. U.S.A. 110 E1352-60 (2013)
  29. Multiple determinants for selective inhibition of apicomplexan calcium-dependent protein kinase CDPK1. Larson ET, Ojo KK, Murphy RC, Johnson SM, Zhang Z, Kim JE, Leibly DJ, Fox AM, Reid MC, Dale EJ, Perera BG, Kim J, Hewitt SN, Hol WG, Verlinde CL, Fan E, Van Voorhis WC, Maly DJ, Merritt EA. J. Med. Chem. 55 2803-2810 (2012)
  30. Quantitative network mapping of the human kinome interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer therapy. Cheng F, Jia P, Wang Q, Zhao Z. Oncotarget 5 3697-3710 (2014)
  31. Deactivation of Akt by a small molecule inhibitor targeting pleckstrin homology domain and facilitating Akt ubiquitination. Jo H, Lo PK, Li Y, Loison F, Green S, Wang J, Silberstein LE, Ye K, Chen H, Luo HR. Proc. Natl. Acad. Sci. U.S.A. 108 6486-6491 (2011)
  32. HER3 signalling is regulated through a multitude of redundant mechanisms in HER2-driven tumour cells. Amin DN, Sergina N, Lim L, Goga A, Moasser MM. Biochem. J. 447 417-425 (2012)
  33. The susceptibility of trypanosomatid pathogens to PI3/mTOR kinase inhibitors affords a new opportunity for drug repurposing. Diaz-Gonzalez R, Kuhlmann FM, Galan-Rodriguez C, Madeira da Silva L, Saldivia M, Karver CE, Rodriguez A, Beverley SM, Navarro M, Pollastri MP. PLoS Negl Trop Dis 5 e1297 (2011)
  34. Inhibiting the HIV integration process: past, present, and the future. Di Santo R. J. Med. Chem. 57 539-566 (2014)
  35. Developing dual and specific inhibitors of dimethylarginine dimethylaminohydrolase-1 and nitric oxide synthase: toward a targeted polypharmacology to control nitric oxide. Wang Y, Monzingo AF, Hu S, Schaller TH, Robertus JD, Fast W. Biochemistry 48 8624-8635 (2009)
  36. DNA damage-induced S and G2/M cell cycle arrest requires mTORC2-dependent regulation of Chk1. Selvarajah J, Elia A, Carroll VA, Moumen A. Oncotarget 6 427-440 (2015)
  37. Selective regulation of GluA subunit synthesis and AMPA receptor-mediated synaptic function and plasticity by the translation repressor 4E-BP2 in hippocampal pyramidal cells. Ran I, Gkogkas CG, Vasuta C, Tartas M, Khoutorsky A, Laplante I, Parsyan A, Nevarko T, Sonenberg N, Lacaille JC. J. Neurosci. 33 1872-1886 (2013)
  38. Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors. Kalin JH, Wu M, Gomez AV, Song Y, Das J, Hayward D, Adejola N, Wu M, Panova I, Chung HJ, Kim E, Roberts HJ, Roberts JM, Prusevich P, Jeliazkov JR, Roy Burman SS, Fairall L, Milano C, Eroglu A, Proby CM, Dinkova-Kostova AT, Hancock WW, Gray JJ, Bradner JE, Valente S, Mai A, Anders NM, Rudek MA, Hu Y, Ryu B, Schwabe JWR, Mattevi A, Alani RM, Cole PA. Nat Commun 9 53 (2018)
  39. Seizure-induced reduction in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Chang P, Walker MC, Williams RS. Neurobiol. Dis. 62 296-306 (2014)
  40. Activating mutations in TOR are in similar structures as oncogenic mutations in PI3KCalpha. Sturgill TW, Hall MN. ACS Chem. Biol. 4 999-1015 (2009)
  41. A pyrrolo-pyrimidine derivative targets human primary AML stem cells in vivo. Saito Y, Yuki H, Kuratani M, Hashizume Y, Takagi S, Honma T, Tanaka A, Shirouzu M, Mikuni J, Handa N, Ogahara I, Sone A, Najima Y, Tomabechi Y, Wakiyama M, Uchida N, Tomizawa-Murasawa M, Kaneko A, Tanaka S, Suzuki N, Kajita H, Aoki Y, Ohara O, Shultz LD, Fukami T, Goto T, Taniguchi S, Yokoyama S, Ishikawa F. Sci Transl Med 5 181ra52 (2013)
  42. Exploration of (S)-3-aminopyrrolidine as a potentially interesting scaffold for discovery of novel Abl and PI3K dual inhibitors. Zhang C, Tan C, Zu X, Zhai X, Liu F, Chu B, Ma X, Chen Y, Gong P, Jiang Y. Eur J Med Chem 46 1404-1414 (2011)
  43. KLIFS: a structural kinase-ligand interaction database. Kooistra AJ, Kanev GK, van Linden OP, Leurs R, de Esch IJ, de Graaf C. Nucleic Acids Res. 44 D365-71 (2016)
  44. Mining significant substructure pairs for interpreting polypharmacology in drug-target network. Takigawa I, Tsuda K, Mamitsuka H. PLoS ONE 6 e16999 (2011)
  45. The inhibition of MAPK potentiates the anti-angiogenic efficacy of mTOR inhibitors. Dormond-Meuwly A, Roulin D, Dufour M, Benoit M, Demartines N, Dormond O. Biochem. Biophys. Res. Commun. 407 714-719 (2011)
  46. DMXAA (Vadimezan, ASA404) is a multi-kinase inhibitor targeting VEGFR2 in particular. Buchanan CM, Shih JH, Astin JW, Rewcastle GW, Flanagan JU, Crosier PS, Shepherd PR. Clin. Sci. 122 449-457 (2012)
  47. Comment Killing two kinase families with one stone. Bilanges B, Torbett N, Vanhaesebroeck B. Nat. Chem. Biol. 4 648-649 (2008)
  48. Identification of modulators of autophagic flux in an image-based high content siRNA screen. Hale CM, Cheng Q, Ortuno D, Huang M, Nojima D, Kassner PD, Wang S, Ollmann MM, Carlisle HJ. Autophagy 12 713-726 (2016)
  49. Significance of filamin A in mTORC2 function in glioblastoma. Chantaravisoot N, Wongkongkathep P, Loo JA, Mischel PS, Tamanoi F. Mol. Cancer 14 127 (2015)
  50. 6-(1-Benzyl-1H-pyrrol-2-yl)-2,4-dioxo-5-hexenoic acids as dual inhibitors of recombinant HIV-1 integrase and ribonuclease H, synthesized by a parallel synthesis approach. Costi R, Métifiot M, Esposito F, Cuzzucoli Crucitti G, Pescatori L, Messore A, Scipione L, Tortorella S, Zinzula L, Novellino E, Pommier Y, Tramontano E, Marchand C, Di Santo R. J Med Chem 56 8588-8598 (2013)
  51. Combination of ATP-competitive mammalian target of rapamycin inhibitors with standard chemotherapy for colorectal cancer. Atreya CE, Ducker GS, Feldman ME, Bergsland EK, Warren RS, Shokat KM. Invest New Drugs 30 2219-2225 (2012)
  52. META060 inhibits osteoclastogenesis and matrix metalloproteinases in vitro and reduces bone and cartilage degradation in a mouse model of rheumatoid arthritis. Konda VR, Desai A, Darland G, Bland JS, Tripp ML. Arthritis Rheum. 62 1683-1692 (2010)
  53. Sensitivity of global translation to mTOR inhibition in REN cells depends on the equilibrium between eIF4E and 4E-BP1. Grosso S, Pesce E, Brina D, Beugnet A, Loreni F, Biffo S. PLoS ONE 6 e29136 (2011)
  54. Urinary bladder inflammation induces changes in urothelial nerve growth factor and TRPV1 channels. Coelho A, Wolf-Johnston AS, Shinde S, Cruz CD, Cruz F, Avelino A, Birder LA. Br. J. Pharmacol. 172 1691-1699 (2015)
  55. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound-Kinase Activities: A Way toward Selective Promiscuity by Design? Christmann-Franck S, van Westen GJ, Papadatos G, Beltran Escudie F, Roberts A, Overington JP, Domine D. J Chem Inf Model 56 1654-1675 (2016)
  56. A multi-label approach to target prediction taking ligand promiscuity into account. Afzal AM, Mussa HY, Turner RE, Bender A, Glen RC. J Cheminform 7 24 (2015)
  57. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera). Snell TW, Johnston RK, Rabeneck B, Zipperer C, Teat S. Exp. Gerontol. 52 55-69 (2014)
  58. Using hydrogen deuterium exchange mass spectrometry to engineer optimized constructs for crystallization of protein complexes: Case study of PI4KIIIβ with Rab11. Fowler ML, McPhail JA, Jenkins ML, Masson GR, Rutaganira FU, Shokat KM, Williams RL, Burke JE. Protein Sci. 25 826-839 (2016)
  59. Hybrid dual aromatase-steroid sulfatase inhibitors with exquisite picomolar inhibitory activity. Woo LW, Bubert C, Purohit A, Potter BV. ACS Med Chem Lett 2 243-247 (2011)
  60. Systematic Mapping of Kinase Addiction Combinations in Breast Cancer Cells by Integrating Drug Sensitivity and Selectivity Profiles. Szwajda A, Gautam P, Karhinen L, Jha SK, Saarela J, Shakyawar S, Turunen L, Yadav B, Tang J, Wennerberg K, Aittokallio T. Chem. Biol. 22 1144-1155 (2015)
  61. Bioorthogonal small molecule imaging agents allow single-cell imaging of MET. Kim E, Yang KS, Weissleder R. PLoS ONE 8 e81275 (2013)
  62. Discovery of biarylaminoquinazolines as novel tubulin polymerization inhibitors. Marzaro G, Coluccia A, Ferrarese A, Brun P, Castagliuolo I, Conconi MT, La Regina G, Bai R, Silvestri R, Hamel E, Chilin A. J. Med. Chem. 57 4598-4605 (2014)
  63. Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis. Head SA, Shi WQ, Yang EJ, Nacev BA, Hong SY, Pasunooti KK, Li RJ, Shim JS, Liu JO. ACS Chem. Biol. 12 174-182 (2017)
  64. Genome-wide analysis of differentially expressed genes and the modulation of PEDV infection in Vero E6 cells. Zhang H, Liu Q, Su W, Wang J, Sun Y, Zhang J, Shang K, Chen Z, Cheng S, Wu H. Microb Pathog 117 247-254 (2018)
  65. Inferring multi-target QSAR models with taxonomy-based multi-task learning. Rosenbaum L, Dörr A, Bauer MR, Boeckler FM, Zell A. J Cheminform 5 33 (2013)
  66. Inhibition of Calcium-Dependent Protein Kinase 1 (CDPK1) In Vitro by Pyrazolopyrimidine Derivatives Does Not Correlate with Sensitivity of Cryptosporidium parvum Growth in Cell Culture. Kuhlenschmidt TB, Rutaganira FU, Long S, Tang K, Shokat KM, Kuhlenschmidt MS, Sibley LD. Antimicrob. Agents Chemother. 60 570-579 (2016)
  67. PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, inhibits anaplastic thyroid carcinoma cell proliferation and migration. Che HY, Guo HY, Si XW, You QY, Lou WY. Tumour Biol. 35 8659-8664 (2014)
  68. Strong nonadditivity as a key structure-activity relationship feature: distinguishing structural changes from assay artifacts. Kramer C, Fuchs JE, Liedl KR. J Chem Inf Model 55 483-494 (2015)
  69. A large-scale screen reveals genes that mediate electrotaxis in Dictyostelium discoideum. Gao R, Zhao S, Jiang X, Sun Y, Zhao S, Gao J, Borleis J, Willard S, Tang M, Cai H, Kamimura Y, Huang Y, Jiang J, Huang Z, Mogilner A, Pan T, Devreotes PN, Zhao M. Sci Signal 8 ra50 (2015)
  70. A virtual screen identified C96 as a novel inhibitor of phosphatidylinositol 3-kinase that displays potent preclinical activity against multiple myeloma in vitro and in vivo. Tang J, Zhu J, Yu Y, Zhang Z, Chen G, Zhou X, Qiao C, Hou T, Mao X. Oncotarget 5 3836-3848 (2014)
  71. Combinatory action of VEGFR2 and MAP kinase pathways maintains endothelial-cell integrity. Zhong H, Wang D, Wang N, Rios Y, Huang H, Li S, Wu X, Lin S. Cell Res. 21 1080-1087 (2011)
  72. Computational polypharmacology analysis of the heat shock protein 90 interactome. Anighoro A, Stumpfe D, Heikamp K, Beebe K, Neckers LM, Bajorath J, Rastelli G. J Chem Inf Model 55 676-686 (2015)
  73. Palladium-mediated in situ synthesis of an anticancer agent. Indrigo E, Clavadetscher J, Chankeshwara SV, Lilienkampf A, Bradley M. Chem. Commun. (Camb.) 52 14212-14214 (2016)
  74. Rapid Discovery and Structure-Activity Relationships of Pyrazolopyrimidines That Potently Suppress Breast Cancer Cell Growth via SRC Kinase Inhibition with Exceptional Selectivity over ABL Kinase. Fraser C, Dawson JC, Dowling R, Houston DR, Weiss JT, Munro AF, Muir M, Harrington L, Webster SP, Frame MC, Brunton VG, Patton EE, Carragher NO, Unciti-Broceta A. J. Med. Chem. 59 4697-4710 (2016)
  75. Synthesis and biological evaluation of new 5-benzylated 4-oxo-3,4-dihydro-5H-pyridazino[4,5-b]indoles as PI3Kα inhibitors. Bruel A, Logé C, Tauzia ML, Ravache M, Le Guevel R, Guillouzo C, Lohier JF, Oliveira Santos JS, Lozach O, Meijer L, Ruchaud S, Bénédetti H, Robert JM. Eur J Med Chem 57 225-233 (2012)
  76. The anti-esophageal cancer cell activity by a novel tyrosine/phosphoinositide kinase inhibitor PP121. Peng Y, Zhou Y, Cheng L, Hu D, Zhou X, Wang Z, Xie C, Zhou F. Biochem. Biophys. Res. Commun. 465 137-144 (2015)
  77. COVID-19 Multi-Targeted Drug Repurposing Using Few-Shot Learning. Liu Y, Wu Y, Shen X, Xie L. Front Bioinform 1 693177 (2021)
  78. Curation and analysis of multitargeting agents for polypharmacological modeling. Reddy AS, Tan Z, Zhang S. J Chem Inf Model 54 2536-2543 (2014)
  79. Developing multi-target therapeutics to fine-tune the evolutionary dynamics of the cancer ecosystem. Xie L, Bourne PE. Front Pharmacol 6 209 (2015)
  80. Divergent modulation of Src-family kinase regulatory interactions with ATP-competitive inhibitors. Leonard SE, Register AC, Krishnamurty R, Brighty GJ, Maly DJ. ACS Chem. Biol. 9 1894-1905 (2014)
  81. Exploring the PI3K alpha and gamma binding sites with 2,6-disubstituted isonicotinic derivatives. Cherian PT, Koikov LN, Wortman MD, Knittel JJ. Bioorg. Med. Chem. Lett. 19 2215-2219 (2009)
  82. Identification of ponatinib and other known kinase inhibitors with potent MEKK2 inhibitory activity. Ahmad S, Johnson GL, Scott JE. Biochem. Biophys. Res. Commun. 463 888-893 (2015)
  83. Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine. Setzer WN. J Mol Model 17 1841-1845 (2011)
  84. Synthesis and structure-activity relationship studies of derivatives of the dual aromatase-sulfatase inhibitor 4-{[(4-cyanophenyl)(4H-1,2,4-triazol-4-yl)amino]methyl}phenyl sulfamate. Woo LW, Wood PM, Bubert C, Thomas MP, Purohit A, Potter BV. ChemMedChem 8 779-799 (2013)
  85. mTORC1 and -2 Coordinate Transcriptional and Translational Reprogramming in Resistance to DNA Damage and Replicative Stress in Breast Cancer Cells. Silvera D, Ernlund A, Arju R, Connolly E, Volta V, Wang J, Schneider RJ. Mol. Cell. Biol. 37 (2017)
  86. 1,3-disubstituted-4-aminopyrazolo [3, 4-d] pyrimidines, a new class of potent inhibitors for phospholipase D. Kulkarni A, Quang P, Curry V, Keyes R, Zhou W, Cho H, Baffoe J, Török B, Stieglitz K. Chem Biol Drug Des 84 270-281 (2014)
  87. Identification of AKN-032, a novel 2-aminopyrazine tyrosine kinase inhibitor, with significant preclinical activity in acute myeloid leukemia. Eriksson A, Höglund M, Lindhagen E, Aleskog A, Hassan SB, Ekholm C, Fhölenhag K, Jensen AJ, Löthgren A, Scobie M, Larsson R, Parrow V. Biochem. Pharmacol. 80 1507-1516 (2010)
  88. Identification of a conserved 8 aa insert in the PIP5K protein in the Saccharomycetaceae family of fungi and the molecular dynamics simulations and structural analysis to investigate its potential functional role. Khadka B, Gupta RS. Proteins 85 1454-1467 (2017)
  89. KIF5B-RET Oncoprotein Signals through a Multi-kinase Signaling Hub. Das TK, Cagan RL. Cell Rep 20 2368-2383 (2017)
  90. Novel C6-substituted 1,3,4-oxadiazinones as potential anti-cancer agents. Alam MM, Lee SC, Jung Y, Yun HJ, Min HY, Lee HJ, Pham PC, Moon J, Kwon DI, Lim B, Suh YG, Lee J, Lee HY. Oncotarget 6 40598-40610 (2015)
  91. Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors. Zhu JY, Cuellar RA, Berndt N, Lee HE, Olesen SH, Martin MP, Jensen JT, Georg GI, Schönbrunn E. J. Med. Chem. 60 7863-7875 (2017)
  92. Transition State Analysis of Adenosine Triphosphate Phosphoribosyltransferase. Moggré GJ, Poulin MB, Tyler PC, Schramm VL, Parker EJ. ACS Chem. Biol. 12 2662-2670 (2017)
  93. An in silico protocol for identifying mTOR inhibitors from natural products. Chen L, Wang L, Gu Q, Xu J. Mol Divers 18 841-852 (2014)
  94. Discovery of Diverse Small-Molecule Inhibitors of Mammalian Sterile20-like Kinase 3 (MST3). Olesen SH, Zhu JY, Martin MP, Schönbrunn E. ChemMedChem 11 1137-1144 (2016)
  95. How ATP-Competitive Inhibitors Allosterically Modulate Tyrosine Kinases That Contain a Src-like Regulatory Architecture. Fang L, Vilas-Boas J, Chakraborty S, Potter ZE, Register AC, Seeliger MA, Maly DJ. ACS Chem Biol 15 2005-2016 (2020)
  96. Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining. Verma N, Rai AK, Kaushik V, Brünnert D, Chahar KR, Pandey J, Goyal P. Sci Rep 6 33949 (2016)
  97. In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis. Latham AM, Kankanala J, Fearnley GW, Gage MC, Kearney MT, Homer-Vanniasinkam S, Wheatcroft SB, Fishwick CW, Ponnambalam S. PLoS ONE 9 e110997 (2014)
  98. Is Structure-Based Drug Design Ready for Selectivity Optimization? Albanese SK, Chodera JD, Volkamer A, Keng S, Abel R, Wang L. J Chem Inf Model 60 6211-6227 (2020)
  99. Straightforward synthesis of novel Akt inhibitors based on a glucose scaffold. Cipolla L, Redaelli C, Granucci F, Zampella G, Zaza A, Chisci R, Nicotra F. Carbohydr. Res. 345 1291-1298 (2010)
  100. Synergistic effects of inhibiting the MNK-eIF4E and PI3K/AKT/ mTOR pathways on cell migration in MDA-MB-231 cells. Lineham E, Tizzard GJ, Coles SJ, Spencer J, Morley SJ. Oncotarget 9 14148-14159 (2018)
  101. Editorial [Still further crisis...the scene in Belgium]. Scheen AJ. Rev Med Liege 66 1-3 (2011)
  102. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages. Guo S, Pridham KJ, Virbasius CM, He B, Zhang L, Varmark H, Green MR, Sheng Z. Sci Rep 8 2822 (2018)
  103. DNA-PK promotes activation of the survival kinase AKT in response to DNA damage through an mTORC2-ECT2 pathway. Liu L, Dai X, Yin S, Liu P, Hill EG, Wei W, Gan W. Sci Signal 15 eabh2290 (2022)
  104. Identifying problematic drugs based on the characteristics of their targets. Lopes TJ, Shoemaker JE, Matsuoka Y, Kawaoka Y, Kitano H. Front Pharmacol 6 186 (2015)
  105. In-Cell Dual Drug Synthesis by Cancer-Targeting Palladium Catalysts. Clavadetscher J, Indrigo E, Chankeshwara SV, Lilienkampf A, Bradley M. Angew. Chem. Int. Ed. Engl. 56 6864-6868 (2017)
  106. Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma. Lamanuzzi A, Saltarella I, Desantis V, Frassanito MA, Leone P, Racanelli V, Nico B, Ribatti D, Ditonno P, Prete M, Solimando AG, Dammacco F, Vacca A, Ria R. Oncotarget 9 20563-20577 (2018)
  107. The antileukemia roles of PP242 alone or in combination with daunorubicin in acute leukemia. Shi F, Yang X, Gong Y, Shi R, Yang X, Naren D, Wu J. Anticancer Drugs 26 410-421 (2015)
  108. A multitargeted probe-based strategy to identify signaling vulnerabilities in cancers. Rao S, Du G, Hafner M, Subramanian K, Sorger PK, Gray NS. J. Biol. Chem. 294 8664-8673 (2019)
  109. Binding site matching in rational drug design: algorithms and applications. Naderi M, Lemoine JM, Govindaraj RG, Kana OZ, Feinstein WP, Brylinski M. Brief. Bioinformatics (2018)
  110. Bivalent Inhibitors of c-Src Tyrosine Kinase That Bind a Regulatory Domain. Johnson TK, Soellner MB. Bioconjug Chem 27 1745-1749 (2016)
  111. Chemoproteomic Profiling Uncovers CDK4-Mediated Phosphorylation of the Translational Suppressor 4E-BP1. Mitchell DC, Menon A, Garner AL. Cell Chem Biol 26 980-990.e8 (2019)
  112. Computational modeling identifies multitargeted kinase inhibitors as effective therapies for metastatic, castration-resistant prostate cancer. Bello T, Paindelli C, Diaz-Gomez LA, Melchiorri A, Mikos AG, Nelson PS, Dondossola E, Gujral TS. Proc Natl Acad Sci U S A 118 e2103623118 (2021)
  113. DDX3 regulates endoplasmic reticulum stress-induced ATF4 expression. Adjibade P, Grenier St-Sauveur V, Bergeman J, Huot ME, Khandjian EW, Mazroui R. Sci Rep 7 13832 (2017)
  114. Evaluation of Nucleoside Analogs as Antimicrobials Targeting Unique Enzymes in Borrelia burgdorferi. Chakraborti M, Schlachter S, Primus S, Wagner J, Sweet B, Carr Z, Cornell KA, Parveen N. Pathogens 9 (2020)
  115. In Vitro and in Vivo Activity of mTOR Kinase and PI3K Inhibitors Against Leishmania donovani and Trypanosoma brucei. Phan TN, Baek KH, Lee N, Byun SY, Shum D, No JH. Molecules 25 (2020)
  116. Pharmacological relationships and ligand discovery of G protein-coupled receptors revealed by simultaneous ligand and receptor clustering. Zhang C, Shao YM, Ma X, Cheong SL, Qin C, Tao L, Zhang P, Chen S, Zeng X, Liu H, Pastorin G, Jiang Y, Chen YZ. J. Mol. Graph. Model. 76 136-142 (2017)
  117. Quantitative High-Throughput Screening Using an Organotypic Model Identifies Compounds that Inhibit Ovarian Cancer Metastasis. Kenny HA, Lal-Nag M, Shen M, Kara B, Nahotko DA, Wroblewski K, Fazal S, Chen S, Chiang CY, Chen YJ, Brimacombe KR, Marugan J, Ferrer M, Lengyel E. Mol Cancer Ther 19 52-62 (2020)
  118. Structural Characterization of Maize SIRK1 Kinase Domain Reveals an Unusual Architecture of the Activation Segment. Aquino B, Couñago RM, Verza N, Ferreira LM, Massirer KB, Gileadi O, Arruda P. Front Plant Sci 8 852 (2017)
  119. Tyrosine phosphorylation of DEPTOR functions as a molecular switch to activate mTOR signaling. M Gagné L, Morin N, Lavoie N, Bisson N, Lambert JP, Mallette FA, Huot MÉ. J Biol Chem 297 101291 (2021)
  120. A Fluorescent Kinase Inhibitor that Exhibits Diagnostic Changes in Emission upon Binding. Fleming CL, Sandoz PA, Inghardt T, Önfelt B, Grøtli M, Andréasson J. Angew. Chem. Int. Ed. Engl. 58 15000-15004 (2019)
  121. A convenient four-component one-pot strategy toward the synthesis of pyrazolo[3,4-d]pyrimidines. Liu M, Li J, Chai H, Zhang K, Yang D, Zhang Q, Shi D. Beilstein J Org Chem 11 2125-2131 (2015)
  122. Can structural features of kinase receptors provide clues on selectivity and inhibition? A molecular modeling study. Ravichandran S, Luke BT, Collins JR. J. Mol. Graph. Model. 57 36-48 (2015)
  123. Construction of Quantitative Structure Activity Relationship (QSAR) Models to Predict Potency of Structurally Diversed Janus Kinase 2 Inhibitors. Simeon S, Jongkon N. Molecules 24 (2019)
  124. Dasatinib targets c-Src kinase in cardiotoxicity. Elmadani M, Raatikainen S, Mattila O, Alakoski T, Piuhola J, Åström P, Tenhunen O, Magga J, Kerkelä R. Toxicol Rep 10 521-528 (2023)
  125. Discovery of novel selective PI3Kγ inhibitors through combining machine learning-based virtual screening with multiple protein structures and bio-evaluation. Zhu J, Li K, Xu L, Cai Y, Chen Y, Zhao X, Li H, Huang G, Jin J. J Adv Res 36 1-13 (2022)
  126. Discovery of pyrazolopyrimidines that selectively inhibit CSF-1R kinase by iterative design, synthesis and screening against glioblastoma cells. Baillache DJ, Valero T, Lorente-Macías Á, Bennett DJ, Elliott RJR, Carragher NO, Unciti-Broceta A. RSC Med Chem 14 2611-2624 (2023)
  127. Efficacy of PP121 in primary and metastatic non‑small cell lung cancers. Quick QA. Biomed Rep 18 29 (2023)
  128. Engineering an autonomous VH domain to modulate intracellular pathways and to interrogate the eIF4F complex. Frosi Y, Lin YC, Shimin J, Ramlan SR, Hew K, Engman AH, Pillai A, Yeung K, Cheng YX, Cornvik T, Nordlund P, Goh M, Lama D, Gates ZP, Verma CS, Thean D, Lane DP, Asial I, Brown CJ. Nat Commun 13 4854 (2022)
  129. Hyaluronic Acid Layered Chimeric Nanoparticles: Targeting MAPK-PI3K Signaling Hub in Colon Cancer Cells. Palvai S, Kuman MM, Sengupta P, Basu S. ACS Omega 2 7868-7880 (2017)
  130. Identification of phytochemical as a dual inhibitor of PI3K and mTOR: a structure-based computational approach. Kumar BH, Manandhar S, Choudhary SS, Priya K, Gujaran TV, Mehta CH, Nayak UY, Pai KSR. Mol Divers (2022)
  131. Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining. Zhang T, Jiang S, Li T, Liu Y, Zhang Y. ACS Omega 8 25165-25184 (2023)
  132. Leveraging molecular structure and bioactivity with chemical language models for de novo drug design. Moret M, Pachon Angona I, Cotos L, Yan S, Atz K, Brunner C, Baumgartner M, Grisoni F, Schneider G. Nat Commun 14 114 (2023)
  133. Optimization of mTOR Inhibitors Using Property-Based Drug Design and Free-Wilson Analysis for Improved In Vivo Efficacy. Murphy ST, Atienza J, Brown JW, Cheruvallath ZS, Cukierski MJ, Fabrey R, Keung W, Kwok L, O'Connell S, Tang M, Vanderpool DL, Vincent PW, Zhang L, Marx MA. ACS Med Chem Lett 14 1544-1550 (2023)
  134. PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, relieves airway hyperresponsiveness, mucus hypersecretion and inflammation in a murine asthma model. Li W, Xue L, Peng C, Zhao P, Peng Y, Chen W, Wang W, Shen J. Mol Med 29 154 (2023)
  135. Phenotypic Screening Using High-Content Imaging to Identify Lysosomal pH Modulators in a Neuronal Cell Model. Chin MY, Ang KH, Davies J, Alquezar C, Garda VG, Rooney B, Leng K, Kampmann M, Arkin MR, Kao AW. ACS Chem Neurosci 13 1505-1516 (2022)
  136. Phosphatases maintain low catalytic activity of SGK1: DNA damage resets the balance in favor of phosphorylation. Gu W, Zheng H, Canessa CM. J Biol Chem 299 104941 (2023)
  137. Editorial Postgenomic chemical biology. Nat. Chem. Biol. 6 631 (2010)
  138. Potent Antitrypanosomal Activities of 3-Aminosteroids against African Trypanosomes: Investigation of Cellular Effects and of Cross-Resistance with Existing Drugs. Nnadi CO, Ebiloma GU, Black JA, Nwodo NJ, Lemgruber L, Schmidt TJ, de Koning HP. Molecules 24 (2019)
  139. Prior Treatment with AICAR Causes the Selective Phosphorylation of mTOR Substrates in C2C12 Cells. Dedert CJ, Bagdady KR, Fisher JS. Curr Issues Mol Biol 45 8040-8052 (2023)
  140. ProSelection: A Novel Algorithm to Select Proper Protein Structure Subsets for in Silico Target Identification and Drug Discovery Research. Wang N, Wang L, Xie XQ. J Chem Inf Model 57 2686-2698 (2017)
  141. Profile of Kevan M. Shokat. Zeliadt N. Proc. Natl. Acad. Sci. U.S.A. 109 11057-11059 (2012)
  142. Prospects for Antibacterial Discovery and Development. Privalsky TM, Soohoo AM, Wang J, Walsh CT, Wright GD, Gordon EM, Gray NS, Khosla C. J Am Chem Soc 143 21127-21142 (2021)
  143. Pyrazolopyrimide library screening in glioma cells discovers highly potent antiproliferative leads that target the PI3K/mTOR pathway. Valero T, Baillache DJ, Fraser C, Myers SH, Unciti-Broceta A. Bioorg. Med. Chem. 28 115215 (2020)
  144. Rational discovery of dual-indication multi-target PDE/Kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology. Lim H, He D, Qiu Y, Krawczuk P, Sun X, Xie L. PLoS Comput. Biol. 15 e1006619 (2019)
  145. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Li Y, Tang J, Ji X, Hua MM, Liu M, Chang L, Gu Y, Shi C, Ni W, Liu J, Shi HJ, Huang X, O'Neill C, Jin X. Development 148 dev190793 (2021)
  146. Strong inhibition of neutrophil-sperm interaction in cattle by selective phosphatidylinositol 3-kinase inhibitors. Hong J, Dicker BL, Jayasinghe SN, De Gregorio F, Tian H, Han DY, Hudson KR. Biol. Reprod. 97 671-687 (2017)
  147. Supermacrocyclic Assemblies by Hydrogen-Bond Codes of C7-Phenol Pyrazolo and Pyrrolo Derivatives of Adenine. Chai Y, Zhou X, Li C, Ma B, Shen Z, Huang R, Chen H, Chen B, Li W, He Y. Chemistry 24 15495-15501 (2018)
  148. Synthesis and profiling of a 3-aminopyridin-2-one-based kinase targeted fragment library: Identification of 3-amino-5-(pyridin-4-yl)pyridin-2(1H)-one scaffold for monopolar spindle 1 (MPS1) and Aurora kinases inhibition. Fearon D, Westwood IM, van Montfort RLM, Bayliss R, Jones K, Bavetsias V. Bioorg. Med. Chem. 26 3021-3029 (2018)
  149. Targeted drug combination therapy design based on driver genes. Zsákai L, Sipos A, Dobos J, Erős D, Szántai-Kis C, Bánhegyi P, Pató J, Őrfi L, Matula Z, Mikala G, Kéri G, Peták I, Vályi-Nagy I. Oncotarget 10 5255-5266 (2019)
  150. mTOR kinase is a therapeutic target for respiratory syncytial virus and coronaviruses. Huynh H, Levitz R, Huang R, Kahn JS. Sci Rep 11 24442 (2021)